SlideShare a Scribd company logo
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 1
FINNED SURFACES
Introduction:
Convection: Heat transfer between a solid surface and a moving fluid is governed by the
Newton’s cooling law: where Ts is the surface temperature and T is the
fluid temperature. Therefore, to increase the convective heat transfer, one can
• Increase the temperature difference between the surface and the fluid.
• Increase the convection coefficient h. This can be accomplished by increasing the fluid
flow over the surface since h is a function of the flow velocity and the higher the velocity,
the higher the h. Example: a cooling fan.
• Increase the contact surface area A. Example: a heat sink with fins.
Many times, when the first option is not in our control and the second option (i.e. increasing h) is
already stretched to its limit, we are left with the only alternative of increasing the effective
surface area by using fins or extended surfaces. Fins are protrusions from the base surface into
the cooling fluid, so that the extra surface of the protrusions is also in contact with the fluid.
Most of you have encountered cooling fins on air-cooled engines (motorcycles, portable
generators, etc.), electronic equipment (CPUs), automobile radiators, air conditioning equipment
(condensers) and elsewhere.
Temperature distribution and Heat transfer in fins (rectangular or circular)
4
Governing differential equation:
Let us take small element dx on a rectangular fin with uniform cross sectional area A
)(
∞
−T
s
T
)(
∞
−= T
s
ThAQ
conv
Q
dxx
Q
x
Q +
+
=
dx
dT
Ak
x
Q −= dx
dx
Td
Ak
dx
dT
Akdx
dx
dT
Ak
dx
d
dx
dT
Ak
dxx
Q 2
2
−−=



−+−=
+
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 2
This equation is called, one dimensional fin equation for fins of uniform cross section(second
order, linear, ordinary equation)
The solution is,
Where C1 and C2 are constants
C1 and C2 are constant are determined by the application of the two boundary condition, one
specified for the fin tip.
x= 0 at T=Tb and the other boundary condition there are several possibities
1. Infinitely long fin
2. Fin insulated at its end (i. negligible heat loss from the end of the fin)
3. Fin loosing heat from its end by convection
4. Fin with specified temperature at its end
conv
Q
dxx
Q
x
Q +
+
=
( )∞
−+−−=− TTdxPhdx
dx
Td
Ak
dx
dT
Ak
dx
dT
Ak )(2
2
( )∞
−= TT
s
Ah
conv
Q ( )∞
−= TTdxPh
conv
Q )( dxpermeterAs )(=
( )∞
−= TTdxPhdx
dx
Td
Ak )(2
2
( )∞
−= TT
KA
Ph
dx
Td
2
2
( )∞
−= TTm
dx
Td 2
2
2
KA
Ph
m =
KA
Ph
m =2
0)(2)(
2
2
=− xm
dx
xd
θ
θ ∞−= TTxlet )(θ
dx
dT
dx
xd
=
)(θ
mxmx
eCeCx 21)( += −
θ
mxCmxCx sinhcosh)( 21 +=θ
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 3
Infinitely long fin
Assuming that fin tip is insulated
Boundary conditions,
Heat transfer rate
(Refer HMTDB Page No-50)
∞
= T
L
T
0)(2)(
2
2
=− tm
dx
td
θ
θ
mxmx
eCeCt 21)( += −
θ
b
TTatx == 0
∞
==∞= T
L
TTatx
∞−= TT
b bθ
0=
L
θ
1C
b
=θ
b
TTatx == 0 ∞−= TT
b bθ
∞
==∞= T
L
TTatx 0=
L
θ
∞= 20 C 02 =C
mx
e
b
x −
= θθ )(
mx
e
b
x −
=
θ
θ )(
mx
e
T
b
T
TT
−
=
∞
−
∞
−
0
)(
0 =
−=
=
−=
xdx
xd
Ak
xdx
dT
AkQ
θ
)( bmAkQ θ−−=
mx
e
b
x −
=
θ
θ )(
mx
b ex −
=θθ )(
mx
b em
dx
xd −
−= θ
θ )(bmAkQ θ=
)( ∞−= TT
KA
hP
AkQ b
)( ∞−= TThPKAQ b
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 4
Fin of finite length with insulated tip (short fin with end insulated)
Boundary conditions,
b
TTatx == 0 ∞−= TT
b bθ
0==
dx
d
atLx
θ
( )∞
−= TTm
dx
Td 2
2
2
KA
Ph
m =
KA
Ph
m =2
0)(2)(
2
2
=− xm
dx
xd
θ
θ ∞−= TTxlet )(θ
dx
dT
dx
xd
=
)(θ
mxCmxCx sinhcosh)( 21 +=θ
b
TTatx == 0 ∞−= TT
b bθ
1C
b
=θ
( ) ( )mxmCmxm
bdx
td
coshsinh
)(
2+= θ
θ
( ) ( )mLmCmLm
b
sinhcosh0 2+= θ
( )
( )mL
mL
bC
cosh
sinh
2
θ−
=
( )
( )
mx
mL
mL
bmx
b
t sinh
cosh
sinh
cosh)(







−
+=
θ
θθ
( )
( )
mx
mL
mL
mx
b
t
sinh
cosh
sinh
cosh
)(






−=
θ
θ
( ) ( )
( )mL
mxmLmLmx
b
t
cosh
sinhsinhcoshcosh)( −
=
θ
θ
( )
( )mL
xLm
b
t
cosh
cosh)( −
=
θ
θ
( )
( )mL
xLm
T
b
T
TT
cosh
cosh −
=
∞
−
∞
−
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 5
(Refer HMTDB Page No 50)
Heat transfer rate
(Refer HMTDB Page No 50)
Heat transfer can also be find out by,
(Refer the method of last derivation)
( )
( )mL
xLm
T
b
T
TT
cosh
cosh −
=
∞
−
∞
−
0
)(
0 =
−=
=
−=
xdx
xd
Ak
xdx
dT
AkQ
θ
( )
( )[ ]
0
sinh
cosh
=








−−−=
x
xLmm
mL
bAkQ
θ
( )
( )mL
xLm
b
x
cosh
cosh)( −
=
θ
θ
( )
( ) 




 −
=
mL
xLm
x b
cosh
cosh
)( θθ
( )
( )[ ] )10(sinh
cosh
)(
−−= xLmm
mL
b
dx
xd θθ
( )
( )[ ]xLmm
mL
b
dx
xd
−−= sinh
cosh
)( θθ
( )
mL
mL
bAmkQ sinh
cosh
θ
=
( ) mLT
b
TAmkQ tanh
∞
−=
( ) mLT
b
ThPKAQ tanh
∞
−=
∫ ∞
−=
L
o
TxTdxPhQ ))(()(
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 6
Fins with convection at the tip
Boundary conditions
Solution for the second order differential equation
0)(2
2
)(2
=− xm
dx
xd
θ
θ
0
)( θθ =
∞
−= T
b
Tx 0=xat
0)(
)(
=+ x
L
h
dx
xd
k θ
θ
Lxat =
)(sin
2
)(cos
1
)( xmhCxmhCx +=θ
)(sin
2
)(cos
1
)( xmhCxmhCx +=θ
0
)( θθ =
∞
−= T
b
Tx 0=xat
0
10
+=Cθ
)(sin
2
)(cos
0
)( xmhCxmhx +=θθ
0)(
)(
=+ x
L
h
dx
xd
k θ
θ Lxat =
)(cos
2
)(sin
0
)(
xmhmCxmhm
dx
xd
+=θ
θ
Lx
xA
L
h
Lxdx
xd
kA
=
=
=
− )(
)(
θ
θ
[ ] [ ] 0)(sin)(cos)(cos)(sin 2020 =+++ LmhCLmh
L
hlmhmCLmhmk θθ
0)(
)(
=+ x
L
h
dx
xd
k θ
θ
Lxat =
[ ] [ ] 0)(sin)(cos)(cos)(sin 2020 =+++ LmhChLmhhLmhmCkLmhmk LLθθ
[ ] [ ] 0)(sin)(cos)(cos)(sin 2200 =+++ LmhChLmhmCkLmhhLmhmk LLθθ








+−=








+ )(sin)(cos)(cos)(sin 20 Lmh
km
L
h
LmhCLmh
km
L
h
Lmhθ
10
C=θ
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 7
)(sin)(cos
)(cos)(sin
0
2
Lmh
km
L
h
Lmh
Lmh
km
L
h
Lmh
C
+








+
−=
θ
)(sin
)(sin)(cos
)(cos)(sin
)(cos
0
)( 0 xmh
Lmh
km
L
h
Lmh
Lmh
km
L
h
Lmh
xmhx














+
+
−= θθθ
)(sin
)(sin)(cos
)(cos)(sin
)(cos
0
)(
xmh
Lmh
km
L
h
Lmh
Lmh
km
L
h
Lmh
xmh
x














+
+
−=
θ
θ
)(sin)(cos
)(sin)(cos)(sin)(sin)(cos)(cos
0
)(
Lmh
km
L
h
Lmh
xmhLmh
km
L
h
LmhLmh
km
L
h
Lmhxmh
x
+








+−








+
=
θ
θ
)(sin)(cos
)(sin)(cos)(sin)(sin)(cos)(sin)(cos)(cos
0
)(
Lmh
km
L
h
Lmh
xmhLmh
km
L
h
xmhLmhxmhLmh
km
L
h
Lmhxmh
x
+








+−








+
=
θ
θ
[ ]
)(sin)(cos
)(sin)(cos)(cos)(sin)(sin)(sin)(cos)(cos
0
)(
Lmh
km
L
h
mLh
xmhLmh
km
L
h
xmhLmh
km
L
h
xmhLmhxmhLmh
x
+








−+−
=
θ
θ
[ ] [ ]
)(sin)(cos
)(sin)(cos)(
0
)(
Lmh
km
L
h
mLh
xLmh
km
L
h
xLmh
T
b
T
TxTx
+
−+−
=
∞
−
∞
−
=
θ
θ
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 8
Heat transfer rate
Dividing )(cos Lmh in the equation
(HMTDB Page No 50)
0
)(
0 =
−=
=
−=
xdx
xd
Ak
xdx
dT
AkQ
θ
[ ] [ ]














+
−+−
=
)(sin)(cos
)(sin)(cos
)( 0
mLh
km
L
h
Lmh
xLmh
km
L
h
xLmh
x θθ
[ ] [ ]
)(sin)(cos
)1)((cosh)1)((sin
)(
0
Lmh
km
h
Lmh
xLmm
km
h
xLmhm
dx
xd
L
L
+
−−+−−
= θ
θ
( )






+






+
∞
−=
)(tan1
)(tan
Lmh
km
h
km
h
mLh
T
b
TAk
L
PhQ
L
L
[ ] [ ]
0
)(sin)(cos
)1)((cosh)1)((sin
0
=
+
−−+−−
−=
x
Lmh
km
L
h
Lmh
xLmm
km
L
h
xLmhm
AkQ θ
[ ] [ ]
)(sin)(cos
)(cosh)(sin
0
Lmh
km
h
Lmh
mLm
km
h
mLhm
AkQ
L
L
+
−−
−= θ






+






+
=
)(sin)(cos
)(cosh)(sin
0
Lmh
km
h
Lmh
Lm
km
h
mLh
AmkQ
L
L
θ
( )






+






+
∞
−=
)(sin)(cos
)(cosh)(sin
Lmh
km
h
Lmh
Lm
km
h
mLh
T
b
TAk
L
PhQ
L
L
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 9
Fin of finite length with specified temperature at its end
Temperature distribution
Boundary conditions
0)(2
2
)(2
=− xm
dx
xd
θ
θ
0== xat
b
TT
Lxat
L
TT ==
∞
−= T
b
T
b
θ
∞
−= T
L
T
L
θ
)(sin
2
)(cos
1
)( xmhCxmhCx +=θ
)(sin
2
)(cos
1
)( xmhCxmhCx +=θ
0== xat
b
TT
∞
−= T
b
T
b
θ
1
C
b
=θ
)(sin
2
)(cos
1
)( xmhCxmhCx +=θ
Lxat
L
TT ==
∞
−= T
L
T
L
θ
)(sin
2
)(cos mLhCLmh
bL
+=θθ
)(sin
)(cos
2 mLh
Lmh
bLC
θθ −
=
)(sin
)(sin
)(cos
)(cos)( xmh
mLh
Lmh
bLxmh
b
x







 −
+=
θθ
θθ
[ ]
)(sin
(sin)(cos)(sin)(cos
)(
mLh
xmhLmh
bL
mLhxmh
bx
θθθ
θ
−+
=
)(sin
)(sin)(cos)(sin)(sin)(cos
)(
mLh
xmhLmh
b
xmh
L
mLhxmh
bx
θθθ
θ
−+
=
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 10
Heat transfer
(HMTDB Page No 50)
Fin efficiency
The fin efficiency is defined as the ratio of the energy transferred through a real fin to
that transferred through an ideal fin. An ideal fin is thought to be one made of a perfect or
infinite conductor material. A perfect conductor has an infinite thermal conductivity so that the
entire fin is at the base material temperature.
For long fin
(HMTDB Page No 50)
)(sin
)(sin)(sin
)(
mLh
xmh
L
xLmh
bx
θθ
θ
+−
=
∫ ∞
−=
L
o
TxTdxPhQ ))(()(
dxx
L
o
PhQ )(θ∫=
dx
mLh
xmh
L
xLmh
b
L
o
PhQ







 +−
∫=
)(sin
)(sin)(sin θθ
L
om
xmh
L
m
xLmh
b
mLh
Ph
Q








+
−−
= )
)(cos
)
)(cos
)(sin
θθ
[ ])1)(cos()cos1(
)(sin
−+−−= Lmh
L
mLh
bmLhm
Ph
Q θθ
[ ])1)(cos()1(cos
)(sin
−+−= Lmh
L
mLh
bmLhm
Ph
Q θθ
[ ])1(cos)(
)(sin
−+= mLh
LbmLhm
Ph
Q θθ
PkAh
mLh
mLh
L
T
L
TT
b
TQ
)(sin
)1(cos
)()(
−




∞
−+
∞
−=
∞
−= T
b
T
b
θ
∞
−= T
L
T
L
θ
ideal
Q
real
Q
=η
)(
)(
∞
−
∞
−
=
T
b
TLPh
T
b
ThPkA
mL
1
= kA
hP
m =
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 11
For Short fin (tip is insulated)
(HMTDB Page No 50)
Fin Effectiveness
How effective a fin can enhance heat transfer is characterized by the fin effectiveness
which is as the ratio of fin heat transfer and the heat transfer without the fin. For an adiabatic fin:
for long fin
For Short fin (tip is insulated)
ideal
Q
real
Q
=η
)(
)tanh()(
∞
−
∞
−
=
T
b
TLPh
mLT
b
ThPkA
mL
mL)tanh(
=
)(
f
ε
finwithout
Q
finwith
Q
f
=ε
)(
)(
∞
−
∞
−
=
T
b
TAh
T
b
ThPkA
hA
Pk
=
)(
)tanh()(
∞
−
∞
−
=
T
b
TAh
mLT
b
ThPkA
)tanh(mL
hA
Pk
==
finwithout
Q
finwith
Q
f
=ε
kA
hP
m =
kA
hP
m =
Heat and mass transfer Fins
Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 12
REFERENCES
1. Heat transfer-A basic approach, Ozisik, Tata McGraw Hill, 2002
2. Heat transfer , J P Holman, Tata McGraw Hill, 2002, 9th
edition
3. Principles of heat transfer, Kreith Thomas Learning, 2001
4. Heat and Mass Transfer Data Book, C.P Kothandarman , S Subramanyan, new age
international publishers ,2010, 7th
edition
5. Fundamental of Heat and Mass transfer, M Thirumaleshwar,Pearson,2013
6. Pradeep Dutta, “HEAT AND MASS TRANSFER”, Web based course material under the
NPTEL, Phase 1, 2006.

More Related Content

What's hot

Vapor compression refrigeration cycle
Vapor compression refrigeration cycleVapor compression refrigeration cycle
Vapor compression refrigeration cycle
pradosh a c
 
Critical thickness of insulation
Critical thickness of insulationCritical thickness of insulation
Critical thickness of insulation
MdNoorruddin
 
Numerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conductionNumerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conduction
tmuliya
 
Radiation ppt by iit professor
Radiation ppt by iit professorRadiation ppt by iit professor
Radiation ppt by iit professor
aaksmal83
 
One dimensional steady state fin equation for long fins
One dimensional steady state fin equation for long finsOne dimensional steady state fin equation for long fins
One dimensional steady state fin equation for long fins
Taufiq Rahman
 
Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notes
Soumith V
 
Refrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateRefrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gate
Soumith V
 
Extended surfaces
Extended surfacesExtended surfaces
Extended surfaces
Muhammad Zohaib
 
Heat and Mass Transfer - HMT
Heat and Mass Transfer - HMTHeat and Mass Transfer - HMT
Heat and Mass Transfer - HMT
The Learning Hub
 
Lecture 13 torsion in solid and hollow shafts 1
Lecture 13 torsion in solid and hollow shafts 1Lecture 13 torsion in solid and hollow shafts 1
Lecture 13 torsion in solid and hollow shafts 1Deepak Agarwal
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flow
Addisu Dagne Zegeye
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
Arun Sarasan
 
Rac unit-4 psychrometric processes
Rac unit-4 psychrometric processesRac unit-4 psychrometric processes
Rac unit-4 psychrometric processes
vipul kumar sharma
 
UNIT-1 CONDUCTION
UNIT-1 CONDUCTIONUNIT-1 CONDUCTION
UNIT-1 CONDUCTION
Ramesh Thiagarajan
 
Physical significance of non dimensional numbers
Physical significance of non dimensional numbersPhysical significance of non dimensional numbers
Physical significance of non dimensional numbers
vaibhav tailor
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-I
tmuliya
 
Chapter 7: Heat Exchanger
Chapter 7: Heat ExchangerChapter 7: Heat Exchanger
Chapter 7: Heat Exchanger
Debre Markos University
 
Shell and Tube Heat Exchanger
Shell and Tube Heat Exchanger Shell and Tube Heat Exchanger
Shell and Tube Heat Exchanger
wasihaider16
 

What's hot (20)

Vapor compression refrigeration cycle
Vapor compression refrigeration cycleVapor compression refrigeration cycle
Vapor compression refrigeration cycle
 
Critical thickness of insulation
Critical thickness of insulationCritical thickness of insulation
Critical thickness of insulation
 
Numerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conductionNumerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conduction
 
Radiation ppt by iit professor
Radiation ppt by iit professorRadiation ppt by iit professor
Radiation ppt by iit professor
 
One dimensional steady state fin equation for long fins
One dimensional steady state fin equation for long finsOne dimensional steady state fin equation for long fins
One dimensional steady state fin equation for long fins
 
Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notes
 
Refrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateRefrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gate
 
Extended surfaces
Extended surfacesExtended surfaces
Extended surfaces
 
Heat and Mass Transfer - HMT
Heat and Mass Transfer - HMTHeat and Mass Transfer - HMT
Heat and Mass Transfer - HMT
 
Lecture 13 torsion in solid and hollow shafts 1
Lecture 13 torsion in solid and hollow shafts 1Lecture 13 torsion in solid and hollow shafts 1
Lecture 13 torsion in solid and hollow shafts 1
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flow
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
 
Rac unit-4 psychrometric processes
Rac unit-4 psychrometric processesRac unit-4 psychrometric processes
Rac unit-4 psychrometric processes
 
UNIT-1 CONDUCTION
UNIT-1 CONDUCTIONUNIT-1 CONDUCTION
UNIT-1 CONDUCTION
 
Heat exchanger
Heat exchanger Heat exchanger
Heat exchanger
 
Physical significance of non dimensional numbers
Physical significance of non dimensional numbersPhysical significance of non dimensional numbers
Physical significance of non dimensional numbers
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-I
 
Theories of Failure
Theories of FailureTheories of Failure
Theories of Failure
 
Chapter 7: Heat Exchanger
Chapter 7: Heat ExchangerChapter 7: Heat Exchanger
Chapter 7: Heat Exchanger
 
Shell and Tube Heat Exchanger
Shell and Tube Heat Exchanger Shell and Tube Heat Exchanger
Shell and Tube Heat Exchanger
 

Viewers also liked

Extended surface fins
Extended surface finsExtended surface fins
Extended surface fins
Manthan Kanani
 
Heat and Mass Transfer Basics
Heat and Mass Transfer BasicsHeat and Mass Transfer Basics
Heat and Mass Transfer Basics
Mayavan T
 
HEAT TRANSFER ANALYSIS OF RECTANGULAR FIN PPT
HEAT TRANSFER ANALYSIS OF RECTANGULAR FIN PPTHEAT TRANSFER ANALYSIS OF RECTANGULAR FIN PPT
HEAT TRANSFER ANALYSIS OF RECTANGULAR FIN PPTSwathi Sagi
 
FIN projects
FIN projectsFIN projects
FIN projects
Sergio Zammit
 
Fin presentation
Fin presentationFin presentation
Fin presentation
amit gaur
 

Viewers also liked (7)

kushal khadakkar
kushal khadakkarkushal khadakkar
kushal khadakkar
 
Extended surface fins
Extended surface finsExtended surface fins
Extended surface fins
 
Heat and Mass Transfer Basics
Heat and Mass Transfer BasicsHeat and Mass Transfer Basics
Heat and Mass Transfer Basics
 
Vertical fins
Vertical finsVertical fins
Vertical fins
 
HEAT TRANSFER ANALYSIS OF RECTANGULAR FIN PPT
HEAT TRANSFER ANALYSIS OF RECTANGULAR FIN PPTHEAT TRANSFER ANALYSIS OF RECTANGULAR FIN PPT
HEAT TRANSFER ANALYSIS OF RECTANGULAR FIN PPT
 
FIN projects
FIN projectsFIN projects
FIN projects
 
Fin presentation
Fin presentationFin presentation
Fin presentation
 

Similar to Fins

Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
Edhole.com
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
Edhole.com
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
Solo Hermelin
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
HelpWithAssignment.com
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
Dr.Jagadish Tawade
 
UNIT I_4.pdf
UNIT I_4.pdfUNIT I_4.pdf
UNIT I_4.pdf
Muthukumar P
 
Aaallleeetttaas
AaallleeetttaasAaallleeetttaas
Aaallleeetttaas
miguelchuraccorimany
 
Fo ode-1
Fo ode-1Fo ode-1
Fo ode-1
mohammad HASHEM
 
Fins equation & lumped heat capacity system
Fins equation & lumped heat capacity systemFins equation & lumped heat capacity system
Fins equation & lumped heat capacity system
N/A
 
Top School in india
Top School in indiaTop School in india
Top School in india
Edhole.com
 
Rates of change_updated
Rates of change_updatedRates of change_updated
Rates of change_updated
Brent Nicole Cardano
 
Forced convection
Forced convectionForced convection
Forced convection
vishnu5211931
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
Younes Sina
 
Projectile motion
Projectile motionProjectile motion
Projectile motiongngr0810
 
Projectile motion
Projectile motionProjectile motion
Projectile motiongngr0810
 

Similar to Fins (20)

Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
M220w07
M220w07M220w07
M220w07
 
311 Ch11
311 Ch11311 Ch11
311 Ch11
 
wave_equation
wave_equationwave_equation
wave_equation
 
UNIT I_4.pdf
UNIT I_4.pdfUNIT I_4.pdf
UNIT I_4.pdf
 
Aaallleeetttaas
AaallleeetttaasAaallleeetttaas
Aaallleeetttaas
 
Fo ode-1
Fo ode-1Fo ode-1
Fo ode-1
 
Fins equation & lumped heat capacity system
Fins equation & lumped heat capacity systemFins equation & lumped heat capacity system
Fins equation & lumped heat capacity system
 
Top School in india
Top School in indiaTop School in india
Top School in india
 
Rates of change_updated
Rates of change_updatedRates of change_updated
Rates of change_updated
 
Forced convection
Forced convectionForced convection
Forced convection
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
 
Output Regulator_LinkedIn
Output Regulator_LinkedInOutput Regulator_LinkedIn
Output Regulator_LinkedIn
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 

Recently uploaded

road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 

Recently uploaded (20)

road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 

Fins

  • 1. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 1 FINNED SURFACES Introduction: Convection: Heat transfer between a solid surface and a moving fluid is governed by the Newton’s cooling law: where Ts is the surface temperature and T is the fluid temperature. Therefore, to increase the convective heat transfer, one can • Increase the temperature difference between the surface and the fluid. • Increase the convection coefficient h. This can be accomplished by increasing the fluid flow over the surface since h is a function of the flow velocity and the higher the velocity, the higher the h. Example: a cooling fan. • Increase the contact surface area A. Example: a heat sink with fins. Many times, when the first option is not in our control and the second option (i.e. increasing h) is already stretched to its limit, we are left with the only alternative of increasing the effective surface area by using fins or extended surfaces. Fins are protrusions from the base surface into the cooling fluid, so that the extra surface of the protrusions is also in contact with the fluid. Most of you have encountered cooling fins on air-cooled engines (motorcycles, portable generators, etc.), electronic equipment (CPUs), automobile radiators, air conditioning equipment (condensers) and elsewhere. Temperature distribution and Heat transfer in fins (rectangular or circular) 4 Governing differential equation: Let us take small element dx on a rectangular fin with uniform cross sectional area A )( ∞ −T s T )( ∞ −= T s ThAQ conv Q dxx Q x Q + + = dx dT Ak x Q −= dx dx Td Ak dx dT Akdx dx dT Ak dx d dx dT Ak dxx Q 2 2 −−=    −+−= +
  • 2. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 2 This equation is called, one dimensional fin equation for fins of uniform cross section(second order, linear, ordinary equation) The solution is, Where C1 and C2 are constants C1 and C2 are constant are determined by the application of the two boundary condition, one specified for the fin tip. x= 0 at T=Tb and the other boundary condition there are several possibities 1. Infinitely long fin 2. Fin insulated at its end (i. negligible heat loss from the end of the fin) 3. Fin loosing heat from its end by convection 4. Fin with specified temperature at its end conv Q dxx Q x Q + + = ( )∞ −+−−=− TTdxPhdx dx Td Ak dx dT Ak dx dT Ak )(2 2 ( )∞ −= TT s Ah conv Q ( )∞ −= TTdxPh conv Q )( dxpermeterAs )(= ( )∞ −= TTdxPhdx dx Td Ak )(2 2 ( )∞ −= TT KA Ph dx Td 2 2 ( )∞ −= TTm dx Td 2 2 2 KA Ph m = KA Ph m =2 0)(2)( 2 2 =− xm dx xd θ θ ∞−= TTxlet )(θ dx dT dx xd = )(θ mxmx eCeCx 21)( += − θ mxCmxCx sinhcosh)( 21 +=θ
  • 3. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 3 Infinitely long fin Assuming that fin tip is insulated Boundary conditions, Heat transfer rate (Refer HMTDB Page No-50) ∞ = T L T 0)(2)( 2 2 =− tm dx td θ θ mxmx eCeCt 21)( += − θ b TTatx == 0 ∞ ==∞= T L TTatx ∞−= TT b bθ 0= L θ 1C b =θ b TTatx == 0 ∞−= TT b bθ ∞ ==∞= T L TTatx 0= L θ ∞= 20 C 02 =C mx e b x − = θθ )( mx e b x − = θ θ )( mx e T b T TT − = ∞ − ∞ − 0 )( 0 = −= = −= xdx xd Ak xdx dT AkQ θ )( bmAkQ θ−−= mx e b x − = θ θ )( mx b ex − =θθ )( mx b em dx xd − −= θ θ )(bmAkQ θ= )( ∞−= TT KA hP AkQ b )( ∞−= TThPKAQ b
  • 4. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 4 Fin of finite length with insulated tip (short fin with end insulated) Boundary conditions, b TTatx == 0 ∞−= TT b bθ 0== dx d atLx θ ( )∞ −= TTm dx Td 2 2 2 KA Ph m = KA Ph m =2 0)(2)( 2 2 =− xm dx xd θ θ ∞−= TTxlet )(θ dx dT dx xd = )(θ mxCmxCx sinhcosh)( 21 +=θ b TTatx == 0 ∞−= TT b bθ 1C b =θ ( ) ( )mxmCmxm bdx td coshsinh )( 2+= θ θ ( ) ( )mLmCmLm b sinhcosh0 2+= θ ( ) ( )mL mL bC cosh sinh 2 θ− = ( ) ( ) mx mL mL bmx b t sinh cosh sinh cosh)(        − += θ θθ ( ) ( ) mx mL mL mx b t sinh cosh sinh cosh )(       −= θ θ ( ) ( ) ( )mL mxmLmLmx b t cosh sinhsinhcoshcosh)( − = θ θ ( ) ( )mL xLm b t cosh cosh)( − = θ θ ( ) ( )mL xLm T b T TT cosh cosh − = ∞ − ∞ −
  • 5. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 5 (Refer HMTDB Page No 50) Heat transfer rate (Refer HMTDB Page No 50) Heat transfer can also be find out by, (Refer the method of last derivation) ( ) ( )mL xLm T b T TT cosh cosh − = ∞ − ∞ − 0 )( 0 = −= = −= xdx xd Ak xdx dT AkQ θ ( ) ( )[ ] 0 sinh cosh =         −−−= x xLmm mL bAkQ θ ( ) ( )mL xLm b x cosh cosh)( − = θ θ ( ) ( )       − = mL xLm x b cosh cosh )( θθ ( ) ( )[ ] )10(sinh cosh )( −−= xLmm mL b dx xd θθ ( ) ( )[ ]xLmm mL b dx xd −−= sinh cosh )( θθ ( ) mL mL bAmkQ sinh cosh θ = ( ) mLT b TAmkQ tanh ∞ −= ( ) mLT b ThPKAQ tanh ∞ −= ∫ ∞ −= L o TxTdxPhQ ))(()(
  • 6. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 6 Fins with convection at the tip Boundary conditions Solution for the second order differential equation 0)(2 2 )(2 =− xm dx xd θ θ 0 )( θθ = ∞ −= T b Tx 0=xat 0)( )( =+ x L h dx xd k θ θ Lxat = )(sin 2 )(cos 1 )( xmhCxmhCx +=θ )(sin 2 )(cos 1 )( xmhCxmhCx +=θ 0 )( θθ = ∞ −= T b Tx 0=xat 0 10 +=Cθ )(sin 2 )(cos 0 )( xmhCxmhx +=θθ 0)( )( =+ x L h dx xd k θ θ Lxat = )(cos 2 )(sin 0 )( xmhmCxmhm dx xd +=θ θ Lx xA L h Lxdx xd kA = = = − )( )( θ θ [ ] [ ] 0)(sin)(cos)(cos)(sin 2020 =+++ LmhCLmh L hlmhmCLmhmk θθ 0)( )( =+ x L h dx xd k θ θ Lxat = [ ] [ ] 0)(sin)(cos)(cos)(sin 2020 =+++ LmhChLmhhLmhmCkLmhmk LLθθ [ ] [ ] 0)(sin)(cos)(cos)(sin 2200 =+++ LmhChLmhmCkLmhhLmhmk LLθθ         +−=         + )(sin)(cos)(cos)(sin 20 Lmh km L h LmhCLmh km L h Lmhθ 10 C=θ
  • 7. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 7 )(sin)(cos )(cos)(sin 0 2 Lmh km L h Lmh Lmh km L h Lmh C +         + −= θ )(sin )(sin)(cos )(cos)(sin )(cos 0 )( 0 xmh Lmh km L h Lmh Lmh km L h Lmh xmhx               + + −= θθθ )(sin )(sin)(cos )(cos)(sin )(cos 0 )( xmh Lmh km L h Lmh Lmh km L h Lmh xmh x               + + −= θ θ )(sin)(cos )(sin)(cos)(sin)(sin)(cos)(cos 0 )( Lmh km L h Lmh xmhLmh km L h LmhLmh km L h Lmhxmh x +         +−         + = θ θ )(sin)(cos )(sin)(cos)(sin)(sin)(cos)(sin)(cos)(cos 0 )( Lmh km L h Lmh xmhLmh km L h xmhLmhxmhLmh km L h Lmhxmh x +         +−         + = θ θ [ ] )(sin)(cos )(sin)(cos)(cos)(sin)(sin)(sin)(cos)(cos 0 )( Lmh km L h mLh xmhLmh km L h xmhLmh km L h xmhLmhxmhLmh x +         −+− = θ θ [ ] [ ] )(sin)(cos )(sin)(cos)( 0 )( Lmh km L h mLh xLmh km L h xLmh T b T TxTx + −+− = ∞ − ∞ − = θ θ
  • 8. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 8 Heat transfer rate Dividing )(cos Lmh in the equation (HMTDB Page No 50) 0 )( 0 = −= = −= xdx xd Ak xdx dT AkQ θ [ ] [ ]               + −+− = )(sin)(cos )(sin)(cos )( 0 mLh km L h Lmh xLmh km L h xLmh x θθ [ ] [ ] )(sin)(cos )1)((cosh)1)((sin )( 0 Lmh km h Lmh xLmm km h xLmhm dx xd L L + −−+−− = θ θ ( )       +       + ∞ −= )(tan1 )(tan Lmh km h km h mLh T b TAk L PhQ L L [ ] [ ] 0 )(sin)(cos )1)((cosh)1)((sin 0 = + −−+−− −= x Lmh km L h Lmh xLmm km L h xLmhm AkQ θ [ ] [ ] )(sin)(cos )(cosh)(sin 0 Lmh km h Lmh mLm km h mLhm AkQ L L + −− −= θ       +       + = )(sin)(cos )(cosh)(sin 0 Lmh km h Lmh Lm km h mLh AmkQ L L θ ( )       +       + ∞ −= )(sin)(cos )(cosh)(sin Lmh km h Lmh Lm km h mLh T b TAk L PhQ L L
  • 9. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 9 Fin of finite length with specified temperature at its end Temperature distribution Boundary conditions 0)(2 2 )(2 =− xm dx xd θ θ 0== xat b TT Lxat L TT == ∞ −= T b T b θ ∞ −= T L T L θ )(sin 2 )(cos 1 )( xmhCxmhCx +=θ )(sin 2 )(cos 1 )( xmhCxmhCx +=θ 0== xat b TT ∞ −= T b T b θ 1 C b =θ )(sin 2 )(cos 1 )( xmhCxmhCx +=θ Lxat L TT == ∞ −= T L T L θ )(sin 2 )(cos mLhCLmh bL +=θθ )(sin )(cos 2 mLh Lmh bLC θθ − = )(sin )(sin )(cos )(cos)( xmh mLh Lmh bLxmh b x         − += θθ θθ [ ] )(sin (sin)(cos)(sin)(cos )( mLh xmhLmh bL mLhxmh bx θθθ θ −+ = )(sin )(sin)(cos)(sin)(sin)(cos )( mLh xmhLmh b xmh L mLhxmh bx θθθ θ −+ =
  • 10. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 10 Heat transfer (HMTDB Page No 50) Fin efficiency The fin efficiency is defined as the ratio of the energy transferred through a real fin to that transferred through an ideal fin. An ideal fin is thought to be one made of a perfect or infinite conductor material. A perfect conductor has an infinite thermal conductivity so that the entire fin is at the base material temperature. For long fin (HMTDB Page No 50) )(sin )(sin)(sin )( mLh xmh L xLmh bx θθ θ +− = ∫ ∞ −= L o TxTdxPhQ ))(()( dxx L o PhQ )(θ∫= dx mLh xmh L xLmh b L o PhQ         +− ∫= )(sin )(sin)(sin θθ L om xmh L m xLmh b mLh Ph Q         + −− = ) )(cos ) )(cos )(sin θθ [ ])1)(cos()cos1( )(sin −+−−= Lmh L mLh bmLhm Ph Q θθ [ ])1)(cos()1(cos )(sin −+−= Lmh L mLh bmLhm Ph Q θθ [ ])1(cos)( )(sin −+= mLh LbmLhm Ph Q θθ PkAh mLh mLh L T L TT b TQ )(sin )1(cos )()( −     ∞ −+ ∞ −= ∞ −= T b T b θ ∞ −= T L T L θ ideal Q real Q =η )( )( ∞ − ∞ − = T b TLPh T b ThPkA mL 1 = kA hP m =
  • 11. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 11 For Short fin (tip is insulated) (HMTDB Page No 50) Fin Effectiveness How effective a fin can enhance heat transfer is characterized by the fin effectiveness which is as the ratio of fin heat transfer and the heat transfer without the fin. For an adiabatic fin: for long fin For Short fin (tip is insulated) ideal Q real Q =η )( )tanh()( ∞ − ∞ − = T b TLPh mLT b ThPkA mL mL)tanh( = )( f ε finwithout Q finwith Q f =ε )( )( ∞ − ∞ − = T b TAh T b ThPkA hA Pk = )( )tanh()( ∞ − ∞ − = T b TAh mLT b ThPkA )tanh(mL hA Pk == finwithout Q finwith Q f =ε kA hP m = kA hP m =
  • 12. Heat and mass transfer Fins Yashawantha K M, Dept. of Marine Engineering, SIT, Mangaluru Page 12 REFERENCES 1. Heat transfer-A basic approach, Ozisik, Tata McGraw Hill, 2002 2. Heat transfer , J P Holman, Tata McGraw Hill, 2002, 9th edition 3. Principles of heat transfer, Kreith Thomas Learning, 2001 4. Heat and Mass Transfer Data Book, C.P Kothandarman , S Subramanyan, new age international publishers ,2010, 7th edition 5. Fundamental of Heat and Mass transfer, M Thirumaleshwar,Pearson,2013 6. Pradeep Dutta, “HEAT AND MASS TRANSFER”, Web based course material under the NPTEL, Phase 1, 2006.