SlideShare a Scribd company logo
1 of 52
Download to read offline
大型風力發電廠之發電效率分析與預測
吳毓庭 Wu Yu-Ting
國立成功大學工程科學系
Dept. of Engineering Science
National Cheng Kung University
Taken in the EPFL WIRE wind tunnel
Horns Rev I offshore wind farm
Horns Rev I offshore wind farm
Horns Rev II offshore wind farm
1 km
2 km
1 km
1 km
Nysted offshore wind farm
Lillgrund offshore wind farm
One big issue- power deficits
1 km
Introduction
 In a large wind farm, the power losses due to turbine wakes are influenced by
[1] Inflow condition: wind direction, wind speed, turbulence intensity, turbulent stress
[2] Wind turbine design: blade geometry, generator efficiency
[3] Wind farm layout: turbine spacing, turbine siting density
 Accurate numerical prediction can provide insight into the characteristics of turbine
wakes and power losses in a large wind farm.
 Challenges include turbulence modeling and turbine parameterization
 LES + actuator-disk models: Jimenez et al (2007, 2008, 2010), Ivanell et al (2009), Calaf et al (2010,
2011), Meyers and Meneveau (2011, 2013)
[1] Turbulence modeling: large-eddy simulation (LES) technique
[2] Turbine parameterizations: actuator-disk/-line/-surface models
Porté-Agel et al (2000), Bou-Zeid et al (2005), Stoll and Porté-Agel (2006), Lu and Porté-Agel (2010, 2013)
Sørensen and Kock (1995), Sørensen and Shen (2002), Shen et al (2009)
8
 Rigorous validation studies for turbine wakes in turbulent boundary layer are needed
Rough terrain
(forest)
Less rough
(prairie)
Smooth surface
(sea surface)
Wu and Porté-Agel (2012)
Rough terrain
(forest)
Less rough
(prairie)
Smooth surface
(sea surface)
Wu and Porté-Agel (2012)
How far the downstream turbines should be installed
Solution
Numerical modelling
Laboratory experiment Field campaign
Wind tunnel facility
►28 m × 2.57m × 2 m test section
►25 m/s (90 km/h) maximum velocity
► < 0.1 % free stream turbulence intensity
► 5:1 contraction ratio
► 130 kW fan power
► 16 levels of air temperature control
► 20 m floor temperature control (test section)
►[−10°C ; 120°C] air/floor temperature range
► 450 kW heating and cooling units
Wind tunnel facility
Wind measurements
Meteorological Masts
Remote-sensing Measurements (e.g., LIDAR, SODAR)
17
Meteorological Masts
18
台電離岸式測風塔
19
海氣象觀測塔設備
氣象儀器
儀器
項目
風速計 風向計 大氣壓力計 溫溼度計 雨量計 日輻射儀
廠牌-型號
Thies
4.3351.10.000
Thies
4.3150.10.400
Thies
3.1157.10.000
Driesen+Kern Gmbh
DKRF400
Campbell
TE525MM
Kipp&Zonen
CNR4
規格
範圍 0.3~70 m/s 0~360° 300~1100 mb
-40~+80°C
0~100% RH
4.73 ml/tip
300 to 2800 nm
4.5 to 42 μm
解析度
0.05 m wind
run
0.1° 0.01hPa
0.01°C
0.05%
0.1 mm/tip 0.01 w/m2
精度 < 0.2 m/s 1° ± 0.25 hPa
±0.3°C
±1.8%RH
±1% <1%
安裝於塔架
位置(數量)
EL+95m(2)
EL+50m(1)
EL+30m(1)
EL+10m(1)
EL+95m(1)
EL+50m(1)
EL+30m(1)
EL+10m(1)
EL+95m(1)
EL+10m(1)
EL+95m(1)
EL+10m(1)
EL+10m(1) EL+19m(1)
22
LIDAR(光達)
• LIDAR: Light Detection And Ranging
23
3D scanning LIDAR
Galion HALO Photonics WindCube
LIDAR(光達)
• HALO Photonics 3D scanning LIDAR
24
LIDAR(光達)
• LIDAR: Light Detection And Ranging
25
Profiling LIDAR
Light Doppler shift
𝜆 − 𝜆0
𝜆0
=
𝑣
𝑐
𝜆 = Observed wavelength
𝑣 = Emitted velocity of light source
𝑐 = Speed of light
𝜆0= Rest emitted wavelength
Eq:
Observer
Source
WindSentinel
 Floating LiDAR device by AXYS
 Buoy System (Vindicator,
Anemometers, Solar Panels,
Turbines, Batteries, etc)
 Vindicator by OADS (Optical Air
Data Systems )
WindSentinel
RM YOUNG
Wind Wind Sensor 3.72mZephyr Airdolphin Turbine
SANYO Solar Panels
VectorAnemometer 3.45m
Vector Wind Vane 3.36m
Temperature RH
Vindicator
55m
71m
90m
110m
150m
200m
= deg
R 53.6m
R40.2m
R 29.5m
R 24.1m
R 19.0m
R 14.7m
R
LiDAR
Vindicator has three laser beams shooting simultaneously
WindSentinel
𝑈 𝑅1(𝛼1)
𝑈 𝑅2(𝛼2)𝑈 𝑅3(𝛼3)
Buoy
LIDAR
𝑢
𝑣
𝑈 𝑅1
𝑈 𝑅2
𝑈 𝑅3
=
sin 𝛼1 cos 𝛼1 1
sin 𝛼2 cos 𝛼2 1
sin 𝛼3 cos 𝛼3 1
sin 𝛽 0 0
0 sin 𝛽 0
0 0 cos 𝛽
𝑢
𝑣
𝑤
⟹
𝑈 𝑅1
𝑈 𝑅2
𝑈 𝑅3
= 𝐵
𝑢
𝑣
𝑤
⟹ 𝒖 𝒐𝒃𝒔 =
𝑢
𝑣
𝑤
= 𝐵−1
𝑈 𝑅1
𝑈 𝑅2
𝑈 𝑅3
WindSentinel
Gyroscope
 Angles: Pitch(𝜃), Roll(𝜙), Yaw(𝜓)
 Angular speeds: Pitch( ሶ𝜃), Roll( ሶ𝜙), Yaw( ሶ𝜓)
𝑼 = 𝑻 𝒖 𝒐𝒃𝒔 + 𝛀 𝒐𝒃𝒔 × 𝑹 + 𝒖 𝒔𝒉𝒊𝒑
Motion correction(compensation) scheme (Edson et al, 1998)
𝑼 = 𝑈, 𝑉, 𝑊 : wind speed vector in the earth’s coordinate
𝑻: transformation matrix for a rotation of the ship coordinate to the earth’s coordinate
𝛀 𝒐𝒃𝒔: angular velocity vector of the ship coordinate system
𝑹: position vector of the wind measurement location with respect to the motion package
𝒖 𝒔𝒉𝒊𝒑: translational velocity vector of the ship with respect to the earth’s coordinate
𝒖 𝒐𝒃𝒔 = 𝒖, 𝒗, 𝒘 : observed wind speed with respect to the ship coordinate
Motion correction scheme
𝑼 = 𝑻 𝒖 𝒐𝒃𝒔 + 𝛀 𝒐𝒃𝒔 × 𝑹 + 𝒖 𝒔𝒉𝒊𝒑
𝑻 =
cos 𝝍 sin 𝝍 𝟎
−sin 𝝍 cos 𝝍 𝟎
𝟎 𝟎
𝒀𝒂𝒘
cos 𝜽 𝟎 sin 𝜽
𝟎 𝟎
− sin 𝜽 𝟎 cos 𝜽
𝑷𝒊𝒕𝒄𝒉
𝟎 𝟎
𝟎 cos 𝝓 − sin 𝝓
𝟎 sin 𝝓 cos 𝝓
𝑹𝒐𝒍𝒍
𝒖 𝒐𝒃𝒔 =
𝒖
𝒗
𝒘
𝛀 𝒐𝒃𝒔 =
ሶ𝝓
ሶ𝜽
ሶ𝝍
𝑹 =
𝟎
𝟎
𝒛𝒍𝒊𝒅𝒂𝒓
Large-eddy simulation framework
𝜕෤𝑢𝑖
𝜕𝑥𝑖
= 0
𝜕෤𝑢𝑖
𝜕𝑡
+ ෤𝑢𝑗
𝜕෤𝑢𝑖
𝜕𝑥𝑗
−
𝜕෤𝑢𝑗
𝜕𝑥𝑖
= −
𝜕 ෤𝑝∗
𝜕𝑥𝑖
−
𝜕𝜏𝑖𝑗
𝜕𝑥𝑖
+ 𝜈
𝜕2 ෤𝑢𝑖
𝜕𝑥𝑗
2 −
𝑓𝑖
𝜌
+ 𝛿𝑖1 𝐹𝑝
: air kinematic viscosity
: modified pressure
: resolved (filtered) velocity
: a filter scale (Δ)~
෤𝑢𝑖
෤𝑝∗
𝜈
: subgrid-scale (SGS) stress
: turbine-induced body forces
: constant pressure gradient𝐹𝑝
𝜏𝑖𝑗
𝑓i
Lagrangian scale-dependent dynamic model
𝜏𝑖𝑗 − 1
3
𝛿 𝑖𝑗 𝜏 𝑘𝑘
= −2 Δ2 𝐶𝑆
2
Δ ሚ𝑆 ሚ𝑆ij
𝐶𝑆
2
Δ =
𝐿𝑖𝑗 𝑀𝑖𝑗 𝐿
𝑀𝑖𝑗 𝑀𝑖𝑗 𝐿
=
𝑄𝑖𝑗 𝑁𝑖𝑗 𝐿
𝑁𝑖𝑗 𝑁𝑖𝑗 𝐿
■ Traditional Smagorinsky model
̶ Smagorinsky coefficient
→ dynamically compute based on the flow information
Refs: Porté-Agel et al (2000); Stoll and Porté-Agel (2006)
z/dz/d
x/d
x/d
𝐶𝑆
𝐶𝑆
Wu and Porté-Agel (2011)
Wu and Porté-Agel (2013)
33
Ω
• Blade element theory
Δr
c : chord length
Blade Element
Vrel : relative velocity
Vx
: velocity at the rotor
Ω : angular velocity
α : angle of attack
γ : twist angle
projection
Total (shaft) Torque: 𝑄 = σ 𝐹𝜃 ∙ 𝑟
Rotor Power: 𝑃𝑅 = 𝑄 ∙ Ω
Power Output: 𝑃𝑂 = 𝑃𝑅 ∙ 𝜂
Ω r-V θ =Ω r(1+a’)
L
D
Fx
Fθ θ
α
φ
γ
F
Vx = u(1-a)~
x
r
θ
x
c
Δr
Actuator-disk model with rotation (ADM-R)
34
ADM-NR ADM-R
Uniform distribution of thrust
No considering rotation effect
Integrating thrust force over time
Non-uniform distribution of thrust
Considering rotation effect
Integrating the forces over time
Actuator-disk model without rotation Actuator-disk model with rotation
Jimenez et al (2007; 2008)
Calaf et al (2010; 2011)
Wu & Porté-Agel (2011, 2013)
Sørensen & Kock (1995)
Kasmi & Masson (2008)
Wu & Porté-Agel (2011, 2013)
Blade element theory1D momentum theory
Actuator-disk models (ADM)
ADM-R cannot predict Ω and P
Dynamic procedure:
[1] Calculate 𝑉𝑥 and 𝑉𝜃;
[2] Guess an initial value for Ω 𝑜
;
[3] Calculate the shaft torque Q
using the ADM-R;
[4] Calculate the new Ω 𝑛
based on
the torque-speed relationship;
[5] Calculate 𝜖 𝑡𝑜𝑙 = 1 − ΤΩ 𝑜
Ω 𝑛
;
[6] Replace Ω 𝑜
with Ω 𝑛
[7] Return to [3] until 𝜖 𝑡𝑜𝑙 < 0.01;
[8] Compute the forces and power
Ω r-V θ =Ω r(1+a’)
L
D
Fx
Fθ θ
α
φ
γ
F
Vx = u(1-a)~
x
r
θ
x
c
Δr
ADM-NR requires 𝑪 𝑻 and 𝑪 𝒑 35
Model validation
Horns Rev offshore wind farm
(Wu and Porte-Agel, 2015)
A model wind farm in ABL wind tunnel (Wu and Porte-Agel, 2013)
U [m s-1]
LES+ADM-R
37
Grid number: 𝟔𝟒𝟎 × 𝟔𝟒𝟎 × 𝟐𝟖
CPU cores: 256 cores
Computational time: 24 hours
Simulation time: 80 mins
LES of turbine wakes in the Horns Rev offshore wind farm
Model validation: farm power prediction
Horns Rev offshore wind farm
 Wind farm area : 20 [km2]
 80 Vestas V80 2MW wind turbines
 Total wind farm output: 160 MW
 Cut-in wind speed: 4 [m s-1]
 Cut-out wind speed: 25 [m s-1]
 Constant CT for wind speed < 10 [m s-1]
 Rotor diameter (d) = 80 [m]
 Turbine hub height (HHUB) = 70 [m]
 Three masts around the farm
5 8 11 14 17 20
0
0.5
1
1.5
2
Power[MW]
Wind Speed [ms-1
]
5 8 11 14 17 20
0
0.25
0.5
0.75
1
ThrustCoefficient
Measured Power
Manufacturers CT
(Hansen et al, 2012)
From: Fredy Rodriguez @ http://vimeo.com/28745771
38
U [m s-1]
Yaw misalignment is ignored in the sorting of the observed power data, which can cause an overestimation on the
power output of downstream turbines in a narrow full wake condition (e.g. 270o±1o).
Lines: simulated power
Symbols: measured power
Power prediction for different wind sectors
Time-averaged streamwise velocity
Streamwise turbulence intensity
Case Circles 1st circle 2nd circle 3rd circle 4th circle
Turbines Radius Turbines Radius Turbines Radius Turbines Radius
Case 1 1 80 31.23 d
Case 2 2 60 31.23 d 20 10.41 d
Case 3 3 44 31.23 d 28 18.74 d 8 6.25 d
Case 4 4 36 31.23 d 24 21.86 d 16 13.43d 4 4.37 d
Wind farm Horns Rev I Case 1 Case 2 Case 3 Case 4
Efficiency (%) 82.4 78.6 79.6 81.5 81.3
Simulations of large wind farms
44
𝐿 𝑥 = 24,000 𝑚 = 300 𝑑
𝐿 𝑦 = 1,200 𝑚 = 15 𝑑
𝐿 𝑧 = 996.8 𝑚 = 12.5 𝑑
120 wind turbines are sited in the simulations
𝑁𝑥 = 1,200
𝑁 𝑦 = 192
𝑁𝑧 = 160
Inflow condition
45
A constant pressure gradient is specified up to 800 m to drive the boundary-layer flow
Surface characteristics: 𝑢∗ = 0.488 𝑚/𝑠 and 𝑧0 = 0.05 𝑚
Wind speed at hub: 9.3 𝑚/𝑠
Turbine model
46
 Vestas V80 2MW
 Rotor diameter:80 m
 Constant CT for wind speed < 10 [m s-1]
Ref: Wu & Porté-Agel (2015),
Renewable energy
Simulated power output
47
0.50
0.55
0.60
0.65
0.70
0.75
0.80
WF1 WF2 WF3 WF4 WF5 WF6 WF7 WF8
Average Power (1-10) Average Power (11-20) Average Power (21-30) Average Power (1-30)
Averaged streamwise velocity
49
Published: Wu et al, Renewable Energy, 2019
Lu & Porté-Agel (2011)
Thanks for your attention
Q&A

More Related Content

What's hot

Scenario 14 presentation official
Scenario 14 presentation officialScenario 14 presentation official
Scenario 14 presentation officialJulia Elkouby
 
IAHR 2015 - Operational wave forecasts in the southern North Sea, Gautier, De...
IAHR 2015 - Operational wave forecasts in the southern North Sea, Gautier, De...IAHR 2015 - Operational wave forecasts in the southern North Sea, Gautier, De...
IAHR 2015 - Operational wave forecasts in the southern North Sea, Gautier, De...Deltares
 
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemensSirris
 
DSD-INT 2014 - SWAN Advanced Course - 01 - General introduction to waves and ...
DSD-INT 2014 - SWAN Advanced Course - 01 - General introduction to waves and ...DSD-INT 2014 - SWAN Advanced Course - 01 - General introduction to waves and ...
DSD-INT 2014 - SWAN Advanced Course - 01 - General introduction to waves and ...Deltares
 
Physics formula ICSE_Standard 10
Physics formula ICSE_Standard 10Physics formula ICSE_Standard 10
Physics formula ICSE_Standard 10Srikanth KS
 
Unisoft software bengt h. fellenius, pierre goudrault
Unisoft software   bengt h. fellenius, pierre goudraultUnisoft software   bengt h. fellenius, pierre goudrault
Unisoft software bengt h. fellenius, pierre goudraultcfpbolivia
 
Balancing of an air-bearing-based Acs Test Bed
Balancing of an air-bearing-based Acs Test BedBalancing of an air-bearing-based Acs Test Bed
Balancing of an air-bearing-based Acs Test BedCesare Pepponi
 
Simulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing SatelliteSimulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing SatelliteAlber Douglawi
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDeltares
 
Em drive basic theory
Em drive basic theoryEm drive basic theory
Em drive basic theoryTibor Szász
 
Interstellar explorerjun01
Interstellar explorerjun01Interstellar explorerjun01
Interstellar explorerjun01Clifford Stone
 
Physics Semester 2 Review and Tutorial
Physics Semester 2 Review and TutorialPhysics Semester 2 Review and Tutorial
Physics Semester 2 Review and Tutorialffiala
 
Iaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd Iaetsd
 
EMDrive presentation at Space 08 conference, Barbican, London
EMDrive presentation at Space 08 conference, Barbican, LondonEMDrive presentation at Space 08 conference, Barbican, London
EMDrive presentation at Space 08 conference, Barbican, LondonA. Rocketeer
 
Correction tool for Lidar in complex terrains based on Meteodyn WT outputs
Correction tool for Lidar in complex terrains based on Meteodyn WT outputsCorrection tool for Lidar in complex terrains based on Meteodyn WT outputs
Correction tool for Lidar in complex terrains based on Meteodyn WT outputsJean-Claude Meteodyn
 

What's hot (20)

Scenario 14 presentation official
Scenario 14 presentation officialScenario 14 presentation official
Scenario 14 presentation official
 
IAHR 2015 - Operational wave forecasts in the southern North Sea, Gautier, De...
IAHR 2015 - Operational wave forecasts in the southern North Sea, Gautier, De...IAHR 2015 - Operational wave forecasts in the southern North Sea, Gautier, De...
IAHR 2015 - Operational wave forecasts in the southern North Sea, Gautier, De...
 
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
 
Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
 
DSD-INT 2014 - SWAN Advanced Course - 01 - General introduction to waves and ...
DSD-INT 2014 - SWAN Advanced Course - 01 - General introduction to waves and ...DSD-INT 2014 - SWAN Advanced Course - 01 - General introduction to waves and ...
DSD-INT 2014 - SWAN Advanced Course - 01 - General introduction to waves and ...
 
NaCoMM Final
NaCoMM FinalNaCoMM Final
NaCoMM Final
 
Ballingham_Severance_Lab4
Ballingham_Severance_Lab4Ballingham_Severance_Lab4
Ballingham_Severance_Lab4
 
Physics formula ICSE_Standard 10
Physics formula ICSE_Standard 10Physics formula ICSE_Standard 10
Physics formula ICSE_Standard 10
 
Unisoft software bengt h. fellenius, pierre goudrault
Unisoft software   bengt h. fellenius, pierre goudraultUnisoft software   bengt h. fellenius, pierre goudrault
Unisoft software bengt h. fellenius, pierre goudrault
 
Balancing of an air-bearing-based Acs Test Bed
Balancing of an air-bearing-based Acs Test BedBalancing of an air-bearing-based Acs Test Bed
Balancing of an air-bearing-based Acs Test Bed
 
AGU2014-SA31B-4098
AGU2014-SA31B-4098AGU2014-SA31B-4098
AGU2014-SA31B-4098
 
Simulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing SatelliteSimulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing Satellite
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
 
Em drive basic theory
Em drive basic theoryEm drive basic theory
Em drive basic theory
 
Interstellar explorerjun01
Interstellar explorerjun01Interstellar explorerjun01
Interstellar explorerjun01
 
Physics Semester 2 Review and Tutorial
Physics Semester 2 Review and TutorialPhysics Semester 2 Review and Tutorial
Physics Semester 2 Review and Tutorial
 
Iaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pid
 
Bogar nov99
Bogar nov99Bogar nov99
Bogar nov99
 
EMDrive presentation at Space 08 conference, Barbican, London
EMDrive presentation at Space 08 conference, Barbican, LondonEMDrive presentation at Space 08 conference, Barbican, London
EMDrive presentation at Space 08 conference, Barbican, London
 
Correction tool for Lidar in complex terrains based on Meteodyn WT outputs
Correction tool for Lidar in complex terrains based on Meteodyn WT outputsCorrection tool for Lidar in complex terrains based on Meteodyn WT outputs
Correction tool for Lidar in complex terrains based on Meteodyn WT outputs
 

Similar to 【潔能講堂】大型風力發電廠之發電效率分析與預測

Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir Morgulis
 
Final course project report
Final course project reportFinal course project report
Final course project reportKaggwa Abdul
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
Aeroelasticity_A_R_10241445
Aeroelasticity_A_R_10241445Aeroelasticity_A_R_10241445
Aeroelasticity_A_R_10241445Amit Ramji ✈
 
Simulation requirements and relevant load conditions in the design of floatin...
Simulation requirements and relevant load conditions in the design of floatin...Simulation requirements and relevant load conditions in the design of floatin...
Simulation requirements and relevant load conditions in the design of floatin...Ricardo Faerron Guzmán
 
S4 oman wind energy potential anemometers 2016
S4 oman wind energy potential   anemometers 2016S4 oman wind energy potential   anemometers 2016
S4 oman wind energy potential anemometers 2016CETN
 
S4 oman wind energy potential - anemometers 2016
S4 oman wind energy potential - anemometers 2016S4 oman wind energy potential - anemometers 2016
S4 oman wind energy potential - anemometers 2016CETN
 
CFD Analysis Of Savonius Vertical Axis Wind Turbine: A Review
CFD Analysis Of Savonius Vertical Axis Wind Turbine: A ReviewCFD Analysis Of Savonius Vertical Axis Wind Turbine: A Review
CFD Analysis Of Savonius Vertical Axis Wind Turbine: A ReviewIRJET Journal
 
CFD Analysis for Computing Drag force on Various types of blades for Vertical...
CFD Analysis for Computing Drag force on Various types of blades for Vertical...CFD Analysis for Computing Drag force on Various types of blades for Vertical...
CFD Analysis for Computing Drag force on Various types of blades for Vertical...IRJET Journal
 
Implementation of Wilcox k − ω model to UCNS3D
Implementation of Wilcox k − ω model to UCNS3DImplementation of Wilcox k − ω model to UCNS3D
Implementation of Wilcox k − ω model to UCNS3DArpit Aggarwal
 
Transient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanTransient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanLahiru Dilshan
 
EUREC-NTUA Projects - Carlos Silva
EUREC-NTUA Projects - Carlos SilvaEUREC-NTUA Projects - Carlos Silva
EUREC-NTUA Projects - Carlos SilvaCarlos Silva
 
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode ControlPower Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode ControlIJPEDS-IAES
 
Semi-Active Pendulum to Control Offshore Wind Turbine Vibrations
Semi-Active Pendulum to Control Offshore Wind Turbine VibrationsSemi-Active Pendulum to Control Offshore Wind Turbine Vibrations
Semi-Active Pendulum to Control Offshore Wind Turbine VibrationsSuzana Avila
 
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigationdrboon
 
Wind Resource Assessment
Wind Resource AssessmentWind Resource Assessment
Wind Resource Assessmentmtingle
 

Similar to 【潔能講堂】大型風力發電廠之發電效率分析與預測 (20)

Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Final course project report
Final course project reportFinal course project report
Final course project report
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
Aeroelasticity_A_R_10241445
Aeroelasticity_A_R_10241445Aeroelasticity_A_R_10241445
Aeroelasticity_A_R_10241445
 
Simulation requirements and relevant load conditions in the design of floatin...
Simulation requirements and relevant load conditions in the design of floatin...Simulation requirements and relevant load conditions in the design of floatin...
Simulation requirements and relevant load conditions in the design of floatin...
 
S4 oman wind energy potential anemometers 2016
S4 oman wind energy potential   anemometers 2016S4 oman wind energy potential   anemometers 2016
S4 oman wind energy potential anemometers 2016
 
S4 oman wind energy potential - anemometers 2016
S4 oman wind energy potential - anemometers 2016S4 oman wind energy potential - anemometers 2016
S4 oman wind energy potential - anemometers 2016
 
CFD Analysis Of Savonius Vertical Axis Wind Turbine: A Review
CFD Analysis Of Savonius Vertical Axis Wind Turbine: A ReviewCFD Analysis Of Savonius Vertical Axis Wind Turbine: A Review
CFD Analysis Of Savonius Vertical Axis Wind Turbine: A Review
 
CFD Analysis for Computing Drag force on Various types of blades for Vertical...
CFD Analysis for Computing Drag force on Various types of blades for Vertical...CFD Analysis for Computing Drag force on Various types of blades for Vertical...
CFD Analysis for Computing Drag force on Various types of blades for Vertical...
 
Implementation of Wilcox k − ω model to UCNS3D
Implementation of Wilcox k − ω model to UCNS3DImplementation of Wilcox k − ω model to UCNS3D
Implementation of Wilcox k − ω model to UCNS3D
 
Transient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanTransient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fan
 
EUREC-NTUA Projects - Carlos Silva
EUREC-NTUA Projects - Carlos SilvaEUREC-NTUA Projects - Carlos Silva
EUREC-NTUA Projects - Carlos Silva
 
WaReS Validation Report
WaReS Validation ReportWaReS Validation Report
WaReS Validation Report
 
Presentation-for-teachers.pptx
Presentation-for-teachers.pptxPresentation-for-teachers.pptx
Presentation-for-teachers.pptx
 
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode ControlPower Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
 
Principles of flight
Principles of flightPrinciples of flight
Principles of flight
 
Semi-Active Pendulum to Control Offshore Wind Turbine Vibrations
Semi-Active Pendulum to Control Offshore Wind Turbine VibrationsSemi-Active Pendulum to Control Offshore Wind Turbine Vibrations
Semi-Active Pendulum to Control Offshore Wind Turbine Vibrations
 
cfd ahmed body
cfd ahmed bodycfd ahmed body
cfd ahmed body
 
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
 
Wind Resource Assessment
Wind Resource AssessmentWind Resource Assessment
Wind Resource Assessment
 

More from Energy-Education-Resource-Center

"What is an Energy System (2) Transportation Energy Systems "
"What is an Energy System (2) Transportation Energy Systems ""What is an Energy System (2) Transportation Energy Systems "
"What is an Energy System (2) Transportation Energy Systems "Energy-Education-Resource-Center
 
How do we use Energy? And What is an Energy System (1) Electric Energy Systems
How do we use Energy? And What is an Energy System (1) Electric Energy SystemsHow do we use Energy? And What is an Energy System (1) Electric Energy Systems
How do we use Energy? And What is an Energy System (1) Electric Energy SystemsEnergy-Education-Resource-Center
 
Hierarchical carbon synthesis by biomass pyrolysis oil and application in sup...
Hierarchical carbon synthesis by biomass pyrolysis oil and application in sup...Hierarchical carbon synthesis by biomass pyrolysis oil and application in sup...
Hierarchical carbon synthesis by biomass pyrolysis oil and application in sup...Energy-Education-Resource-Center
 
【潔能講堂】Why should we CARE_ and WHAT do we use and HOW do we use it
【潔能講堂】Why should we CARE_ and WHAT do we use and HOW do we use it【潔能講堂】Why should we CARE_ and WHAT do we use and HOW do we use it
【潔能講堂】Why should we CARE_ and WHAT do we use and HOW do we use itEnergy-Education-Resource-Center
 

More from Energy-Education-Resource-Center (7)

【潔能講堂】航向東亞能源轉型典範國
【潔能講堂】航向東亞能源轉型典範國【潔能講堂】航向東亞能源轉型典範國
【潔能講堂】航向東亞能源轉型典範國
 
潔能講堂圖像使用教學
潔能講堂圖像使用教學潔能講堂圖像使用教學
潔能講堂圖像使用教學
 
"What is an Energy System (2) Transportation Energy Systems "
"What is an Energy System (2) Transportation Energy Systems ""What is an Energy System (2) Transportation Energy Systems "
"What is an Energy System (2) Transportation Energy Systems "
 
How do we use Energy? And What is an Energy System (1) Electric Energy Systems
How do we use Energy? And What is an Energy System (1) Electric Energy SystemsHow do we use Energy? And What is an Energy System (1) Electric Energy Systems
How do we use Energy? And What is an Energy System (1) Electric Energy Systems
 
Hierarchical carbon synthesis by biomass pyrolysis oil and application in sup...
Hierarchical carbon synthesis by biomass pyrolysis oil and application in sup...Hierarchical carbon synthesis by biomass pyrolysis oil and application in sup...
Hierarchical carbon synthesis by biomass pyrolysis oil and application in sup...
 
【潔能講堂】Why should we CARE_ and WHAT do we use and HOW do we use it
【潔能講堂】Why should we CARE_ and WHAT do we use and HOW do we use it【潔能講堂】Why should we CARE_ and WHAT do we use and HOW do we use it
【潔能講堂】Why should we CARE_ and WHAT do we use and HOW do we use it
 
Introduction of CO2 Reduction Technologies in Steelworks
Introduction of  CO2 Reduction Technologies in SteelworksIntroduction of  CO2 Reduction Technologies in Steelworks
Introduction of CO2 Reduction Technologies in Steelworks
 

Recently uploaded

History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 

Recently uploaded (20)

OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 

【潔能講堂】大型風力發電廠之發電效率分析與預測

  • 1. 大型風力發電廠之發電效率分析與預測 吳毓庭 Wu Yu-Ting 國立成功大學工程科學系 Dept. of Engineering Science National Cheng Kung University Taken in the EPFL WIRE wind tunnel
  • 2. Horns Rev I offshore wind farm
  • 3.
  • 4.
  • 5. Horns Rev I offshore wind farm Horns Rev II offshore wind farm 1 km 2 km
  • 6. 1 km 1 km Nysted offshore wind farm Lillgrund offshore wind farm
  • 7. One big issue- power deficits 1 km
  • 8. Introduction  In a large wind farm, the power losses due to turbine wakes are influenced by [1] Inflow condition: wind direction, wind speed, turbulence intensity, turbulent stress [2] Wind turbine design: blade geometry, generator efficiency [3] Wind farm layout: turbine spacing, turbine siting density  Accurate numerical prediction can provide insight into the characteristics of turbine wakes and power losses in a large wind farm.  Challenges include turbulence modeling and turbine parameterization  LES + actuator-disk models: Jimenez et al (2007, 2008, 2010), Ivanell et al (2009), Calaf et al (2010, 2011), Meyers and Meneveau (2011, 2013) [1] Turbulence modeling: large-eddy simulation (LES) technique [2] Turbine parameterizations: actuator-disk/-line/-surface models Porté-Agel et al (2000), Bou-Zeid et al (2005), Stoll and Porté-Agel (2006), Lu and Porté-Agel (2010, 2013) Sørensen and Kock (1995), Sørensen and Shen (2002), Shen et al (2009) 8  Rigorous validation studies for turbine wakes in turbulent boundary layer are needed
  • 9. Rough terrain (forest) Less rough (prairie) Smooth surface (sea surface) Wu and Porté-Agel (2012)
  • 10. Rough terrain (forest) Less rough (prairie) Smooth surface (sea surface) Wu and Porté-Agel (2012) How far the downstream turbines should be installed
  • 12. Wind tunnel facility ►28 m × 2.57m × 2 m test section ►25 m/s (90 km/h) maximum velocity ► < 0.1 % free stream turbulence intensity ► 5:1 contraction ratio ► 130 kW fan power ► 16 levels of air temperature control ► 20 m floor temperature control (test section) ►[−10°C ; 120°C] air/floor temperature range ► 450 kW heating and cooling units
  • 14.
  • 15.
  • 16.
  • 17. Wind measurements Meteorological Masts Remote-sensing Measurements (e.g., LIDAR, SODAR) 17
  • 20.
  • 21. 海氣象觀測塔設備 氣象儀器 儀器 項目 風速計 風向計 大氣壓力計 溫溼度計 雨量計 日輻射儀 廠牌-型號 Thies 4.3351.10.000 Thies 4.3150.10.400 Thies 3.1157.10.000 Driesen+Kern Gmbh DKRF400 Campbell TE525MM Kipp&Zonen CNR4 規格 範圍 0.3~70 m/s 0~360° 300~1100 mb -40~+80°C 0~100% RH 4.73 ml/tip 300 to 2800 nm 4.5 to 42 μm 解析度 0.05 m wind run 0.1° 0.01hPa 0.01°C 0.05% 0.1 mm/tip 0.01 w/m2 精度 < 0.2 m/s 1° ± 0.25 hPa ±0.3°C ±1.8%RH ±1% <1% 安裝於塔架 位置(數量) EL+95m(2) EL+50m(1) EL+30m(1) EL+10m(1) EL+95m(1) EL+50m(1) EL+30m(1) EL+10m(1) EL+95m(1) EL+10m(1) EL+95m(1) EL+10m(1) EL+10m(1) EL+19m(1)
  • 22. 22
  • 23. LIDAR(光達) • LIDAR: Light Detection And Ranging 23 3D scanning LIDAR Galion HALO Photonics WindCube
  • 24. LIDAR(光達) • HALO Photonics 3D scanning LIDAR 24
  • 25. LIDAR(光達) • LIDAR: Light Detection And Ranging 25 Profiling LIDAR
  • 26. Light Doppler shift 𝜆 − 𝜆0 𝜆0 = 𝑣 𝑐 𝜆 = Observed wavelength 𝑣 = Emitted velocity of light source 𝑐 = Speed of light 𝜆0= Rest emitted wavelength Eq: Observer Source
  • 27. WindSentinel  Floating LiDAR device by AXYS  Buoy System (Vindicator, Anemometers, Solar Panels, Turbines, Batteries, etc)  Vindicator by OADS (Optical Air Data Systems )
  • 28. WindSentinel RM YOUNG Wind Wind Sensor 3.72mZephyr Airdolphin Turbine SANYO Solar Panels VectorAnemometer 3.45m Vector Wind Vane 3.36m Temperature RH Vindicator 55m 71m 90m 110m 150m 200m = deg R 53.6m R40.2m R 29.5m R 24.1m R 19.0m R 14.7m R LiDAR Vindicator has three laser beams shooting simultaneously
  • 29. WindSentinel 𝑈 𝑅1(𝛼1) 𝑈 𝑅2(𝛼2)𝑈 𝑅3(𝛼3) Buoy LIDAR 𝑢 𝑣 𝑈 𝑅1 𝑈 𝑅2 𝑈 𝑅3 = sin 𝛼1 cos 𝛼1 1 sin 𝛼2 cos 𝛼2 1 sin 𝛼3 cos 𝛼3 1 sin 𝛽 0 0 0 sin 𝛽 0 0 0 cos 𝛽 𝑢 𝑣 𝑤 ⟹ 𝑈 𝑅1 𝑈 𝑅2 𝑈 𝑅3 = 𝐵 𝑢 𝑣 𝑤 ⟹ 𝒖 𝒐𝒃𝒔 = 𝑢 𝑣 𝑤 = 𝐵−1 𝑈 𝑅1 𝑈 𝑅2 𝑈 𝑅3
  • 30. WindSentinel Gyroscope  Angles: Pitch(𝜃), Roll(𝜙), Yaw(𝜓)  Angular speeds: Pitch( ሶ𝜃), Roll( ሶ𝜙), Yaw( ሶ𝜓) 𝑼 = 𝑻 𝒖 𝒐𝒃𝒔 + 𝛀 𝒐𝒃𝒔 × 𝑹 + 𝒖 𝒔𝒉𝒊𝒑 Motion correction(compensation) scheme (Edson et al, 1998) 𝑼 = 𝑈, 𝑉, 𝑊 : wind speed vector in the earth’s coordinate 𝑻: transformation matrix for a rotation of the ship coordinate to the earth’s coordinate 𝛀 𝒐𝒃𝒔: angular velocity vector of the ship coordinate system 𝑹: position vector of the wind measurement location with respect to the motion package 𝒖 𝒔𝒉𝒊𝒑: translational velocity vector of the ship with respect to the earth’s coordinate 𝒖 𝒐𝒃𝒔 = 𝒖, 𝒗, 𝒘 : observed wind speed with respect to the ship coordinate
  • 31. Motion correction scheme 𝑼 = 𝑻 𝒖 𝒐𝒃𝒔 + 𝛀 𝒐𝒃𝒔 × 𝑹 + 𝒖 𝒔𝒉𝒊𝒑 𝑻 = cos 𝝍 sin 𝝍 𝟎 −sin 𝝍 cos 𝝍 𝟎 𝟎 𝟎 𝒀𝒂𝒘 cos 𝜽 𝟎 sin 𝜽 𝟎 𝟎 − sin 𝜽 𝟎 cos 𝜽 𝑷𝒊𝒕𝒄𝒉 𝟎 𝟎 𝟎 cos 𝝓 − sin 𝝓 𝟎 sin 𝝓 cos 𝝓 𝑹𝒐𝒍𝒍 𝒖 𝒐𝒃𝒔 = 𝒖 𝒗 𝒘 𝛀 𝒐𝒃𝒔 = ሶ𝝓 ሶ𝜽 ሶ𝝍 𝑹 = 𝟎 𝟎 𝒛𝒍𝒊𝒅𝒂𝒓
  • 32. Large-eddy simulation framework 𝜕෤𝑢𝑖 𝜕𝑥𝑖 = 0 𝜕෤𝑢𝑖 𝜕𝑡 + ෤𝑢𝑗 𝜕෤𝑢𝑖 𝜕𝑥𝑗 − 𝜕෤𝑢𝑗 𝜕𝑥𝑖 = − 𝜕 ෤𝑝∗ 𝜕𝑥𝑖 − 𝜕𝜏𝑖𝑗 𝜕𝑥𝑖 + 𝜈 𝜕2 ෤𝑢𝑖 𝜕𝑥𝑗 2 − 𝑓𝑖 𝜌 + 𝛿𝑖1 𝐹𝑝 : air kinematic viscosity : modified pressure : resolved (filtered) velocity : a filter scale (Δ)~ ෤𝑢𝑖 ෤𝑝∗ 𝜈 : subgrid-scale (SGS) stress : turbine-induced body forces : constant pressure gradient𝐹𝑝 𝜏𝑖𝑗 𝑓i
  • 33. Lagrangian scale-dependent dynamic model 𝜏𝑖𝑗 − 1 3 𝛿 𝑖𝑗 𝜏 𝑘𝑘 = −2 Δ2 𝐶𝑆 2 Δ ሚ𝑆 ሚ𝑆ij 𝐶𝑆 2 Δ = 𝐿𝑖𝑗 𝑀𝑖𝑗 𝐿 𝑀𝑖𝑗 𝑀𝑖𝑗 𝐿 = 𝑄𝑖𝑗 𝑁𝑖𝑗 𝐿 𝑁𝑖𝑗 𝑁𝑖𝑗 𝐿 ■ Traditional Smagorinsky model ̶ Smagorinsky coefficient → dynamically compute based on the flow information Refs: Porté-Agel et al (2000); Stoll and Porté-Agel (2006) z/dz/d x/d x/d 𝐶𝑆 𝐶𝑆 Wu and Porté-Agel (2011) Wu and Porté-Agel (2013) 33
  • 34. Ω • Blade element theory Δr c : chord length Blade Element Vrel : relative velocity Vx : velocity at the rotor Ω : angular velocity α : angle of attack γ : twist angle projection Total (shaft) Torque: 𝑄 = σ 𝐹𝜃 ∙ 𝑟 Rotor Power: 𝑃𝑅 = 𝑄 ∙ Ω Power Output: 𝑃𝑂 = 𝑃𝑅 ∙ 𝜂 Ω r-V θ =Ω r(1+a’) L D Fx Fθ θ α φ γ F Vx = u(1-a)~ x r θ x c Δr Actuator-disk model with rotation (ADM-R) 34
  • 35. ADM-NR ADM-R Uniform distribution of thrust No considering rotation effect Integrating thrust force over time Non-uniform distribution of thrust Considering rotation effect Integrating the forces over time Actuator-disk model without rotation Actuator-disk model with rotation Jimenez et al (2007; 2008) Calaf et al (2010; 2011) Wu & Porté-Agel (2011, 2013) Sørensen & Kock (1995) Kasmi & Masson (2008) Wu & Porté-Agel (2011, 2013) Blade element theory1D momentum theory Actuator-disk models (ADM) ADM-R cannot predict Ω and P Dynamic procedure: [1] Calculate 𝑉𝑥 and 𝑉𝜃; [2] Guess an initial value for Ω 𝑜 ; [3] Calculate the shaft torque Q using the ADM-R; [4] Calculate the new Ω 𝑛 based on the torque-speed relationship; [5] Calculate 𝜖 𝑡𝑜𝑙 = 1 − ΤΩ 𝑜 Ω 𝑛 ; [6] Replace Ω 𝑜 with Ω 𝑛 [7] Return to [3] until 𝜖 𝑡𝑜𝑙 < 0.01; [8] Compute the forces and power Ω r-V θ =Ω r(1+a’) L D Fx Fθ θ α φ γ F Vx = u(1-a)~ x r θ x c Δr ADM-NR requires 𝑪 𝑻 and 𝑪 𝒑 35
  • 36. Model validation Horns Rev offshore wind farm (Wu and Porte-Agel, 2015) A model wind farm in ABL wind tunnel (Wu and Porte-Agel, 2013)
  • 37. U [m s-1] LES+ADM-R 37 Grid number: 𝟔𝟒𝟎 × 𝟔𝟒𝟎 × 𝟐𝟖 CPU cores: 256 cores Computational time: 24 hours Simulation time: 80 mins LES of turbine wakes in the Horns Rev offshore wind farm
  • 38. Model validation: farm power prediction Horns Rev offshore wind farm  Wind farm area : 20 [km2]  80 Vestas V80 2MW wind turbines  Total wind farm output: 160 MW  Cut-in wind speed: 4 [m s-1]  Cut-out wind speed: 25 [m s-1]  Constant CT for wind speed < 10 [m s-1]  Rotor diameter (d) = 80 [m]  Turbine hub height (HHUB) = 70 [m]  Three masts around the farm 5 8 11 14 17 20 0 0.5 1 1.5 2 Power[MW] Wind Speed [ms-1 ] 5 8 11 14 17 20 0 0.25 0.5 0.75 1 ThrustCoefficient Measured Power Manufacturers CT (Hansen et al, 2012) From: Fredy Rodriguez @ http://vimeo.com/28745771 38
  • 39. U [m s-1] Yaw misalignment is ignored in the sorting of the observed power data, which can cause an overestimation on the power output of downstream turbines in a narrow full wake condition (e.g. 270o±1o). Lines: simulated power Symbols: measured power Power prediction for different wind sectors
  • 42.
  • 43. Case Circles 1st circle 2nd circle 3rd circle 4th circle Turbines Radius Turbines Radius Turbines Radius Turbines Radius Case 1 1 80 31.23 d Case 2 2 60 31.23 d 20 10.41 d Case 3 3 44 31.23 d 28 18.74 d 8 6.25 d Case 4 4 36 31.23 d 24 21.86 d 16 13.43d 4 4.37 d Wind farm Horns Rev I Case 1 Case 2 Case 3 Case 4 Efficiency (%) 82.4 78.6 79.6 81.5 81.3
  • 44. Simulations of large wind farms 44 𝐿 𝑥 = 24,000 𝑚 = 300 𝑑 𝐿 𝑦 = 1,200 𝑚 = 15 𝑑 𝐿 𝑧 = 996.8 𝑚 = 12.5 𝑑 120 wind turbines are sited in the simulations 𝑁𝑥 = 1,200 𝑁 𝑦 = 192 𝑁𝑧 = 160
  • 45. Inflow condition 45 A constant pressure gradient is specified up to 800 m to drive the boundary-layer flow Surface characteristics: 𝑢∗ = 0.488 𝑚/𝑠 and 𝑧0 = 0.05 𝑚 Wind speed at hub: 9.3 𝑚/𝑠
  • 46. Turbine model 46  Vestas V80 2MW  Rotor diameter:80 m  Constant CT for wind speed < 10 [m s-1] Ref: Wu & Porté-Agel (2015), Renewable energy
  • 47. Simulated power output 47 0.50 0.55 0.60 0.65 0.70 0.75 0.80 WF1 WF2 WF3 WF4 WF5 WF6 WF7 WF8 Average Power (1-10) Average Power (11-20) Average Power (21-30) Average Power (1-30)
  • 48.
  • 50.
  • 51. Published: Wu et al, Renewable Energy, 2019
  • 52. Lu & Porté-Agel (2011) Thanks for your attention Q&A