Basic Boundary Conditions
in OpenFOAM v2.4
Classification
Steady
Time-
varying
Dirichlet
Neumann
Robin
Not
Implemented
Periodic
Symmetry
fixedValue uniformFixedValue
fixedGradient uniformFixedGradient
zeroGradient
mixed
cyclic
𝜙 𝒙 = 𝑓 𝒙 𝜙 𝒙, 𝑡 = 𝑓 𝒙, 𝑡
𝜕𝜙
𝜕𝒏
𝒙 = 𝑔 𝒙
𝜕𝜙
𝜕𝒏
𝒙, 𝑡 = 𝑔 𝒙, 𝑡
𝜕𝜙
𝜕𝒏
𝒙 = 0
a𝛼 𝒙 𝜙 𝒙
+𝛽 𝒙
𝜕𝜙
𝜕𝒏
𝒙 = ℎ 𝒙
cyclicAMI
mixed BC
mixed fixedValue
fixedGradient
=
+ ×
×w
(1-w)
w
fixedValue
fixedGradient
W = 1
W = 0
mixed
symmetryPlane
symmetryPlane or slip?
𝜕𝜙
𝜕𝒏
𝒙 = 0
Scalar 𝜙 Vector 𝝓
𝝓 𝒙 ∙ 𝒏 = 0,
𝜕𝝓 𝑡
𝜕𝒏
𝒙 = 𝟎
 symmetryPlane is used on
a single and perfectly flat boundary
 slip can be used on curved boundaries
symmetryPlane slip
𝒏
 mixed BC is a combination of
fixedValue and fixedGradient BCs
 A weighting parameter w (0-1) switches
between these types
directionMixed BC
 For vector fields, directionMixed BC
is a combination of fixedValue and
fixedGradient BCs
 A weighting parameter (tensor) controls
which direction these BCs are apply to
1
2
𝒏 ⊗ 𝒏 + 𝒏 ⊗ 𝒏 𝑇
w
𝑂3 (Zero matrix)
𝐼3 (Identity matrix) fixedValue
fixedGradient
fixedGradient
fixedValue
Normal direction
Tangential direction
All directions

Basic Boundary Conditions in OpenFOAM v2.4

  • 1.
    Basic Boundary Conditions inOpenFOAM v2.4 Classification Steady Time- varying Dirichlet Neumann Robin Not Implemented Periodic Symmetry fixedValue uniformFixedValue fixedGradient uniformFixedGradient zeroGradient mixed cyclic 𝜙 𝒙 = 𝑓 𝒙 𝜙 𝒙, 𝑡 = 𝑓 𝒙, 𝑡 𝜕𝜙 𝜕𝒏 𝒙 = 𝑔 𝒙 𝜕𝜙 𝜕𝒏 𝒙, 𝑡 = 𝑔 𝒙, 𝑡 𝜕𝜙 𝜕𝒏 𝒙 = 0 a𝛼 𝒙 𝜙 𝒙 +𝛽 𝒙 𝜕𝜙 𝜕𝒏 𝒙 = ℎ 𝒙 cyclicAMI mixed BC mixed fixedValue fixedGradient = + × ×w (1-w) w fixedValue fixedGradient W = 1 W = 0 mixed symmetryPlane symmetryPlane or slip? 𝜕𝜙 𝜕𝒏 𝒙 = 0 Scalar 𝜙 Vector 𝝓 𝝓 𝒙 ∙ 𝒏 = 0, 𝜕𝝓 𝑡 𝜕𝒏 𝒙 = 𝟎  symmetryPlane is used on a single and perfectly flat boundary  slip can be used on curved boundaries symmetryPlane slip 𝒏  mixed BC is a combination of fixedValue and fixedGradient BCs  A weighting parameter w (0-1) switches between these types directionMixed BC  For vector fields, directionMixed BC is a combination of fixedValue and fixedGradient BCs  A weighting parameter (tensor) controls which direction these BCs are apply to 1 2 𝒏 ⊗ 𝒏 + 𝒏 ⊗ 𝒏 𝑇 w 𝑂3 (Zero matrix) 𝐼3 (Identity matrix) fixedValue fixedGradient fixedGradient fixedValue Normal direction Tangential direction All directions