SlideShare a Scribd company logo
Primary Standards
f B h h S
for Brachytherapy Sources
Michael G. Mitch, Ph.D.
Christopher G. Soares, Ph.D.
Ph i L b t N ti l I tit t f St d d d T h l (NIST)
Physics Laboratory, National Institute of Standards and Technology (NIST)
Photon-emitting sources
g
L 50 k V Hi h
Low-energy < 50 keV < High-energy
LDR HDR LDR HDR
SK SK SK SK, Dw
WAFAC FAC Cavity Cavity, Calorimeter
Sources are Calibrated in Terms of Air-Kerma Strength (U)
d
Source Air Volume
Source Air Volume
Vacuum
SK = K (d) d 2
1 U = 1 Gy m2 h-1
.
• Air-kerma strength is the product of the air-kerma rate, in vacuo and due
1 U 1 Gy m h
to photons of energy greater than , at distance d and the square of this
distance.
Ai k b d b l l i h f i h b
• Air kerma can be measured absolutely with a free-air chamber
Low-energy, LDR seeds 20 keV < E < 35 keV
Ag wire, end welds
Ag wire, end welds
Ag spheres, end welds
Resin spheres, Au-Cu markers
W wire, double wall
• Since 1999, NIST has calibrated over 900 sources
• 40 designs from 18 manufacturers
3 di lid 125I 103Pd 131C
• 3 radionuclides: 125I, 103Pd, 131Cs
Primary Standard for Low-Energy X Rays (20 kV to 100 kV):
Ritz Free-Air Chamber (125I seeds, 1985)
V
Source
(4 to 6 125I seeds)
Electrometer
(4 to 6 125I seeds)
Collecting Volume = 440 cm3
Active Volume = 5.5 cm3
Collecting/Active Volumes = 80
Ritz Free-Air Chamber Wide-Angle Free-Air Chamber
(WAFAC, 125I, 103Pd, 131Cs, 1999)
( , , , , )
V
Electrometer
Electrometer
V/ 2
V
Collecting Volume = 440 cm3 Collecting Volume = 2500 cm3
3
Active Volume = 5.5 cm3
Collecting/Active Volumes = 80
Active Volume = 715 cm3
Collecting/Active Volumes = 3.5
160 mm Al Center
Wide-Angle Free-Air Chamber (WAFAC)
Al Filt
Electrode
Al Filter
W
Electrometer
Rotating
Source
Aperture
V/ 2
V = - 1674 V
Aluminized Mylar
Electrodes
43 mm Al Center
Wide-Angle Free-Air Chamber (WAFAC)
Al Filt
Electrode
Al Filter
W
Electrometer
Rotating
Source
Aperture
V/ 2
V = - 450 V
Aluminized Mylar
Electrodes
Air-Kerma Strength from WAFAC Measurements




















j
j
i
i
det
dr
eff
air
air
K Q
K
K
Q
K
M
K
K
V
d
e
W
d
Q
K
S )
(
)
,
(
)
(
)
(
2
2 



125I
Net current, sI 0.06
Value Type A (%) Type B (%)
Net current, s 0.06
)
,
(
det Q
K
M 
I
e
W / 33.97 J / C - 0.15
Air density, ρair 1.196 mg / cm3 - 0.03
Aperture distance, d - 0.24
Effective chamber volume, Veff 0.11 0.01
Decay correction, K1 T1/2 = 59.43 d - 0.02
Recombination < 1 004 0 05
)
(K
K 
Recombination, < 1.004 - 0.05
Attenuation in filter, K3(Q) 1.0295 - 0.61
Air attenuation in WAFAC, K4(Q) 1.0042 - 0.08
Source-aperture attenuation, K5(Q) 1.0125 - 0.24
Inverse-square correction, K6 1.0089 - 0.01
Humidity, K7(Q) 0.9982 - 0.07
)
(K
Kdr
Humidity, K7(Q) 0.9982 0.07
In-chamber photon scatter, K8(Q) 0.9966 - 0.07
Source-holder scatter, K9 0.9985 - 0.05
Electron loss, K10 1.0 - 0.05
Aperture penetration, K11(Q) 0.9999 - 0.02
External photon scatter, K12(Q) 1.0 - 0.17
Combined standard uncertainty, uc (s2 + 0.7622)1/2
Expanded uncertainty, V 2uc
Original and Automated WAFACs
Automated
HPGe
Spectrometer
Al filter
wheel
Original
WAFAC
WAFAC
seed
WAFAC
seed
Reference air kerma of low-energy photon-emitting LDR sources
• GROVEX (Grossvolumen Extrapolationskammer) – PTB
• VAFAC (Variable-Aperture Free-Air Chamber) – University of Wisconsin
• 3 L thin-walled cavity chamber radionuclide calibrator – NPL
• Torus free-air chamber – LNHB
Characterization Measurements Following WAFAC Calibration:
1. rotational anisotropy (WAFAC)
2 x-ray spectrometry on transverse axis of seed
2. x ray spectrometry on transverse axis of seed
3. well-ionization chamber response relative to WAFAC (I / SK)
4. exposure of radiochromic film (contact geometry)
5 l t t ( )
5. angular x-ray spectrometry (A)
Quality Assurance for WAFAC Measurements:
1. 241Am check source
2 x-ray spectrometry on transverse axis of seed
2. x ray spectrometry on transverse axis of seed
3. well-ionization chamber response relative to WAFAC (I / SK)
1.06
263 seeds, 2003-2005:
Range = (7 ± 5) %
Rotational Anisotropy (WAFAC)
1.00
1.02
1.04
ve
Current
8 %
0 94
0.96
0.98
Relativ
z
0.94
-20 20 60 100 140 180 220 260 300 340 380
Rotation Angle (degrees)
1.06 
x
y
1.02
1.04
Current
2 %
x
 = 0, 45, 90…360o
0.96
0.98
1.00
Relative
C
2 %
0.94
-20 20 60 100 140 180 220 260 300 340 380
Rotation Angle (degrees)
X-ray spectrometry of 103Pd and 131Cs seeds
100000
120000
Rh K
103Pd: EC, T1/2 = 16.99 d
60000
80000
100000
C
o
u
n
ts
Rh K
Rh K 20.1 keV
Rh K 22.7 keV, 23.2 keV
20000
40000
C
Rh K
0
5 10 15 20 25 30 35 40
Energy (keV)
X K
150000
200000
nts
131Cs: EC, T1/2 = 9.69 d
Xe K
50000
100000
Coun
Xe K 29.4 keV, 29.8 keV
Xe K 33.6 keV, 34.4 keV
Xe K
0
5 10 15 20 25 30 35 40
Energy (keV)
X-ray spectrometry of 125I seeds
100000
120000
Te K
125I: EC, T1/2 = 59.43 d
T K 27 2 k V 27 5 k V
60000
80000
Counts
Te K 27.2 keV, 27.5 keV
Te K 31.0 keV, 31.7 keV
125I  35.5 keV 20000
40000
C
Te K
125I 
100000
0
5 10 15 20 25 30 35 40
Energy (keV)
T K
Ag K 22 1 keV 60000
80000
100000
nts
125I (Ag)
Te K
Ag K 22.1 keV
Ag K 24.9 keV, 25.4 keV
Te K 27.2 keV, 27.5 keV
Te K 31.0 keV, 31.7 keV 20000
40000
Coun
Te K
125I 
Ag K
Ag K

125I  35.5 keV
0
5 10 15 20 25 30 35 40
Energy (keV)

Ag K
Ionization Chambers
NIST chambers
Commercially available chambers
Spherical Aluminum
Capintec
CRC-127R1
Standard Imaging
HDR-1000 Plus1
Seltzer-Mitch
1Certain commercial equipment, instruments, and materials are identified in this work in order
to specify adequately the experimental procedure. Such identification does not imply
recommendation nor endorsement by the National Institute of Standards and Technology,
nor does it imply that the material or equipment identified is necessarily the best available
for these purposes.
Well Chamber Measurement Geometry
• Seed placed in end of catheter
• Centering jig for catheter
• Optimum vertical positioning
• Orientational effects:
1) up/down
1) up/down
2) “points-of-compass”
Well Chamber Response Coefficients for 22 Seed Models
5.3
5.8
I (pA)
S (U)
4.3
4.8
no Ag
131Cs
SK (U)
3.8
I
/
S
K
(pA
/
U)
12
Ag wires
no Ag
2.8
3.3
103Pd
125I
Ag spheres
Ag spheres
1.8
2.3
Control Chart, I / SK, 125I seed “D”
4 45
4.50
4.35
4.40
4.45
4.25
4.30
I
/
S
K
(pA
/
U)
4.10
4.15
4.20
I
4.05
Apr05 Aug05 Jul06 Feb07 Nov07
I / SK vs. Ag K / , 125I seed “D”
4 45
4.50
4 30
4.35
4.40
4.45
/
U)
4.20
4.25
4.30
I
/
S
K
(pA
/
4.05
4.10
4.15
2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Ag K / 
Radiochromic film imaging in contact exposure geometry
MD-55-2
0 35
0.45
D
Profile Scan
PeC Microdensitometer
0.15
0.25
0.35
0 2 4 6 8 10
OD
0 2 4 6 8 10
X Position (mm)
Air Anisotropy Ratio = A
HPGe
spectrometer
( = 0 )
seed
z
( = 0, )
( = /2, 3/2) 
x
y
177 cm Seed rotates in the x-y plane about the z axis
)
2
/
3
(
)
2
/
(
)
(
)
0
(
spec
spec
spec
spec
A






K
K
K
K





E
K 





 en


i = photon fluence rate
.
i
i
i
i E
K 









  

 en
spec Ei = photon energy
(en / )i = mass energy-absorption coefficient
Measurement Geometry for WAFAC, HPGe Spectrometer
seed
WAFAC
 / 2 ~ 8o
HPGe
 / 2 ~ 0.2o
Measurement Geometry for Well Chamber
WAFAC
 / 2 ~ 8o
Well Chamber
~ 4
HPGe
 / 2 ~ 0.2o
Seed with Highly Uniform Emission (A ~ 1)
WAFAC
 / 2 ~ 8o
Well Chamber
~ 4
Seed with Highly Directional Emission (A ~ 0)
LOWER
SK
I
WAFAC
 / 2 ~ 8o
Well Chamber
~ 4
more directional less emission “missed” by the WAFAC
that is detected by the well chamber
2 25
103Pd seeds with sphere or pellet design
2.20
2.25
Eav = 20.7 keV
SK
I
2.15
Model
“A”
Model
“B”
Model
“C”
2.05
2.10
/
S
K
(pA
/
U)
2.00
2.05
I
Model
“D”
1.95
D
1.90
2 25
103Pd seeds with sphere or pellet design
2.20
2.25
Eav = 20.7 keV
SK
I
2.15
Model
“A”
Model
“B”
Model
“C”
2.05
2.10
/
S
K
(pA
/
U)
0.33 0.24 0.49
2.00
2.05
I
A Model
“D”
1.95
0.06
D
1.90
125I seed Model “E”
I
4.40
Eav = 27.3 keV
SK
I
4.30
4.35
U)
av
4.20
4.25
I
/
S
K
(pA
/
U
- 2.6 %
Nov03
Sep02
Feb02
4 05
4.10
4.15
Sep02
May04
Feb02
4.05
y
125I seed Model “E”
A
0.16 Eav = 27.3 keV
0.13
0.14
Nov03
Sep02
Feb02
av
0.10
0.11

A
- 38 %
Nov03
Sep02
Feb02
0 05
0.07
0.08
May04
0.05
Effects of Seed Geometry and Nuclide on A
0.9
1.0
0.7
0.8
0.4
0.5
0.6

A
0 1
0.2
0.3
0.0
0.1
Effects of Seed Geometry and Nuclide on A
1 Same Design for 125I and 103Pd Models No End Welds
0.9
1.0
1. Same Design for 125I and 103Pd Models, No End Welds
0.7
0.8
0.4
0.5
0.6

A
125I 103Pd
0 1
0.2
0.3
0.0
0.1
Effects of Seed Geometry and Nuclide on A
2 Same Design for 125I and 103Pd Models With End Welds
0.9
1.0
2. Same Design for 125I and 103Pd Models, With End Welds
0.7
0.8
0.4
0.5
0.6

A
0 1
0.2
0.3 125I
103Pd
0.0
0.1
Effects of Seed Geometry and Nuclide on A
3 125I Models: Uniform Encapsulation vs End Welds
0.9
1.0
3. 125I Models: Uniform Encapsulation vs. End Welds
(“radiotransparent” substrate)
UE
0.7
0.8
UE
0.4
0.5
0.6

A
0 1
0.2
0.3
EW
0.0
0.1
Effects of Seed Geometry and Nuclide on A
4 125I Models w/ Ag: Wire vs Sphere Substrates
0.9
1.0
4. 125I Models w/ Ag: Wire vs. Sphere Substrates
0.7
0.8
0.4
0.5
0.6

A
0 1
0.2
0.3
W
0.0
0.1 W
S
Well Chamber Response Coefficients for 22 Seed Models
5.3
5.8
I (pA)
4.8
5.3
131Cs
SK (U)
3.8
4.3
S
K
(pA
/
U)
Ag wires
no Ag
2.8
3.3
I
/
103Pd
125I
Ag spheres
Ag spheres
1.8
2.3
103Pd
Photon-emitting sources
g
L 50 k V Hi h
Low-energy < 50 keV < High-energy
LDR HDR LDR HDR
SK SK SK SK, Dw
WAFAC FAC Cavity Cavity, Calorimeter
Primary Standard for Low-Energy X Rays (10 kV to 60 kV):
Lamperti Free-Air Chamber
V
HPGe
Miniature x-ray
tube source El t t
tube source
40 kV to 50 kV
Electrometer
Primary Standard for Mammography X Rays (≤ 50 kV):
Attix Free-Air Chamber (NIST, University of Wisconsin)
Electrometer
Miniature x-ray
V
Miniature x ray
tube source
40 kV to 50 kV
Photon-emitting sources
g
L 50 k V Hi h
Low-energy < 50 keV < High-energy
LDR HDR LDR HDR
SK SK SK SK, Dw
WAFAC FAC Cavity Cavity, Calorimeter
Primary Standard for Gamma Rays from 137Cs and 192Ir
1. Graphite-walled Cavity Chambers
)
/
(
)
/
(
1
2
L
d
W 







)
(
)
(
)
,
(
)
(
)
/
(
)
/
(
)
/
(
)
/
(
1
1
)
(
2
2
Q
K
Q
K
K
Q
K
M
K
K
L
L
g
V
d
e
W
d
Q
K
S h
wall
stem
det
dr
air
gr
gr
en
air
en
air
air
K









 




























137Cs
1
1 cm3
1 source
192Ir
50 cm3
50 sources
Primary Standard for Gamma Rays from 137Cs and 192Ir
2. Spherical Aluminum Cavity and Re-entrant Chambers
2800 cm3
137Cs
US
WS
US I
S
S
2800 cm3
137Cs
Working standard (WS)
or
Unknown source (US)
WS
K
K
I
S
S 
U ow sou ce (US)
192Ir
3400 cm3


 50
1
i
i
K
US
US
K
I
S
I
S
226Ra source
T1/2 = 1600 y
Photon-emitting sources
g
L 50 k V Hi h
Low-energy < 50 keV < High-energy
LDR HDR LDR HDR
SK SK SK SK, Dw
WAFAC FAC Cavity Cavity, Calorimeter
Primary Standard for Gamma Rays from HDR 192Ir
Graphite-walled Cavity Chamber, Kair
N i l Ph i l L b (NPL UK)
• National Physical Laboratory (NPL, UK)
• Laboratoire National Henri Becquerel (LNHB, France)
• Physikalisch Technische Bundesanstalt (PTB, Germany)
• Nederlands Meetinstitut (NMi Netherlands)
• Nederlands Meetinstitut (NMi, Netherlands)
• Bhabha Atomic Research Centre (BARC, India)
Water Calorimeter, Dw
• McGill University (Sarfehnia, Stewart, and Seuntjens)
Secondary Standard for Gamma Rays from HDR 192Ir
Goetsch “Seven Distance” Technique (1991), AAPM ADCLs
)
(
2
)
(
)
( 250
250
Q
K
N
Q
K
N
Q
K
N Ir
wall
Cs
K
Cs
wall
M
K
M
wall
Ir
K


NIST traceability is achieved through NK
M250 and NK
Cs (cavity chamber)
Secondary Standard for Gamma Rays from HDR 192Ir
Goetsch “Seven Distance” Technique (1991), AAPM ADCLs
)
(
2
)
(
)
( 250
250
Q
K
N
Q
K
N
Q
K
N Ir
wall
Cs
K
Cs
wall
M
K
M
wall
Ir
K


NIST traceability is achieved through NK
M250 and NK
Cs (cavity chamber)
“K-weighted Average” Technique, Mainegra-Hing and Rogers (2006)








  Ei
K
i
Ir
air
Ei
air
Ir
K N
K
K
N
1
1
2
1
1
1
250 









Cs
K
M
K
Ir
K
N
N
N
192Ir ~ M250 + 137Cs
Kair
M250 = Kair
Cs
Secondary Standard for Gamma Rays from HDR 192Ir
Accounting for Scattering
1. Goetsch “Seven Distance” Technique
Secondary Standard for Gamma Rays from HDR 192Ir
Accounting for Scattering
1. Goetsch “Seven Distance” Technique
Secondary Standard for Gamma Rays from HDR 192Ir
Accounting for Scattering
1. Goetsch “Seven Distance” Technique
]
)
,
(
[
)
( scat
det
Ir
K
air M
Q
K
M
N
Q
K 
 

2
)
)(
( c
d
Q
K
S air
K 
 
Secondary Standard for Gamma Rays from HDR 192Ir
Accounting for Scattering
1. Goetsch “Seven Distance” Technique
]
)
,
(
[
)
( scat
det
Ir
K
air M
Q
K
M
N
Q
K 
 

2
)
)(
( c
d
Q
K
S air
K 
 
2. Shadow Shield Technique
)
,
( Q
K
Mdet

Secondary Standard for Gamma Rays from HDR 192Ir
Accounting for Scattering
1. Goetsch “Seven Distance” Technique
]
)
,
(
[
)
( scat
det
Ir
K
air M
Q
K
M
N
Q
K 
 

2
)
)(
( c
d
Q
K
S air
K 
 
2. Shadow Shield Technique
scat
M
What about absorbed dose?
• Dose rate is typically measured using thermoluminescent dosimeters (TLDs)
placed in solid, water-equivalent phantoms at various distances from a seed
• The dose rate at a reference point (1 cm from the seed on the trans erse a is) is
• The dose rate at a reference point (1 cm from the seed on the transverse axis) is
related to the NIST air-kerma strength standard, SK, through a dose-rate constant, 
• Uncertainties on a TLD dose rate measurement at 1 cm are typically 4 % (k = 1)
Uncertainties on a TLD dose rate measurement at 1 cm are typically 4 % (k 1),
SK uncertainties are typically 1 % (k = 1), so uncertainty on  is about 8 % (k = 2)
Step 1 Step 2
TLD
.
 =
D(r0, 0)
1 cm

SK
cGy h-1 U-1
SK measurement D(r0, 0) measurement
. cGy h U
TG-43 Formalism


 K
S
r
D )
,
( 0
0 

)
,
(
)
(
)
,
(
)
,
(
)
,
(
0
0



 r
F
r
g
r
G
r
G
S
r
D L
L
L
K 






Dose rate in water

)
(r
G  1
2
2
)
4
/
(
)
0
( 
L
r
r
G
Geometry Function
D )
( 

Dose rate constant (NIST-traceable SK)


sin
)
,
(
Lr
r
GL  )
4
/
(
)
0
,
( 
 L
r
r
GL
Radial Dose Function 2D Anisotropy Function
1
K
S
r
D )
,
( 0
0 


)
,
(
)
,
(
)
,
(
)
,
(
)
(
0
0
0
0
0
0




r
G
r
G
r
D
r
D
r
g
X
X
X 


Radial Dose Function
)
,
(
)
,
(
)
,
(
)
,
(
)
,
( 0
0 




r
G
r
G
r
D
r
D
r
F
L
L



2D Anisotropy Function
r0 = 1 cm
0 =  / 2
Beta-emitting sources
Dw
.
Extrapolation Chamber
• Ophthalmic applicators
1. Planar (90Sr/Y)
2 Conca e (106R /Rh)
2. Concave (106Ru/Rh)
• IVB seed and line sources (90Sr/Y 32P)
IVB seed and line sources ( Sr/Y, P)
Primary Standard for Beta Brachytherapy Sources
Extrapolation Chamber
k
M
k
Q
S
A
e
W
Q
D det
eff
air

























0
a
w,
w )
(
'
d
d
)
(
1
)
(




 

slope of current vs. air gap
   
 

max
0
w
col,
w
d
/
)
(
E
E E
S
Q
S

slope of current vs. air gap
   
 
 max
0
a
col,
w
a
w,
d
/
)
( E
E E
S
Q
S

Bragg-Gray stopping power ratio
Extrapolation Chamber Schematic
Electrometer
Collecting
electrode
Insulating
gap
79.54 pA
gap
Water-equivalent plastic
High-voltage
l t d / i d
Air gap=0.40 mm
electrode/window
Source
rent,
pA
Ionization
Air gap, mm
Curr
Extrapolation Chamber Schematic
Electrometer
Collecting
electrode
Insulating
gap
69.73 pA
electrode
gap
Water-equivalent plastic
High-voltage
l t d / i d
Air gap=0.35 mm
electrode/window
Source
rent,
pA
Ionization
Air gap, mm
Curr
Extrapolation Chamber Schematic
Electrometer
Collecting
l t d
Insulating
59.82 pA
electrode
gap
Water-equivalent plastic
High-voltage
l t d / i d
Air gap=0.30 mm
electrode/window
Source
rent,
pA
Ionization Curr
Air gap, mm
Extrapolation Chamber Schematic
Electrometer
Collecting
Insulating
49.85 pA
g
electrode
Insulating
gap
Water-equivalent plastic
High-voltage
l t d / i d
Air gap=0.25 mm
electrode/window
Source
rent,
pA
Ionization Curr
Air gap, mm
Extrapolation Chamber Schematic
Electrometer
Collecting
Insulating
39.89 pA
Collecting
electrode
Insulating
gap
Water-equivalent plastic
High-voltage
l t d / i d
Air gap=0.20 mm
electrode/window
Source
rent,
pA
Ionization Curr
Air gap, mm
Extrapolation Chamber Schematic
Electrometer
C ll ti
29.92 pA
Collecting
electrode
Insulating
gap
Water-equivalent plastic
High-voltage
l t d / i d
Air gap=0.15 mm
electrode/window
Source
rent,
pA
Ionization Curr
Air gap, mm
Extrapolation Chamber Schematic
Electrometer
19.95 pA
Collecting
electrode
Insulating
gap
Water-equivalent plastic
High-voltage
l t d / i d
Air gap=0.10 mm
electrode/window
Source
rent,
pA
Ionization Curr
Air gap, mm
Extrapolation Chamber Schematic
Electrometer
9.99 pA
Collecting
electrode
Insulating
gap
Water-equivalent plastic
High-voltage
l t d / i d
Air gap=0.05 mm
electrode/window
Source
rent,
pA
Ionization Curr
Air gap, mm
TG-60, TG-149 Formalism


 K
S
r
D )
,
( 0
0 

)
(
)
(
)
,
(
)
(
)
( 


 F
r
G
D
D L


Dose rate in water

)
(r
G  1
2
2
)
4
/
(
)
0
( 
L
r
r
G
Geometry Function
)
,
(
)
(
)
,
(
)
,
(
)
,
(
)
,
(
0
0
0
0 


 r
F
r
g
r
G
r
D
r
D L
L
L






sin
)
,
(
Lr
r
GL  )
4
/
(
)
0
,
( 
 L
r
r
GL
Radial Dose Function 2D Anisotropy Function
NIST-traceable D(r0, 0)

)
,
(
)
,
(
)
,
(
)
,
(
)
(
0
0
0
0
0
0




r
G
r
G
r
D
r
D
r
g
X
X
X 


Radial Dose Function
)
,
(
)
,
(
)
,
(
)
,
(
)
,
( 0
0 




r
G
r
G
r
D
r
D
r
F
L
L



2D Anisotropy Function
r0 = 2 mm
0 =  / 2
Measurement Traceability for Brachytherapy Sources
sources
sources
SK , Dw
.
Manufacturer
secondary standard
ADCL
verification for
well-ionization
chambers
sources
verification for
treatment planning
.
Clinic SK
Clinic , Dw
Clinic
Clinical Brachytherapy Source Measurements
W ll i i i h b lib d b ADCL
Well-ionization chambers, calibrated by an ADCL
Photon-emitting sources Beta-emitting sources
ADCL
K
Clinic
Clinic
K
I
S
I
S 






ADCL
w
Clinic
Clinic
w
I
D
I
D 










+ radiochromic film
Summary
• Air-kerma-strength standards are currently used for all photon-emitting
brachytherapy sources, realized by free-air and cavity ionization chambers
brachytherapy sources, realized by free air and cavity ionization chambers
• Absorbed-dose-to-water standards are used for all beta-emitting
brachytherapy sources, realized by extrapolation ionization chambers
y py , y p
• Brachytherapy standards are transferred from NIST and the ADCLs
to clinics using well-ionization chambers (radiochromic film for planar
beta-emitting sources)
• Absorbed-dose-to-water measurement methods for high-energy, HDR
h t itti b h th tl d d l t
photon-emitting brachytherapy sources are currently under development
(water calorimetry)

More Related Content

Similar to 16Mitch-BrachyPrimaryStandards.pdf

EAMTA keynote 2014
EAMTA keynote 2014EAMTA keynote 2014
EAMTA keynote 2014Ariel Cedola
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
Toshihiro FUJII
 
Original Transistor NPN BC337 BC337-25 TO-92 New
Original Transistor NPN BC337 BC337-25 TO-92 NewOriginal Transistor NPN BC337 BC337-25 TO-92 New
Original Transistor NPN BC337 BC337-25 TO-92 New
authelectroniccom
 
Bc337 d
Bc337 dBc337 d
Bc337 d
Anurag Alaria
 
SPICE MODEL of SCS230AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS230AE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS230AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS230AE2HR (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Shimadzu Scientific Instruments
 
SPICE MODEL of IDH02G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH02G65C5 (Professional Model) in SPICE PARKSPICE MODEL of IDH02G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH02G65C5 (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
Original Transistor NPN MPSA18 MPS A18 TO 92 New ON
Original Transistor NPN MPSA18 MPS A18 TO 92 New ONOriginal Transistor NPN MPSA18 MPS A18 TO 92 New ON
Original Transistor NPN MPSA18 MPS A18 TO 92 New ON
authelectroniccom
 
SPICE MODEL of SCS240AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS240AE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS240AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS240AE2HR (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of TRS12N65D (Professional Model) in SPICE PARK
SPICE MODEL of TRS12N65D (Professional Model) in SPICE PARKSPICE MODEL of TRS12N65D (Professional Model) in SPICE PARK
SPICE MODEL of TRS12N65D (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SCS206AGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS206AGHR (Professional Model) in SPICE PARKSPICE MODEL of SCS206AGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS206AGHR (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SCS220KE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220KE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS220KE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220KE2HR (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of IDH09G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH09G65C5 (Professional Model) in SPICE PARKSPICE MODEL of IDH09G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH09G65C5 (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of TRS16N65D (Professional Model) in SPICE PARK
SPICE MODEL of TRS16N65D (Professional Model) in SPICE PARKSPICE MODEL of TRS16N65D (Professional Model) in SPICE PARK
SPICE MODEL of TRS16N65D (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of IDH03G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH03G65C5 (Professional Model) in SPICE PARKSPICE MODEL of IDH03G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH03G65C5 (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
Toshihiro FUJII
 
SPICE MODEL of IDH08G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH08G65C5 (Professional Model) in SPICE PARKSPICE MODEL of IDH08G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH08G65C5 (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SCS220AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220AE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS220AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220AE2HR (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SCS220KGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220KGHR (Professional Model) in SPICE PARKSPICE MODEL of SCS220KGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220KGHR (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 

Similar to 16Mitch-BrachyPrimaryStandards.pdf (20)

EAMTA keynote 2014
EAMTA keynote 2014EAMTA keynote 2014
EAMTA keynote 2014
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
Original Transistor NPN BC337 BC337-25 TO-92 New
Original Transistor NPN BC337 BC337-25 TO-92 NewOriginal Transistor NPN BC337 BC337-25 TO-92 New
Original Transistor NPN BC337 BC337-25 TO-92 New
 
Bc337 d
Bc337 dBc337 d
Bc337 d
 
SPICE MODEL of SCS230AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS230AE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS230AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS230AE2HR (Professional Model) in SPICE PARK
 
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
 
SPICE MODEL of IDH02G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH02G65C5 (Professional Model) in SPICE PARKSPICE MODEL of IDH02G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH02G65C5 (Professional Model) in SPICE PARK
 
Original Transistor NPN MPSA18 MPS A18 TO 92 New ON
Original Transistor NPN MPSA18 MPS A18 TO 92 New ONOriginal Transistor NPN MPSA18 MPS A18 TO 92 New ON
Original Transistor NPN MPSA18 MPS A18 TO 92 New ON
 
SPICE MODEL of SCS240AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS240AE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS240AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS240AE2HR (Professional Model) in SPICE PARK
 
Talk 3_0
Talk 3_0Talk 3_0
Talk 3_0
 
SPICE MODEL of TRS12N65D (Professional Model) in SPICE PARK
SPICE MODEL of TRS12N65D (Professional Model) in SPICE PARKSPICE MODEL of TRS12N65D (Professional Model) in SPICE PARK
SPICE MODEL of TRS12N65D (Professional Model) in SPICE PARK
 
SPICE MODEL of SCS206AGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS206AGHR (Professional Model) in SPICE PARKSPICE MODEL of SCS206AGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS206AGHR (Professional Model) in SPICE PARK
 
SPICE MODEL of SCS220KE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220KE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS220KE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220KE2HR (Professional Model) in SPICE PARK
 
SPICE MODEL of IDH09G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH09G65C5 (Professional Model) in SPICE PARKSPICE MODEL of IDH09G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH09G65C5 (Professional Model) in SPICE PARK
 
SPICE MODEL of TRS16N65D (Professional Model) in SPICE PARK
SPICE MODEL of TRS16N65D (Professional Model) in SPICE PARKSPICE MODEL of TRS16N65D (Professional Model) in SPICE PARK
SPICE MODEL of TRS16N65D (Professional Model) in SPICE PARK
 
SPICE MODEL of IDH03G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH03G65C5 (Professional Model) in SPICE PARKSPICE MODEL of IDH03G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH03G65C5 (Professional Model) in SPICE PARK
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
SPICE MODEL of IDH08G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH08G65C5 (Professional Model) in SPICE PARKSPICE MODEL of IDH08G65C5 (Professional Model) in SPICE PARK
SPICE MODEL of IDH08G65C5 (Professional Model) in SPICE PARK
 
SPICE MODEL of SCS220AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220AE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS220AE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220AE2HR (Professional Model) in SPICE PARK
 
SPICE MODEL of SCS220KGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220KGHR (Professional Model) in SPICE PARKSPICE MODEL of SCS220KGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS220KGHR (Professional Model) in SPICE PARK
 

More from Nishant835443

20Dieterich-SRSSRTDosimetry.pdf
20Dieterich-SRSSRTDosimetry.pdf20Dieterich-SRSSRTDosimetry.pdf
20Dieterich-SRSSRTDosimetry.pdf
Nishant835443
 
19Mackie-IMRTDosimetry.pdf
19Mackie-IMRTDosimetry.pdf19Mackie-IMRTDosimetry.pdf
19Mackie-IMRTDosimetry.pdf
Nishant835443
 
9_neutrons - Reformat.pdf
9_neutrons - Reformat.pdf9_neutrons - Reformat.pdf
9_neutrons - Reformat.pdf
Nishant835443
 
18Ibbott-QAinDosimetry.pdf
18Ibbott-QAinDosimetry.pdf18Ibbott-QAinDosimetry.pdf
18Ibbott-QAinDosimetry.pdf
Nishant835443
 
05Seuntjens-MonteCarloIntro.pdf
05Seuntjens-MonteCarloIntro.pdf05Seuntjens-MonteCarloIntro.pdf
05Seuntjens-MonteCarloIntro.pdf
Nishant835443
 
02Siebers-BasicInteractionsandQuantities.pdf
02Siebers-BasicInteractionsandQuantities.pdf02Siebers-BasicInteractionsandQuantities.pdf
02Siebers-BasicInteractionsandQuantities.pdf
Nishant835443
 
03Nahum-CavityTheorywithCorrections.pdf
03Nahum-CavityTheorywithCorrections.pdf03Nahum-CavityTheorywithCorrections.pdf
03Nahum-CavityTheorywithCorrections.pdf
Nishant835443
 
01Almond-HistoryandNeedforAccuracy.pdf
01Almond-HistoryandNeedforAccuracy.pdf01Almond-HistoryandNeedforAccuracy.pdf
01Almond-HistoryandNeedforAccuracy.pdf
Nishant835443
 
02-pre-CDR-Radiobiology-Motivation-March-2020.pptx
02-pre-CDR-Radiobiology-Motivation-March-2020.pptx02-pre-CDR-Radiobiology-Motivation-March-2020.pptx
02-pre-CDR-Radiobiology-Motivation-March-2020.pptx
Nishant835443
 
-Film.pdf
-Film.pdf-Film.pdf
-Film.pdf
Nishant835443
 

More from Nishant835443 (10)

20Dieterich-SRSSRTDosimetry.pdf
20Dieterich-SRSSRTDosimetry.pdf20Dieterich-SRSSRTDosimetry.pdf
20Dieterich-SRSSRTDosimetry.pdf
 
19Mackie-IMRTDosimetry.pdf
19Mackie-IMRTDosimetry.pdf19Mackie-IMRTDosimetry.pdf
19Mackie-IMRTDosimetry.pdf
 
9_neutrons - Reformat.pdf
9_neutrons - Reformat.pdf9_neutrons - Reformat.pdf
9_neutrons - Reformat.pdf
 
18Ibbott-QAinDosimetry.pdf
18Ibbott-QAinDosimetry.pdf18Ibbott-QAinDosimetry.pdf
18Ibbott-QAinDosimetry.pdf
 
05Seuntjens-MonteCarloIntro.pdf
05Seuntjens-MonteCarloIntro.pdf05Seuntjens-MonteCarloIntro.pdf
05Seuntjens-MonteCarloIntro.pdf
 
02Siebers-BasicInteractionsandQuantities.pdf
02Siebers-BasicInteractionsandQuantities.pdf02Siebers-BasicInteractionsandQuantities.pdf
02Siebers-BasicInteractionsandQuantities.pdf
 
03Nahum-CavityTheorywithCorrections.pdf
03Nahum-CavityTheorywithCorrections.pdf03Nahum-CavityTheorywithCorrections.pdf
03Nahum-CavityTheorywithCorrections.pdf
 
01Almond-HistoryandNeedforAccuracy.pdf
01Almond-HistoryandNeedforAccuracy.pdf01Almond-HistoryandNeedforAccuracy.pdf
01Almond-HistoryandNeedforAccuracy.pdf
 
02-pre-CDR-Radiobiology-Motivation-March-2020.pptx
02-pre-CDR-Radiobiology-Motivation-March-2020.pptx02-pre-CDR-Radiobiology-Motivation-March-2020.pptx
02-pre-CDR-Radiobiology-Motivation-March-2020.pptx
 
-Film.pdf
-Film.pdf-Film.pdf
-Film.pdf
 

Recently uploaded

Ophthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE examOphthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE exam
KafrELShiekh University
 
New Drug Discovery and Development .....
New Drug Discovery and Development .....New Drug Discovery and Development .....
New Drug Discovery and Development .....
NEHA GUPTA
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
greendigital
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
aljamhori teaching hospital
 
Colonic and anorectal physiology with surgical implications
Colonic and anorectal physiology with surgical implicationsColonic and anorectal physiology with surgical implications
Colonic and anorectal physiology with surgical implications
Dr Maria Tamanna
 
BRACHYTHERAPY OVERVIEW AND APPLICATORS
BRACHYTHERAPY OVERVIEW  AND  APPLICATORSBRACHYTHERAPY OVERVIEW  AND  APPLICATORS
BRACHYTHERAPY OVERVIEW AND APPLICATORS
Krishan Murari
 
263778731218 Abortion Clinic /Pills In Harare ,
263778731218 Abortion Clinic /Pills In Harare ,263778731218 Abortion Clinic /Pills In Harare ,
263778731218 Abortion Clinic /Pills In Harare ,
sisternakatoto
 
Dehradun #ℂall #gIRLS Oyo Hotel 9719300533 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 9719300533 #ℂall #gIRL in DehradunDehradun #ℂall #gIRLS Oyo Hotel 9719300533 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 9719300533 #ℂall #gIRL in Dehradun
chandankumarsmartiso
 
Vision-1.pptx, Eye structure, basics of optics
Vision-1.pptx, Eye structure, basics of opticsVision-1.pptx, Eye structure, basics of optics
Vision-1.pptx, Eye structure, basics of optics
Sai Sailesh Kumar Goothy
 
Sex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skullSex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skull
ShashankRoodkee
 
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptxThyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
A Classical Text Review on Basavarajeeyam
A Classical Text Review on BasavarajeeyamA Classical Text Review on Basavarajeeyam
A Classical Text Review on Basavarajeeyam
Dr. Jyothirmai Paindla
 
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptxMaxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
FFragrant
 
NVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control programNVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control program
Sapna Thakur
 
heat stroke and heat exhaustion in children
heat stroke and heat exhaustion in childrenheat stroke and heat exhaustion in children
heat stroke and heat exhaustion in children
SumeraAhmad5
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
د.محمود نجيب
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
Dr. Vinay Pareek
 
planning for change nursing Management ppt
planning for change nursing Management pptplanning for change nursing Management ppt
planning for change nursing Management ppt
Thangamjayarani
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
Dr. Rabia Inam Gandapore
 

Recently uploaded (20)

Ophthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE examOphthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE exam
 
New Drug Discovery and Development .....
New Drug Discovery and Development .....New Drug Discovery and Development .....
New Drug Discovery and Development .....
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
 
Colonic and anorectal physiology with surgical implications
Colonic and anorectal physiology with surgical implicationsColonic and anorectal physiology with surgical implications
Colonic and anorectal physiology with surgical implications
 
BRACHYTHERAPY OVERVIEW AND APPLICATORS
BRACHYTHERAPY OVERVIEW  AND  APPLICATORSBRACHYTHERAPY OVERVIEW  AND  APPLICATORS
BRACHYTHERAPY OVERVIEW AND APPLICATORS
 
263778731218 Abortion Clinic /Pills In Harare ,
263778731218 Abortion Clinic /Pills In Harare ,263778731218 Abortion Clinic /Pills In Harare ,
263778731218 Abortion Clinic /Pills In Harare ,
 
Dehradun #ℂall #gIRLS Oyo Hotel 9719300533 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 9719300533 #ℂall #gIRL in DehradunDehradun #ℂall #gIRLS Oyo Hotel 9719300533 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 9719300533 #ℂall #gIRL in Dehradun
 
Vision-1.pptx, Eye structure, basics of optics
Vision-1.pptx, Eye structure, basics of opticsVision-1.pptx, Eye structure, basics of optics
Vision-1.pptx, Eye structure, basics of optics
 
Sex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skullSex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skull
 
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptxThyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
 
A Classical Text Review on Basavarajeeyam
A Classical Text Review on BasavarajeeyamA Classical Text Review on Basavarajeeyam
A Classical Text Review on Basavarajeeyam
 
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptxMaxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
 
NVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control programNVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control program
 
heat stroke and heat exhaustion in children
heat stroke and heat exhaustion in childrenheat stroke and heat exhaustion in children
heat stroke and heat exhaustion in children
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
 
planning for change nursing Management ppt
planning for change nursing Management pptplanning for change nursing Management ppt
planning for change nursing Management ppt
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
 

16Mitch-BrachyPrimaryStandards.pdf

  • 1. Primary Standards f B h h S for Brachytherapy Sources Michael G. Mitch, Ph.D. Christopher G. Soares, Ph.D. Ph i L b t N ti l I tit t f St d d d T h l (NIST) Physics Laboratory, National Institute of Standards and Technology (NIST)
  • 2. Photon-emitting sources g L 50 k V Hi h Low-energy < 50 keV < High-energy LDR HDR LDR HDR SK SK SK SK, Dw WAFAC FAC Cavity Cavity, Calorimeter
  • 3. Sources are Calibrated in Terms of Air-Kerma Strength (U) d Source Air Volume Source Air Volume Vacuum SK = K (d) d 2 1 U = 1 Gy m2 h-1 . • Air-kerma strength is the product of the air-kerma rate, in vacuo and due 1 U 1 Gy m h to photons of energy greater than , at distance d and the square of this distance. Ai k b d b l l i h f i h b • Air kerma can be measured absolutely with a free-air chamber
  • 4. Low-energy, LDR seeds 20 keV < E < 35 keV Ag wire, end welds Ag wire, end welds Ag spheres, end welds Resin spheres, Au-Cu markers W wire, double wall
  • 5. • Since 1999, NIST has calibrated over 900 sources • 40 designs from 18 manufacturers 3 di lid 125I 103Pd 131C • 3 radionuclides: 125I, 103Pd, 131Cs
  • 6. Primary Standard for Low-Energy X Rays (20 kV to 100 kV): Ritz Free-Air Chamber (125I seeds, 1985) V Source (4 to 6 125I seeds) Electrometer (4 to 6 125I seeds) Collecting Volume = 440 cm3 Active Volume = 5.5 cm3 Collecting/Active Volumes = 80
  • 7. Ritz Free-Air Chamber Wide-Angle Free-Air Chamber (WAFAC, 125I, 103Pd, 131Cs, 1999) ( , , , , ) V Electrometer Electrometer V/ 2 V Collecting Volume = 440 cm3 Collecting Volume = 2500 cm3 3 Active Volume = 5.5 cm3 Collecting/Active Volumes = 80 Active Volume = 715 cm3 Collecting/Active Volumes = 3.5
  • 8. 160 mm Al Center Wide-Angle Free-Air Chamber (WAFAC) Al Filt Electrode Al Filter W Electrometer Rotating Source Aperture V/ 2 V = - 1674 V Aluminized Mylar Electrodes
  • 9. 43 mm Al Center Wide-Angle Free-Air Chamber (WAFAC) Al Filt Electrode Al Filter W Electrometer Rotating Source Aperture V/ 2 V = - 450 V Aluminized Mylar Electrodes
  • 10. Air-Kerma Strength from WAFAC Measurements                     j j i i det dr eff air air K Q K K Q K M K K V d e W d Q K S ) ( ) , ( ) ( ) ( 2 2     125I Net current, sI 0.06 Value Type A (%) Type B (%) Net current, s 0.06 ) , ( det Q K M  I e W / 33.97 J / C - 0.15 Air density, ρair 1.196 mg / cm3 - 0.03 Aperture distance, d - 0.24 Effective chamber volume, Veff 0.11 0.01 Decay correction, K1 T1/2 = 59.43 d - 0.02 Recombination < 1 004 0 05 ) (K K  Recombination, < 1.004 - 0.05 Attenuation in filter, K3(Q) 1.0295 - 0.61 Air attenuation in WAFAC, K4(Q) 1.0042 - 0.08 Source-aperture attenuation, K5(Q) 1.0125 - 0.24 Inverse-square correction, K6 1.0089 - 0.01 Humidity, K7(Q) 0.9982 - 0.07 ) (K Kdr Humidity, K7(Q) 0.9982 0.07 In-chamber photon scatter, K8(Q) 0.9966 - 0.07 Source-holder scatter, K9 0.9985 - 0.05 Electron loss, K10 1.0 - 0.05 Aperture penetration, K11(Q) 0.9999 - 0.02 External photon scatter, K12(Q) 1.0 - 0.17 Combined standard uncertainty, uc (s2 + 0.7622)1/2 Expanded uncertainty, V 2uc
  • 11. Original and Automated WAFACs Automated HPGe Spectrometer Al filter wheel Original WAFAC WAFAC seed WAFAC seed
  • 12. Reference air kerma of low-energy photon-emitting LDR sources • GROVEX (Grossvolumen Extrapolationskammer) – PTB • VAFAC (Variable-Aperture Free-Air Chamber) – University of Wisconsin • 3 L thin-walled cavity chamber radionuclide calibrator – NPL • Torus free-air chamber – LNHB
  • 13. Characterization Measurements Following WAFAC Calibration: 1. rotational anisotropy (WAFAC) 2 x-ray spectrometry on transverse axis of seed 2. x ray spectrometry on transverse axis of seed 3. well-ionization chamber response relative to WAFAC (I / SK) 4. exposure of radiochromic film (contact geometry) 5 l t t ( ) 5. angular x-ray spectrometry (A)
  • 14. Quality Assurance for WAFAC Measurements: 1. 241Am check source 2 x-ray spectrometry on transverse axis of seed 2. x ray spectrometry on transverse axis of seed 3. well-ionization chamber response relative to WAFAC (I / SK)
  • 15. 1.06 263 seeds, 2003-2005: Range = (7 ± 5) % Rotational Anisotropy (WAFAC) 1.00 1.02 1.04 ve Current 8 % 0 94 0.96 0.98 Relativ z 0.94 -20 20 60 100 140 180 220 260 300 340 380 Rotation Angle (degrees) 1.06  x y 1.02 1.04 Current 2 % x  = 0, 45, 90…360o 0.96 0.98 1.00 Relative C 2 % 0.94 -20 20 60 100 140 180 220 260 300 340 380 Rotation Angle (degrees)
  • 16. X-ray spectrometry of 103Pd and 131Cs seeds 100000 120000 Rh K 103Pd: EC, T1/2 = 16.99 d 60000 80000 100000 C o u n ts Rh K Rh K 20.1 keV Rh K 22.7 keV, 23.2 keV 20000 40000 C Rh K 0 5 10 15 20 25 30 35 40 Energy (keV) X K 150000 200000 nts 131Cs: EC, T1/2 = 9.69 d Xe K 50000 100000 Coun Xe K 29.4 keV, 29.8 keV Xe K 33.6 keV, 34.4 keV Xe K 0 5 10 15 20 25 30 35 40 Energy (keV)
  • 17. X-ray spectrometry of 125I seeds 100000 120000 Te K 125I: EC, T1/2 = 59.43 d T K 27 2 k V 27 5 k V 60000 80000 Counts Te K 27.2 keV, 27.5 keV Te K 31.0 keV, 31.7 keV 125I  35.5 keV 20000 40000 C Te K 125I  100000 0 5 10 15 20 25 30 35 40 Energy (keV) T K Ag K 22 1 keV 60000 80000 100000 nts 125I (Ag) Te K Ag K 22.1 keV Ag K 24.9 keV, 25.4 keV Te K 27.2 keV, 27.5 keV Te K 31.0 keV, 31.7 keV 20000 40000 Coun Te K 125I  Ag K Ag K  125I  35.5 keV 0 5 10 15 20 25 30 35 40 Energy (keV)  Ag K
  • 18. Ionization Chambers NIST chambers Commercially available chambers Spherical Aluminum Capintec CRC-127R1 Standard Imaging HDR-1000 Plus1 Seltzer-Mitch 1Certain commercial equipment, instruments, and materials are identified in this work in order to specify adequately the experimental procedure. Such identification does not imply recommendation nor endorsement by the National Institute of Standards and Technology, nor does it imply that the material or equipment identified is necessarily the best available for these purposes.
  • 19. Well Chamber Measurement Geometry • Seed placed in end of catheter • Centering jig for catheter • Optimum vertical positioning • Orientational effects: 1) up/down 1) up/down 2) “points-of-compass”
  • 20. Well Chamber Response Coefficients for 22 Seed Models 5.3 5.8 I (pA) S (U) 4.3 4.8 no Ag 131Cs SK (U) 3.8 I / S K (pA / U) 12 Ag wires no Ag 2.8 3.3 103Pd 125I Ag spheres Ag spheres 1.8 2.3
  • 21. Control Chart, I / SK, 125I seed “D” 4 45 4.50 4.35 4.40 4.45 4.25 4.30 I / S K (pA / U) 4.10 4.15 4.20 I 4.05 Apr05 Aug05 Jul06 Feb07 Nov07
  • 22. I / SK vs. Ag K / , 125I seed “D” 4 45 4.50 4 30 4.35 4.40 4.45 / U) 4.20 4.25 4.30 I / S K (pA / 4.05 4.10 4.15 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 Ag K / 
  • 23. Radiochromic film imaging in contact exposure geometry MD-55-2 0 35 0.45 D Profile Scan PeC Microdensitometer 0.15 0.25 0.35 0 2 4 6 8 10 OD 0 2 4 6 8 10 X Position (mm)
  • 24. Air Anisotropy Ratio = A HPGe spectrometer ( = 0 ) seed z ( = 0, ) ( = /2, 3/2)  x y 177 cm Seed rotates in the x-y plane about the z axis ) 2 / 3 ( ) 2 / ( ) ( ) 0 ( spec spec spec spec A       K K K K      E K        en   i = photon fluence rate . i i i i E K                en spec Ei = photon energy (en / )i = mass energy-absorption coefficient
  • 25. Measurement Geometry for WAFAC, HPGe Spectrometer seed WAFAC  / 2 ~ 8o HPGe  / 2 ~ 0.2o
  • 26. Measurement Geometry for Well Chamber WAFAC  / 2 ~ 8o Well Chamber ~ 4 HPGe  / 2 ~ 0.2o
  • 27. Seed with Highly Uniform Emission (A ~ 1) WAFAC  / 2 ~ 8o Well Chamber ~ 4
  • 28. Seed with Highly Directional Emission (A ~ 0) LOWER SK I WAFAC  / 2 ~ 8o Well Chamber ~ 4 more directional less emission “missed” by the WAFAC that is detected by the well chamber
  • 29. 2 25 103Pd seeds with sphere or pellet design 2.20 2.25 Eav = 20.7 keV SK I 2.15 Model “A” Model “B” Model “C” 2.05 2.10 / S K (pA / U) 2.00 2.05 I Model “D” 1.95 D 1.90
  • 30. 2 25 103Pd seeds with sphere or pellet design 2.20 2.25 Eav = 20.7 keV SK I 2.15 Model “A” Model “B” Model “C” 2.05 2.10 / S K (pA / U) 0.33 0.24 0.49 2.00 2.05 I A Model “D” 1.95 0.06 D 1.90
  • 31. 125I seed Model “E” I 4.40 Eav = 27.3 keV SK I 4.30 4.35 U) av 4.20 4.25 I / S K (pA / U - 2.6 % Nov03 Sep02 Feb02 4 05 4.10 4.15 Sep02 May04 Feb02 4.05 y
  • 32. 125I seed Model “E” A 0.16 Eav = 27.3 keV 0.13 0.14 Nov03 Sep02 Feb02 av 0.10 0.11  A - 38 % Nov03 Sep02 Feb02 0 05 0.07 0.08 May04 0.05
  • 33. Effects of Seed Geometry and Nuclide on A 0.9 1.0 0.7 0.8 0.4 0.5 0.6  A 0 1 0.2 0.3 0.0 0.1
  • 34. Effects of Seed Geometry and Nuclide on A 1 Same Design for 125I and 103Pd Models No End Welds 0.9 1.0 1. Same Design for 125I and 103Pd Models, No End Welds 0.7 0.8 0.4 0.5 0.6  A 125I 103Pd 0 1 0.2 0.3 0.0 0.1
  • 35. Effects of Seed Geometry and Nuclide on A 2 Same Design for 125I and 103Pd Models With End Welds 0.9 1.0 2. Same Design for 125I and 103Pd Models, With End Welds 0.7 0.8 0.4 0.5 0.6  A 0 1 0.2 0.3 125I 103Pd 0.0 0.1
  • 36. Effects of Seed Geometry and Nuclide on A 3 125I Models: Uniform Encapsulation vs End Welds 0.9 1.0 3. 125I Models: Uniform Encapsulation vs. End Welds (“radiotransparent” substrate) UE 0.7 0.8 UE 0.4 0.5 0.6  A 0 1 0.2 0.3 EW 0.0 0.1
  • 37. Effects of Seed Geometry and Nuclide on A 4 125I Models w/ Ag: Wire vs Sphere Substrates 0.9 1.0 4. 125I Models w/ Ag: Wire vs. Sphere Substrates 0.7 0.8 0.4 0.5 0.6  A 0 1 0.2 0.3 W 0.0 0.1 W S
  • 38. Well Chamber Response Coefficients for 22 Seed Models 5.3 5.8 I (pA) 4.8 5.3 131Cs SK (U) 3.8 4.3 S K (pA / U) Ag wires no Ag 2.8 3.3 I / 103Pd 125I Ag spheres Ag spheres 1.8 2.3 103Pd
  • 39. Photon-emitting sources g L 50 k V Hi h Low-energy < 50 keV < High-energy LDR HDR LDR HDR SK SK SK SK, Dw WAFAC FAC Cavity Cavity, Calorimeter
  • 40. Primary Standard for Low-Energy X Rays (10 kV to 60 kV): Lamperti Free-Air Chamber V HPGe Miniature x-ray tube source El t t tube source 40 kV to 50 kV Electrometer
  • 41. Primary Standard for Mammography X Rays (≤ 50 kV): Attix Free-Air Chamber (NIST, University of Wisconsin) Electrometer Miniature x-ray V Miniature x ray tube source 40 kV to 50 kV
  • 42. Photon-emitting sources g L 50 k V Hi h Low-energy < 50 keV < High-energy LDR HDR LDR HDR SK SK SK SK, Dw WAFAC FAC Cavity Cavity, Calorimeter
  • 43. Primary Standard for Gamma Rays from 137Cs and 192Ir 1. Graphite-walled Cavity Chambers ) / ( ) / ( 1 2 L d W         ) ( ) ( ) , ( ) ( ) / ( ) / ( ) / ( ) / ( 1 1 ) ( 2 2 Q K Q K K Q K M K K L L g V d e W d Q K S h wall stem det dr air gr gr en air en air air K                                        137Cs 1 1 cm3 1 source 192Ir 50 cm3 50 sources
  • 44. Primary Standard for Gamma Rays from 137Cs and 192Ir 2. Spherical Aluminum Cavity and Re-entrant Chambers 2800 cm3 137Cs US WS US I S S 2800 cm3 137Cs Working standard (WS) or Unknown source (US) WS K K I S S  U ow sou ce (US) 192Ir 3400 cm3    50 1 i i K US US K I S I S 226Ra source T1/2 = 1600 y
  • 45. Photon-emitting sources g L 50 k V Hi h Low-energy < 50 keV < High-energy LDR HDR LDR HDR SK SK SK SK, Dw WAFAC FAC Cavity Cavity, Calorimeter
  • 46. Primary Standard for Gamma Rays from HDR 192Ir Graphite-walled Cavity Chamber, Kair N i l Ph i l L b (NPL UK) • National Physical Laboratory (NPL, UK) • Laboratoire National Henri Becquerel (LNHB, France) • Physikalisch Technische Bundesanstalt (PTB, Germany) • Nederlands Meetinstitut (NMi Netherlands) • Nederlands Meetinstitut (NMi, Netherlands) • Bhabha Atomic Research Centre (BARC, India) Water Calorimeter, Dw • McGill University (Sarfehnia, Stewart, and Seuntjens)
  • 47. Secondary Standard for Gamma Rays from HDR 192Ir Goetsch “Seven Distance” Technique (1991), AAPM ADCLs ) ( 2 ) ( ) ( 250 250 Q K N Q K N Q K N Ir wall Cs K Cs wall M K M wall Ir K   NIST traceability is achieved through NK M250 and NK Cs (cavity chamber)
  • 48. Secondary Standard for Gamma Rays from HDR 192Ir Goetsch “Seven Distance” Technique (1991), AAPM ADCLs ) ( 2 ) ( ) ( 250 250 Q K N Q K N Q K N Ir wall Cs K Cs wall M K M wall Ir K   NIST traceability is achieved through NK M250 and NK Cs (cavity chamber) “K-weighted Average” Technique, Mainegra-Hing and Rogers (2006)           Ei K i Ir air Ei air Ir K N K K N 1 1 2 1 1 1 250           Cs K M K Ir K N N N 192Ir ~ M250 + 137Cs Kair M250 = Kair Cs
  • 49. Secondary Standard for Gamma Rays from HDR 192Ir Accounting for Scattering 1. Goetsch “Seven Distance” Technique
  • 50. Secondary Standard for Gamma Rays from HDR 192Ir Accounting for Scattering 1. Goetsch “Seven Distance” Technique
  • 51. Secondary Standard for Gamma Rays from HDR 192Ir Accounting for Scattering 1. Goetsch “Seven Distance” Technique ] ) , ( [ ) ( scat det Ir K air M Q K M N Q K     2 ) )( ( c d Q K S air K   
  • 52. Secondary Standard for Gamma Rays from HDR 192Ir Accounting for Scattering 1. Goetsch “Seven Distance” Technique ] ) , ( [ ) ( scat det Ir K air M Q K M N Q K     2 ) )( ( c d Q K S air K    2. Shadow Shield Technique ) , ( Q K Mdet 
  • 53. Secondary Standard for Gamma Rays from HDR 192Ir Accounting for Scattering 1. Goetsch “Seven Distance” Technique ] ) , ( [ ) ( scat det Ir K air M Q K M N Q K     2 ) )( ( c d Q K S air K    2. Shadow Shield Technique scat M
  • 54. What about absorbed dose? • Dose rate is typically measured using thermoluminescent dosimeters (TLDs) placed in solid, water-equivalent phantoms at various distances from a seed • The dose rate at a reference point (1 cm from the seed on the trans erse a is) is • The dose rate at a reference point (1 cm from the seed on the transverse axis) is related to the NIST air-kerma strength standard, SK, through a dose-rate constant,  • Uncertainties on a TLD dose rate measurement at 1 cm are typically 4 % (k = 1) Uncertainties on a TLD dose rate measurement at 1 cm are typically 4 % (k 1), SK uncertainties are typically 1 % (k = 1), so uncertainty on  is about 8 % (k = 2) Step 1 Step 2 TLD .  = D(r0, 0) 1 cm  SK cGy h-1 U-1 SK measurement D(r0, 0) measurement . cGy h U
  • 55. TG-43 Formalism    K S r D ) , ( 0 0   ) , ( ) ( ) , ( ) , ( ) , ( 0 0     r F r g r G r G S r D L L L K        Dose rate in water  ) (r G  1 2 2 ) 4 / ( ) 0 (  L r r G Geometry Function D ) (   Dose rate constant (NIST-traceable SK)   sin ) , ( Lr r GL  ) 4 / ( ) 0 , (   L r r GL Radial Dose Function 2D Anisotropy Function 1 K S r D ) , ( 0 0    ) , ( ) , ( ) , ( ) , ( ) ( 0 0 0 0 0 0     r G r G r D r D r g X X X    Radial Dose Function ) , ( ) , ( ) , ( ) , ( ) , ( 0 0      r G r G r D r D r F L L    2D Anisotropy Function r0 = 1 cm 0 =  / 2
  • 56. Beta-emitting sources Dw . Extrapolation Chamber • Ophthalmic applicators 1. Planar (90Sr/Y) 2 Conca e (106R /Rh) 2. Concave (106Ru/Rh) • IVB seed and line sources (90Sr/Y 32P) IVB seed and line sources ( Sr/Y, P)
  • 57. Primary Standard for Beta Brachytherapy Sources Extrapolation Chamber k M k Q S A e W Q D det eff air                          0 a w, w ) ( ' d d ) ( 1 ) (        slope of current vs. air gap        max 0 w col, w d / ) ( E E E S Q S  slope of current vs. air gap        max 0 a col, w a w, d / ) ( E E E S Q S  Bragg-Gray stopping power ratio
  • 58. Extrapolation Chamber Schematic Electrometer Collecting electrode Insulating gap 79.54 pA gap Water-equivalent plastic High-voltage l t d / i d Air gap=0.40 mm electrode/window Source rent, pA Ionization Air gap, mm Curr
  • 59. Extrapolation Chamber Schematic Electrometer Collecting electrode Insulating gap 69.73 pA electrode gap Water-equivalent plastic High-voltage l t d / i d Air gap=0.35 mm electrode/window Source rent, pA Ionization Air gap, mm Curr
  • 60. Extrapolation Chamber Schematic Electrometer Collecting l t d Insulating 59.82 pA electrode gap Water-equivalent plastic High-voltage l t d / i d Air gap=0.30 mm electrode/window Source rent, pA Ionization Curr Air gap, mm
  • 61. Extrapolation Chamber Schematic Electrometer Collecting Insulating 49.85 pA g electrode Insulating gap Water-equivalent plastic High-voltage l t d / i d Air gap=0.25 mm electrode/window Source rent, pA Ionization Curr Air gap, mm
  • 62. Extrapolation Chamber Schematic Electrometer Collecting Insulating 39.89 pA Collecting electrode Insulating gap Water-equivalent plastic High-voltage l t d / i d Air gap=0.20 mm electrode/window Source rent, pA Ionization Curr Air gap, mm
  • 63. Extrapolation Chamber Schematic Electrometer C ll ti 29.92 pA Collecting electrode Insulating gap Water-equivalent plastic High-voltage l t d / i d Air gap=0.15 mm electrode/window Source rent, pA Ionization Curr Air gap, mm
  • 64. Extrapolation Chamber Schematic Electrometer 19.95 pA Collecting electrode Insulating gap Water-equivalent plastic High-voltage l t d / i d Air gap=0.10 mm electrode/window Source rent, pA Ionization Curr Air gap, mm
  • 65. Extrapolation Chamber Schematic Electrometer 9.99 pA Collecting electrode Insulating gap Water-equivalent plastic High-voltage l t d / i d Air gap=0.05 mm electrode/window Source rent, pA Ionization Curr Air gap, mm
  • 66. TG-60, TG-149 Formalism    K S r D ) , ( 0 0   ) ( ) ( ) , ( ) ( ) (     F r G D D L   Dose rate in water  ) (r G  1 2 2 ) 4 / ( ) 0 (  L r r G Geometry Function ) , ( ) ( ) , ( ) , ( ) , ( ) , ( 0 0 0 0     r F r g r G r D r D L L L       sin ) , ( Lr r GL  ) 4 / ( ) 0 , (   L r r GL Radial Dose Function 2D Anisotropy Function NIST-traceable D(r0, 0)  ) , ( ) , ( ) , ( ) , ( ) ( 0 0 0 0 0 0     r G r G r D r D r g X X X    Radial Dose Function ) , ( ) , ( ) , ( ) , ( ) , ( 0 0      r G r G r D r D r F L L    2D Anisotropy Function r0 = 2 mm 0 =  / 2
  • 67. Measurement Traceability for Brachytherapy Sources sources sources SK , Dw . Manufacturer secondary standard ADCL verification for well-ionization chambers sources verification for treatment planning . Clinic SK Clinic , Dw Clinic
  • 68. Clinical Brachytherapy Source Measurements W ll i i i h b lib d b ADCL Well-ionization chambers, calibrated by an ADCL Photon-emitting sources Beta-emitting sources ADCL K Clinic Clinic K I S I S        ADCL w Clinic Clinic w I D I D            + radiochromic film
  • 69. Summary • Air-kerma-strength standards are currently used for all photon-emitting brachytherapy sources, realized by free-air and cavity ionization chambers brachytherapy sources, realized by free air and cavity ionization chambers • Absorbed-dose-to-water standards are used for all beta-emitting brachytherapy sources, realized by extrapolation ionization chambers y py , y p • Brachytherapy standards are transferred from NIST and the ADCLs to clinics using well-ionization chambers (radiochromic film for planar beta-emitting sources) • Absorbed-dose-to-water measurement methods for high-energy, HDR h t itti b h th tl d d l t photon-emitting brachytherapy sources are currently under development (water calorimetry)