SlideShare a Scribd company logo
110
UNIT - 4
Heat transfer analysis
ThermalConvection
Newton’s Lawof Cooling
q  h(Ts T)
h: convective heat transfer coefficient (W m2
Co
)
111
112
Thermal Conduction in1-D
Boundary conditions:
Dirichlet BC:
Natural BC:
Mixed BC:
Weak Formulation of 1-D HeatConduction
(SteadyState Analysis)
• GoverningEquationof 1-D Heat Conduction -----

d (x)A(x)
dT(x)   AQ(x)  0
dx  dx 
 
0<x<L
• WeightedIntegral Formulation -----
• WeakFormfrom Integration-by-Parts -----
0
L
dx
 d  dT(x)  
  AQ(x)dx
 
 
0  w(x) 
dx (x)A(x)
L
dw  dT  
113

L
dT 
   0
0  
0   dx  A
dx   wAQdx  w A
dx 
Formulation for 1-D LinearElement
Let T(x)  T11(x)T22(x)
f2
1
x1
2
x2
x
T1 T2
f1
2 1
1 2
l l
x  x
,
x  x
 ( x)  ( x) 
x2
x1
1T1
2T2
2
2
1
1
x
x
, f (x)  A
T
f (x)  A
T
114
Formulation for 1-D LinearElement
Letw(x)= i (x), i =1, 2
2 x2
i j
j i i 2 2 i 1 1
j1
x2 
 d d 
  ( x )f 
dx   AQdx (x ) f
 dx dx 
 
x 
 1  1
0  T  A
 
x
2
Qi i (x2 ) f2 i (x1) f1
 KijTj
j1
 



   
 11
1
1
K22 T2
K12
K12 T1 
K
 2  Q2
 f   
f Q
1
115
1
2
x2 x2
i j
ij i i 1
x1 x2
x
dT dT
dx dx
 d d 
where K  A dx, Q   AQdx, f  A , f  A
 dx dx 
 
 
x
Element Equations of 1-D LinearElement
 




 
 1
1
1 T2 
1 1T1 
L 1
 2  Q2
Q
 f   
f A
 
i i 1
dT dT
dx xx1 xx2
where Q   AQ dx, f  A , f2   A
dx
x2

x1
f2
1
x1
2
x2
T1
x
T2
116
f1
1-D Heat Conduction -Example
t1 t2 t3
0
T 200o
C T 50o
C
x
1 2 3
Acomposite wall consists of three materials, asshown in the figure below.
Theinside wall temperature is 200oCand the outside air temperature is50oC
with aconvection coefficient of h =10 W(m2.K). Find the temperature along
the composite wall.
1  70W m  K , 2  40W m  K , 3  20W m  K 
t1  2cm, t2  2.5cm, t3  4cm
117
Thermal Conduction andConvection-
Fin
Objective: to enhanceheattransfer
dx
t
x
w
loss
Q 
2h(T T)dx  w  2h(T T)dx t

2h(T T)w  t
Ac dx Ac
Governing equation for 1-D heat transfer in thin fin
c c
d  A
dT   A Q 0
dx  dx 
 
c
118
 c
d  A
dT   Ph T  T  A Q  0
dx  dx 
 
P  2w  t
where
Fin- WeakFormulation
(SteadyStateAnalysis)
• GoverningEquationof 1-D Heat Conduction -----


d (x)A(x)
dT(x)   PhT T  AQ 0
dx  dx 
 
0<x<L
• WeightedIntegral Formulation -----
• WeakFormfrom Integration-by-Parts -----
0
L
dx
 d  dT(x)  
  Ph(T T)  AQ(x)dx
 
 
0  w(x) 
dx (x)A(x)
dx
119
dx dx

L
dw  dT   
L
dT 
0  A  wPh(T T
 )  wAQ dx  w A
   

   0
0  

Formulation for 1-D LinearElement
Letw(x)= i (x), i =1, 2
2
dx dx
d d
j1

x2
 
iAQ  PhTdx
A i j
 Ph dx 
i j 

 x 
 1  1
i (x2 ) f2 i (x1) f1
0  T 
j 
x2


x
2
i (x1) f1
Qi i (x2 ) f2
 KijTj
j1
 



 

 
 11
1
1
K22 T2
K12
K12 T1 
K
 2  Q2
 f  
f Q
1 1
1 2
x2
ij i i
i j
dx dx
dx dx
d d
A i 
xx1 xx2
x2
 
where K   Ph dx, Q   AQ  PhT dx,
j 
x  
f   A
dT
, f  A
dT
 
x
120
Element Equations of 1-D LinearElement
1 1
f Q  1
    1 T1 

A  1

Phl 2
 f          
 2  Q2  1  6 1
 L 1 2T2 
f2
1
x=0
2
x=L
T1
x
T2
f1
x2
121
dT dT
xx1 xx2
f1   A
dx
, f2   A
dx
where Qi  i AQ  PhT dx,
x1
122
Time-Dependent Problems
123
Time-DependentProblems
In general,
Keyquestion: How to choose approximatefunctions?
Two approaches:
ux,t
ux,t u jj x,t
ux,t u j tj x
Model Problem I– Transient Heat Conduction
Weakform:
 
t x

x

c
u

 a
u   f x,t
1 1
1
a )Q2w(x2 )





x2

 wf dx Q w(x
u
t
 cw
w u
x x
0  
x
2
124
1
x2
x1
dx


Q  a
du
dx


Q  a
du  ;
let:
)
1 1 2 2
1
a 




x2

 wf dx Q w(x ) Q w(x
u
t
 cw
w u
x x
0  
x
Transient HeatConduction
n
ux,t u j tj x
j1
and w i x
KuMu 
F

x2
x1
ij
x x
K  a i j
dx
 
Mij
x2
 cijdx
x1
x2
Fi  i fdx  Qi
x1
ODE!
125
TimeApproximation – First OrderODE
dt
126
0  t  T 0
a
du
 bu  f t u0u
Forward difference approximation - explicit
Backward difference approximation - implicit
k k k
a
k1
u  u
 t
f bu 
k k k
k1
u  u 
t
f bu 
a bt
StabilityRequirment
max
127
2
1 2
cri
t  t 
K M uQ
where
Note: Onemust usethe samediscretization for solving
the eigenvalueproblem.
Transient Heat Conduction -Example
0
128
u

2
u
 0  x 1
t
u
1,t 0
t x2
u0,t 0
ux,01.0
t  0
Transient Heat Conduction -Example
129
Transient Heat Conduction -Example
130
Transient Heat Conduction -Example
131
Transient Heat Conduction -Example
132
Transient Heat Conduction -Example
133

More Related Content

Similar to UNIT I_4.pdf

Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
Dr.Jagadish Tawade
 
free Video lecture in india
free Video lecture in indiafree Video lecture in india
free Video lecture in india
Edhole.com
 
IVR - Chapter 4 - Variational methods
IVR - Chapter 4 - Variational methodsIVR - Chapter 4 - Variational methods
IVR - Chapter 4 - Variational methods
Charles Deledalle
 
Video lectures for b.tech
Video lectures for b.techVideo lectures for b.tech
Video lectures for b.tech
Edhole.com
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
Statistics Homework Helper
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
Statistics Homework Helper
 
CN_slides.pdf
CN_slides.pdfCN_slides.pdf
CN_slides.pdf
IlkerYuksek
 
Fins
FinsFins
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014
Edhole.com
 
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
Ronald Tenesaca
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
Solo Hermelin
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
The Statistical and Applied Mathematical Sciences Institute
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
HelpWithAssignment.com
 
UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
Muthukumar P
 
Conducción de calor en estado estacionario
Conducción de calor en estado estacionarioConducción de calor en estado estacionario
Conducción de calor en estado estacionario
Norman Rivera
 
residue
residueresidue
residue
Rob Arnold
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
JOAQUIN REA
 
Design of Linear Control Systems(0).ppt
Design of Linear Control Systems(0).pptDesign of Linear Control Systems(0).ppt
Design of Linear Control Systems(0).ppt
khinmuyaraye
 
numerical.ppt
numerical.pptnumerical.ppt
numerical.ppt
SuyashPatil72
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
Edhole.com
 

Similar to UNIT I_4.pdf (20)

Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
free Video lecture in india
free Video lecture in indiafree Video lecture in india
free Video lecture in india
 
IVR - Chapter 4 - Variational methods
IVR - Chapter 4 - Variational methodsIVR - Chapter 4 - Variational methods
IVR - Chapter 4 - Variational methods
 
Video lectures for b.tech
Video lectures for b.techVideo lectures for b.tech
Video lectures for b.tech
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
CN_slides.pdf
CN_slides.pdfCN_slides.pdf
CN_slides.pdf
 
Fins
FinsFins
Fins
 
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014
 
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
 
Conducción de calor en estado estacionario
Conducción de calor en estado estacionarioConducción de calor en estado estacionario
Conducción de calor en estado estacionario
 
residue
residueresidue
residue
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
Design of Linear Control Systems(0).ppt
Design of Linear Control Systems(0).pptDesign of Linear Control Systems(0).ppt
Design of Linear Control Systems(0).ppt
 
numerical.ppt
numerical.pptnumerical.ppt
numerical.ppt
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 

Recently uploaded

Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
ssuser36d3051
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
PuktoonEngr
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
ihlasbinance2003
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 

Recently uploaded (20)

Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 

UNIT I_4.pdf

  • 1. 110 UNIT - 4 Heat transfer analysis
  • 2. ThermalConvection Newton’s Lawof Cooling q  h(Ts T) h: convective heat transfer coefficient (W m2 Co ) 111
  • 3. 112 Thermal Conduction in1-D Boundary conditions: Dirichlet BC: Natural BC: Mixed BC:
  • 4. Weak Formulation of 1-D HeatConduction (SteadyState Analysis) • GoverningEquationof 1-D Heat Conduction -----  d (x)A(x) dT(x)   AQ(x)  0 dx  dx    0<x<L • WeightedIntegral Formulation ----- • WeakFormfrom Integration-by-Parts ----- 0 L dx  d  dT(x)     AQ(x)dx     0  w(x)  dx (x)A(x) L dw  dT   113  L dT     0 0   0   dx  A dx   wAQdx  w A dx 
  • 5. Formulation for 1-D LinearElement Let T(x)  T11(x)T22(x) f2 1 x1 2 x2 x T1 T2 f1 2 1 1 2 l l x  x , x  x  ( x)  ( x)  x2 x1 1T1 2T2 2 2 1 1 x x , f (x)  A T f (x)  A T 114
  • 6. Formulation for 1-D LinearElement Letw(x)= i (x), i =1, 2 2 x2 i j j i i 2 2 i 1 1 j1 x2   d d    ( x )f  dx   AQdx (x ) f  dx dx    x   1  1 0  T  A   x 2 Qi i (x2 ) f2 i (x1) f1  KijTj j1           11 1 1 K22 T2 K12 K12 T1  K  2  Q2  f    f Q 1 115 1 2 x2 x2 i j ij i i 1 x1 x2 x dT dT dx dx  d d  where K  A dx, Q   AQdx, f  A , f  A  dx dx      x
  • 7. Element Equations of 1-D LinearElement          1 1 1 T2  1 1T1  L 1  2  Q2 Q  f    f A   i i 1 dT dT dx xx1 xx2 where Q   AQ dx, f  A , f2   A dx x2  x1 f2 1 x1 2 x2 T1 x T2 116 f1
  • 8. 1-D Heat Conduction -Example t1 t2 t3 0 T 200o C T 50o C x 1 2 3 Acomposite wall consists of three materials, asshown in the figure below. Theinside wall temperature is 200oCand the outside air temperature is50oC with aconvection coefficient of h =10 W(m2.K). Find the temperature along the composite wall. 1  70W m  K , 2  40W m  K , 3  20W m  K  t1  2cm, t2  2.5cm, t3  4cm 117
  • 9. Thermal Conduction andConvection- Fin Objective: to enhanceheattransfer dx t x w loss Q  2h(T T)dx  w  2h(T T)dx t  2h(T T)w  t Ac dx Ac Governing equation for 1-D heat transfer in thin fin c c d  A dT   A Q 0 dx  dx    c 118  c d  A dT   Ph T  T  A Q  0 dx  dx    P  2w  t where
  • 10. Fin- WeakFormulation (SteadyStateAnalysis) • GoverningEquationof 1-D Heat Conduction -----   d (x)A(x) dT(x)   PhT T  AQ 0 dx  dx    0<x<L • WeightedIntegral Formulation ----- • WeakFormfrom Integration-by-Parts ----- 0 L dx  d  dT(x)     Ph(T T)  AQ(x)dx     0  w(x)  dx (x)A(x) dx 119 dx dx  L dw  dT    L dT  0  A  wPh(T T  )  wAQ dx  w A         0 0   
  • 11. Formulation for 1-D LinearElement Letw(x)= i (x), i =1, 2 2 dx dx d d j1  x2   iAQ  PhTdx A i j  Ph dx  i j    x   1  1 i (x2 ) f2 i (x1) f1 0  T  j  x2   x 2 i (x1) f1 Qi i (x2 ) f2  KijTj j1            11 1 1 K22 T2 K12 K12 T1  K  2  Q2  f   f Q 1 1 1 2 x2 ij i i i j dx dx dx dx d d A i  xx1 xx2 x2   where K   Ph dx, Q   AQ  PhT dx, j  x   f   A dT , f  A dT   x 120
  • 12. Element Equations of 1-D LinearElement 1 1 f Q  1     1 T1   A  1  Phl 2  f            2  Q2  1  6 1  L 1 2T2  f2 1 x=0 2 x=L T1 x T2 f1 x2 121 dT dT xx1 xx2 f1   A dx , f2   A dx where Qi  i AQ  PhT dx, x1
  • 14. 123 Time-DependentProblems In general, Keyquestion: How to choose approximatefunctions? Two approaches: ux,t ux,t u jj x,t ux,t u j tj x
  • 15. Model Problem I– Transient Heat Conduction Weakform:   t x  x  c u   a u   f x,t 1 1 1 a )Q2w(x2 )      x2   wf dx Q w(x u t  cw w u x x 0   x 2 124 1 x2 x1 dx   Q  a du dx   Q  a du  ;
  • 16. let: ) 1 1 2 2 1 a      x2   wf dx Q w(x ) Q w(x u t  cw w u x x 0   x Transient HeatConduction n ux,t u j tj x j1 and w i x KuMu  F  x2 x1 ij x x K  a i j dx   Mij x2  cijdx x1 x2 Fi  i fdx  Qi x1 ODE! 125
  • 17. TimeApproximation – First OrderODE dt 126 0  t  T 0 a du  bu  f t u0u Forward difference approximation - explicit Backward difference approximation - implicit k k k a k1 u  u  t f bu  k k k k1 u  u  t f bu  a bt
  • 18. StabilityRequirment max 127 2 1 2 cri t  t  K M uQ where Note: Onemust usethe samediscretization for solving the eigenvalueproblem.
  • 19. Transient Heat Conduction -Example 0 128 u  2 u  0  x 1 t u 1,t 0 t x2 u0,t 0 ux,01.0 t  0