SlideShare a Scribd company logo
Numeric Comparisons to the 2-
Dimensional Wave Equation
Rob Morien
Advanced Dynamics
Fall 2005
2
Introduction
In many physical situations it is desired to determine how a disturbance
propagates through a particular medium, such as water, thin membranes and even
extended bodies. It is the purpose of this paper to investigate the evolution of a
disturbance through a thin membrane such as a square drumhead.
Given an initial deflection above the undisturbed membrane plane it is possible to
determine the elevation above or below the undisturbed plane at any time t through use of
the two-dimensional wave equation. Before making these calculations, the wave
equation is derived using the Lagrangian and Hamilton’s principle.
After the wave equation has been derived it is possible to choose various initial
deflections and prescribe various boundary and initial conditions to determine the
different eigenvalues (frequencies) of each particular situation. This is done both
analytically and numerically through the use of the central difference method.
Comparisons of these two methods will be shown for a prescribed time step with
the analytic solutions provided by Maple and central difference calculations provided by
hand.
3
Analytic Method
Given a stretched rectangular membrane, it is desired to determine the elevation of some
point ( )tyxU ,, at any time t above the membrane plane given an initial disturbance.
The Lagrangian is defined as VT −=L , where T is the kinetic energy, and V is the
potential energy. Thus it is required to derive T and V.
( )
2
2
,
2
1
2
1






==
•
yxUmmT r&
where ),( yxU
•
is velocity and ),( yxU is displacement above or below the undisturbed
membrane plane.
( ) ( )∫∫
∫∫
=⇒=
D
D
dydxyxm
dydx
m
yx ,, ρρ
So, ( )∫∫ 





∂
∂
=
D
dydx
t
U
yxT
2
,
2
1
ρ
In this case, ( )yx,ρ is the membrane density per unit area and is assumed constant.
To get the potential energy, V, recall that VW ∆=→21 .
∫∫∫ +=⋅=→ dyFdxFdW yx
2
1
21
r
r
rF
Let τ=F , where τ is the membrane’s tension per unit length and is assumed constant
and uniform throughout the membrane.
Referring to figure 2,
( )0,0 ( )0,a
( )ba,( )b,0
b
a da
db
Figure 1 Figure 2
4
( ) ( ) ( ) ( )areadabddbadabdW ττττ ==+= , where in this case the area refers to the surface
area. It is found from the equation dydx
y
U
x
U
dA
22
1 





∂
∂
+





∂
∂
+=
( ) ( )
∫∫
∫∫
∂
∂
∂
∂
+
+≈






∂
∂
+





∂
∂
+=
D
y
U
x
U
D
dydx
dydx
y
U
x
U
dW
2
1
1
22
22
τ
τ
( ) ( ) ( ) ( )















 +
+−







 +
+= ∫∫∫∫∫
∂
∂
∂
∂
∂
∂
∂
∂
D
y
U
x
U
D
y
U
x
UU
U
dydxdydxWdU
2
1
2
1
2222
00111
0
τ
Taking 00 =U (the undisturbed membrane plane) as the zero reference potential:
( ) ( )
( ) ( )








−
+
+=








−







 +
+=
∫∫∫∫∫∫
∫∫∫∫∫
∂
∂
∂
∂
∂
∂
∂
∂
DD
y
U
x
U
D
DD
y
U
x
UU
U
dydxdydxdydx
dydxdydxWdU
2
1
2
1
22
22
11
111
0
τ
τ
( ) ( )∫∫ ∂
∂
∂
∂
+=
D y
U
x
U
dydxV
22
11
2
τ
This is the potential energy of the membrane.
Therefore, VT −=L becomes
( ) ( ) ( ) ( )∫∫∫∫ ∂
∂
∂
∂
∂
∂
+−=
D y
U
x
U
D t
U
dydxdydxyx
222 11
2
,
2
1 τ
ρL
or ( ) ( ) ( ) ( )( )∫∫∫∫ ∂
∂
∂
∂
∂
∂
+−
D y
U
x
U
D t
U
dydxdydxyx
222 11
,
2
1
τρ
Hamilton’s principle states that the actual motion connecting two known states of a
system is the one that minimizes the integral:
( )
( )[ ] minimum
2
1
minimum
2
1
2
1
2
1
222
=+−=
==−=
∫∫∫
∫∫
t
t D
yxt
t
t
t
t
dtdydxUUU
dtdtVTI
τρ
L
Therefore, the equation of motion becomes:
5
( ) ( )0, =+− yyxxtt UUUyx τρ or
( )⇒+= yyxxtt UUU τρ 2
2
2
2
2
2
t
U
y
U
x
U
∂
∂
=
∂
∂
+
∂
∂
τ
ρ
Looking at the coefficient in front of the second derivative of the temporal coordinate






τ
ρ
, and inspecting its units:
( ) [ ]
[ ]
[ ][ ]
[ ] [ ]
[ ]
[ ]2
2
LT
Lm
L
m
T
L,
2
2
==
τ
ρ yx
. These units are consistent with velocity units squared. This
is analogous to the equation for velocity, where velocity = distance/time.
It can be asserted that the constant
τ
ρ
is none other than the phase velocity of the wave
squared. Therefore, this is the speed of the transverse waves traveling across the
membrane.
For convenience, let
ρ
τ
=2
c .
Then 2
2
22
2
2
2
1
t
U
cy
U
x
U
∂
∂
=
∂
∂
+
∂
∂
This is the 2-dimensional wave equation to be solved to determine the evolution of the
wave.
Since this equation is a second order partial differential equation of the form U
t
U 2
2
2
∇−
∂
∂
0=+++++ FEDcBA yxyyxyxx σσσσσ
with ACB
CB
BA
−<−=





−
=




 2
1
10
01
detdet , the wave equation is a hyperbolic partial
differential equation.
It can be solved through the use of separation of variables, but before attacking this
problem, it is best to first prescribe the initial and boundary conditions.
For the boundary condition:
Let 0=U on the boundary of the membrane for all 0≥t .
Since this is a second order PDE, 2 initial conditions are required:
Let ( ) ( )yxfyxU ,0,, = (given initial displacement ( )yxf , )
and ( )yxg
t
U
t
,
0
=
∂
∂
=
(given initial velocity ( )yxg , )
6
The wave equation will have a solution of the form ( ) ( ) ( ) ( )tyxtyxU φψχ=,,
χψ
φ
χφ
ψ
ψφ
χ
xxxx
U
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
ψφ
χ
2
2
2
2
xx
U
∂
∂
=
∂
∂
χψ
φ
χφ
ψ
ψφ
χ
yyyy
U
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
χφ
ψ
2
2
2
2
yy
U
∂
∂
=
∂
∂
χψ
φ
χφ
ψ
ψφ
χ
tttt
U
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
χψ
φ
2
2
2
2
tt
U
∂
∂
=
∂
∂
Substituting these values into the wave equation:
χψ
φ
χφ
ψ
ψφ
χ
2
2
22
2
2
2
1
tcyx ∂
∂
=
∂
∂
+
∂
∂
and dividing through the φψχ ,, terms:
φ
φ
ψ
ψ
χ
χ 1111
2
2
22
2
2
2
tcyx ∂
∂
=
∂
∂
+
∂
∂
Now, it is necessary that both sides of this equation be equal to the same constant or else
one side would be allowed to vary while the other side remain unchanged.
2
2
2
2
2
2
2
2
2
11
11
k
yx
k
tc
−=
∂
∂
+
∂
∂
−=
∂
∂
ψ
ψ
χ
χ
φ
φ
The separation process can be continued further to show that both spatial derivatives are
also both equal to constants.
7
kxBkxAk
x
cossin02
2
+⇒=+
∂
∂ 2
χ
χ
pyDpyCp
y
cossin02
2
2
+⇒=+
∂
∂
ψ
ψ
Recalling the boundary conditions, ( ) ( ) ( ) ,00,0,00 === ψχχ a and ( ) 0=aψ ,
000cos0sin
000cos0sin
m
m
=⇒=+
=⇒=+
DDC
BBA
( ) ⇒== 0sin kaAaχ this is true only if
a
m
k
π
= and m any integer
( ) ⇒== 0sin pbCaψ this is true only if
b
n
p
π
= and n any integer
Then ( )tyxU ,, becomes ( )t
b
yn
a
xm
φ
ππ
sinsin .
The solution to ( )tφ leads to what is known as the “time function.”
( ) 0222
2
2
=++
∂
∂
φ
φ
pkc
t
. Let νλ c= and 22
pk +=ν
⇒=+
∂
∂
02
2
2
φλ
φ
t
( )tBtB mnmnmnmn λλ cossin*
+
22
2
2
2
2
22
b
n
a
m
c
b
n
a
m
cmn
22
+=+= π
ππ
λ
( ) ( )tBtB
b
xn
a
xm
tyxU mnmnmnmn λλ
ππ
cossinsinsin,, *
+=
From the superposition theorem, the sum of finitely many solutions ( )tyxU ,, is also a
solution. ( )tyxU ,, then becomes a double sum.
( )∑∑
∞
=
∞
=
+
1 1
*
sinsincossin
m n
mnmnmnmn
b
yn
a
xm
tBtB
ππ
λλ
From the initial condition ( ) ( )yxftyxU ,,, = , ( )0=t
( ) ( )yxft
b
yn
a
xm
ByxU
m n
mnmn ,cossinsin0,,
1 1
== ∑∑
∞
=
∞
=
λ
ππ
, which is known as a double
Fourier series. Recall from a Fourier series, the constant nB can be determined by
8
( )∫
L
dx
L
xn
xf
L 0
sin
2 π
. It follows that mnB can also by determined by
( )∫∫
b a
dydx
b
yn
a
xm
yxf
ab 0 0
sinsin,
4 ππ
.
( ) ( )∑∑ ∫∫
∞
=
∞
=







=
1 1 0 0
cossinsinsin,
4
0,,
m n
b a
mnt
b
yn
a
xm
dydx
b
yn
ins
a
xm
yxf
ab
yxU λ
ππππ
which is a solution to the wave equation whenever the initial velocity of some initial
deflection is zero. It is also common to determine the position of any point given an
initial velocity not equal to zero. Therefore, *
mnB must be determined. This is done by
taking the time derivative of ( )tyxU ,, at t = 0.
( )
( )∑∑
∑∑
∞
=
∞
=
=
∞
=
∞
=
−=






+
∂
∂
1 1
*
01 1
*
sinsin0sin0cos
sinsincossin
m n
mnmnmnmnmnmn
tm n
mnmnmnmn
b
yn
a
xm
BB
b
yn
a
xm
tBtB
t
ππ
λλλλ
ππ
λλ
( )yxg
b
yn
a
xm
B
m n
mnmn ,sinsin
1 1
*
== ∑∑
∞
=
∞
=
ππ
λ where ( )yxg , is some initial velocity. *
mnB can
be determined through the use of “Fourier’s trick”:
( )∫∫=
b a
mn
mn dydx
b
yn
a
xm
yxg
ab
B
0 0
*
sinsin,
4 ππ
λ
Then given an initial displacement, ( )yxf , , and some initial velocity, ( )yxg , , the
solution to the two-dimensional wave equation will be of the form:
( ) ( ) ( ) t
b
yn
a
xm
dydx
b
yn
a
xm
yxfyxg
ab
tyxU mn
m n
b a
mn
λ
ππππ
λ
cossinsinsinsin,,
14
,,
1 1 0 0
∑∑ ∫∫
∞
=
∞
=












+=
For the examples in this paper, all functions will be assumed to start with initial velocity,
( ) 0, =yxg .
As an example, choose c = 1, ( ) yxyxyxfba 2sinsinsin2sin,,2, −=== ππ
( ) ∑∑
∞
=
∞
=
=
1 1
cossinsin,,
m n
mnmn t
b
yn
a
xm
BtyxU λ
ππ
2
2
2
2
b
n
a
m
cmn += πλ
9
( )∫∫=
b a
mn dydx
b
yn
a
xm
yxf
ab
B
0 0
sinsin,
4 ππ
( )
( )
∫∫∫∫
∫∫∫∫
∫∫
−=
−=
−
ππππ
πππ π
π π
ππ
ππ
ππ
ππ
0
2
0
2
0
2
0
2
2
0 0
2
2
0 0
2
2
0 0
sinsin
2
sin2sin
2
sin2sin
2
sinsin
2
2
sinsin2sinsin
2
2
sinsinsin2sin
2
sinsin2sinsinsin2sin
2
4
dxmxxdy
ny
ydxmxxdy
ny
y
dydx
ny
mxyxdydx
ny
mxyx
dydx
b
yn
a
xm
yxyx
nmB , = 2
2
π
( )I I I I1 2 3 4−
4
0
2
0
1,
2
1,0
sinsin
2,
2
2,0
sin2sin
I
m
m
dxmxx
I
m
m
dxmxx
=




=
≠
=
=




=
≠
=
∫
∫
π
π
π
π
1
2
2
2
0
2
0
2
0
2,
2,0
2,
2,0
2
sin
2
2
sin
22
2
sin
2
2
sin
2
sinsin
I
n
n
n
n
dy
nyy
dy
nyy
dy
ny
y
=



=
≠
=



=
≠
==
/⋅
/
=
∫
∫∫
ππ
π
π
π
π
π
π
π
π
π
ππ
3
2
2
2
0
2
0
2
0
4,
4,0
4,
4,0
2
sin
2
4
sin
22
2
sin
2
22
sin
2
sin2sin
I
n
n
n
n
dy
nyy
dy
nyy
dy
ny
y
=



=
≠
=



=
≠
==
/⋅
/
=
∫
∫∫
ππ
π
π
π
π
π
π
π
π
π
ππ
nmB , = 2
2
π
( )I I I I1 2 3 4− =





==
==
≠≠
2m&4n1-
2m&21
4,2or2,10
n
nm
4,2or2,1,0
1,1 4,22,2
≠≠=
−==
nmB
BB
mn
10
( )
5
5
14
4
44
2
22
2,2
2222
2
2
2
2,2
=
=
+
=+=+=
λ
π
π
π
π
ππ
π
ππ
πλ c
( )
8
44
4
164
2
42
4,2
222
2
2
2
4,2
=
+=+=+=
λ
π
π
ππ
π
ππ
πλ c
( ) t
yx
Bt
yx
BtyxU 4,24,22,22,2 cos
2
4
sin
2
sincos
2
2
sin
2
sin,, λ
π
π
π
π
λ
π
π
π
π
+=
( ) tyxtyxtyxU 8cos2sin2sin5cossinsin,, −=
Substituting any value for x, y, and t (anywhere within the membrane), this equation will
tell you the height of the membrane at any time t.
11
Numerical Method
Solutions to the wave equation can be approximated using numerical methods. The
central difference approximation scheme provides nearly accurate solutions with
minimum residual error.






∂
∂
+
∂
∂
=
∂
∂
2
2
2
2
2
2
2
y
U
x
U
c
t
U
Substituting these approximations back into the wave equation:
( ) ( ) ( ) 







∆
+−
+
∆
+−
=
∆
+− −+−+
−+
2
1,,1,
2
,1,,12
2
1
,,
1
, 222
y
UUU
x
UUU
c
t
UUU
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
( )
( ) ( ) ( ) ( )
( ) ( ) 







∆∆
+−∆++−∆
=
∆
+− −+−+
−+
22
1,,1,
2
,1,,1
2
2
2
1
,,
1
, 222
yx
UUUxUUUy
c
t
UUU k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
Let yxh ∆=∆=
iˆ
jˆ
h
h
1=j
1=i 1ii =
1jj =
1, +ji
ji ,1+ji,
1, −ji
ji ,1−
( )
( )
( )2
1,,1,
2
2
2
,1,,1
2
2
2
1
,,
1
,
2
2
2
2
2
y
UUU
y
U
x
UUU
x
U
t
UUU
t
U
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
∆
+−
=
∂
∂
∆
+−
=
∂
∂
∆
+−
=
∂
∂
−+
−+
−+
These values are the central difference approximation
for each derivative. The superscripts represent the
time iteration number.
12
( )
( ) ( )







 +−++−
=
∆
+− −+−+
−+
4
1,,1,
2
,1,,1
2
2
2
1
,,
1
, 222
h
UUUhUUUh
c
t
UUU
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
( ) 2
,1,1,,1,12
2
1
,,
1
, 42
h
UUUUU
c
t
UUU k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji −+++
=
∆
+− −+−+
−+
Solving for the displacement at time 1+kt :
( ) ( ) ( )
( ) ( ) k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
k
ji
U
h
tc
UU
h
tc
UUU
h
tc
UUUU
h
tc
U
,2
22
1
,,2
22
1
,,,2
22
1,1,,1,12
22
1
,
42
010
101
010
24







 ∆
−+−










∆
=
−+
∆
−+++
∆
=
−
−
−+−+
+
Letting
( )
2
1
2
22
=
∆
h
tc
, the last term will drop out.
2c
h
t =∆
U U U U U Ui j
k
i j
k
i j
k
i j
k
i j
k
i j
k
, , , , , ,( )+
− + + −
−
= + + + −1
1 1 1 1
11
2
Or,
1
,,
1
,
010
101
010
2
1 −+
−










= k
ji
k
ji
k
ji UUU
To get the first time step, take
0=∂
∂
tt
U
.
Then
1
,
0
,
1
,
1
010
101
010
4
1
ji
jiji
U
UU −










= . ( )jiji yxVtU ,1
, ∆= , so
( )jijiji yxVtUU ,
010
101
010
4
1 0
,
1
, ∆+










=
Assume the membrane is raised at the center with an initial displacement
( ) ( )( )( )( )2222,0
−+−+= yyxxyxU and bound at the edges.
13
This would look like:
Assume the initial velocity is zero, that a = 2, b = 2, and c = 1. It is desired to find how
the displacement varies with time. Allow
2
1
=∆=∆= yxh to obtain 9 interior nodes.
The time increments are found from 354.0
2
2/1
2
===∆
c
h
t
( )jijiji yxgtUU ,
010
101
010
4
1 0
,
1
, ∆+










= since ( )yxg , is zero everywhere.
The values in the charts below show the elevation at each node. The values in the second
chart are analytical values obtained by Maple from the double infinite series (from 1 to
10):
14
( ) ∑∑
∞
=
∞
=
=
1 1
cossinsin,,
m n
mnmn t
b
yn
a
xm
BtyxU λ
ππ
( )
( )( )
( )( )( )( )∫∫
∫∫
−+−+=
=
2
0
2
0
0 0
sinsin2222
22
4
sinsin,
4
dydx
b
yn
a
xm
yyxx
dydx
b
yn
a
xm
yxf
ab
B
b a
mn
ππ
ππ
( )( ) ( )( )
∫ ∫
∫ ∫






−





−=
−+−+=
2
0
2
0
22
2
0
2
0
2
sin4
2
sin
2
sin4
2
sin
sin22sin22
dy
ynyn
ydx
xmxm
x
dy
b
xn
yydx
a
xm
xx
ππππ
ππ
= − −( )( )I I I I1 2 3 4
I2 = ∫
2
0
2
sin4 dx
xmπ
=
8 1(cos( ) )m
m
π
π
−
=
πm
16
( )m odd=
I x
m x
dx1
2
0
2
2
= ∫ sin( )
π
=
− − − −8 2 2 12 2
3 3
(( )cos( ) ( sin( ) ))m m m m
m
π π π π
π
=
−
=
− =






8 4
8
2 2
3 3
( )
( )
( )
m
m
m odd
m
m even
π
π
π
I4 = ∫
2
0
2
sin4 dy
ynπ
=
8 1(cos( ) )n
n
π
π
−
=
πn
16
( )n odd=
15
I y
n y
dy3
2
0
2
2
= ∫ sin( )
π
=
− − − −8 2 2 12 2
3 3
(( ) cos( ) ( sin( ) ))n n n n
n
π π π π
π
=
−
=
− =






8 4
8
2 2
3 3
( )
( )
( )
n
n
n odd
n
n even
π
π
π
B
m m m m
m
m
m
n n n n
n
n
n
mn =
− − − −

 −
− 

 ×
− − − −

 −
− 


8 2 2 1 8 1
8 2 2 1 8 1
2 2
3 3
2 2
3 3
(( ) cos( ) ( sin( ) )) (cos( ) )
(( )cos( ) ( sin( ) )) (cos( ) )
π π π π
π
π
π
π π π π
π
π
π
Maple Gives the displacements easily:
B[m,n]:=Int(Int((x+2)*(x-2)*(y+2)*(y-
2)*sin(m*Pi*x/2)*sin(n*Pi*y/2),x=0..2),y=0..2);
:=B ,m n
d
⌠
⌡



0
2
d
⌠
⌡



0
2
( )+x 2 ( )−x 2 ( )+y 2 ( )−y 2 




sin
m π x
2





sin
n π y
2
x y
u(x,y,t):=Sum(Sum(B[m,n]*sin(m*Pi*x/2)*sin(n*Pi*y/2)*cos(t*
Pi*sqrt(m^2/4+n^2/4)),m=1..infinity),n=1..infinity);
( )u , ,x y t ∑
=n 1
∞
∑
=m 1
∞
d
⌠
⌡



0
2
d
⌠
⌡



0
2
( )+x 2 ( )−x 2 ( )+y 2 ( )−y 2 




sin
m π x
2





sin
n π y
2
x y







:=





sin
m π x
2





sin
n π y
2







cos
t π +m2
n2
2







At Time t = 0, u(x,y,0);
u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*
Pi*(1/2)/2),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(
B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2),m=1..10),n=1..10));u(
1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.
16
5/2),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*
sin(m*Pi*.5/2)*sin(n*Pi*1/2),m=1..10),n=1..10));u(1.0,1.0,0
):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2),m=1..10
),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5
/2)*sin(n*Pi*1/2),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(su
m(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2),m=1..10),n=1..1
0));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*
Pi*1.5/2),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[
m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2),m=1..10),n=1..10));
:=( )u , ,0.5 0.5 0 15.22971493
:=( )u , ,1.0 0.5 0 11.99631509
:=( )u , ,1.5 0.5 0 6.253747587
:=( )u , ,0.5 1.0 0 11.99631508
:=( )u , ,1.0 1.0 0 9.775603853
:=( )u , ,1.5 1.0 0 5.096078137
:=( )u , ,0.5 1.5 0 6.253747591
:=( )u , ,1.0 1.5 0 5.096078137
:=( )u , ,1.5 1.5 0 2.656614646
At Time t = .354, u(x,y,.354);
u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*
Pi*(1/2)/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20
));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n
*Pi*.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10))
;u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*P
i*.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u
(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1
/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0
,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*c
os(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,
0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(
Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):
=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi
*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=e
valf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*.3
54*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=eval
f(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*.35
4*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));
:=( )u , ,0.5 0.5 0 13.73168329
17
:=( )u , ,1.0 0.5 0 11.48679972
:=( )u , ,1.5 0.5 0 5.850152116
:=( )u , ,0.5 1.0 0 11.48679970
:=( )u , ,1.0 1.0 0 8.957095820
:=( )u , ,1.5 1.0 0 4.516788103
:=( )u , ,0.5 1.5 0 5.850152118
:=( )u , ,1.0 1.5 0 4.516788106
:=( )u , ,1.5 1.5 0 2.207949353
At Time t = .708, u(x,y,.708);
u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*
Pi*(1/2)/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20
));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n
*Pi*.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10))
;u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*P
i*.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u
(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1
/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0
,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*c
os(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,
0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(
Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):
=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi
*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=e
valf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*.7
08*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=eval
f(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*.70
8*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));
:=( )u , ,0.5 0.5 0 -14.79433063
:=( )u , ,1.0 0.5 0 -4.233097635
:=( )u , ,1.5 0.5 0 -3.371121281
:=( )u , ,0.5 1.0 0 -4.233097637
:=( )u , ,1.0 1.0 0 6.555284339
:=( )u , ,1.5 1.0 0 2.912539267
:=( )u , ,0.5 1.5 0 -3.371121279
:=( )u , ,1.0 1.5 0 2.912539273
18
:=( )u , ,1.5 1.5 0 1.127100152
At Time t = 1.062, u(x,y,1.062);
u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*
Pi*(1/2)/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..20),n=1..2
0));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(
n*Pi*.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10
));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n
*Pi*.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)
);u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*P
i*1/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u
(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/
2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5
,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)
*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1
.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*
cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.
5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*co
s(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,
0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*co
s(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));
:=( )u , ,0.5 0.5 0 -4.761423251
:=( )u , ,1.0 0.5 0 -16.21698752
:=( )u , ,1.5 0.5 0 -3.595003391
:=( )u , ,0.5 1.0 0 -16.21698752
:=( )u , ,1.0 1.0 0 -15.82088364
:=( )u , ,1.5 1.0 0 -4.459870815
:=( )u , ,0.5 1.5 0 -3.595003394
:=( )u , ,1.0 1.5 0 -4.459870825
:=( )u , ,1.5 1.5 0 0.1312790189
At Time t = 1.416, u(x,y,1.416);
u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*
Pi*(1/2)/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..20),n=1..2
0));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(
19
n*Pi*.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10
));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n
*Pi*.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)
);u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*P
i*1/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u
(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/
2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5
,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)
*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1
.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*
cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.
5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*co
s(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,
0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*co
s(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));
:=( )u , ,0.5 0.5 0 -2.994597905
:=( )u , ,1.0 0.5 0 -5.290612631
:=( )u , ,1.5 0.5 0 -5.195011744
:=( )u , ,0.5 1.0 0 -5.290612625
:=( )u , ,1.0 1.0 0 -15.77018009
:=( )u , ,1.5 1.0 0 -6.221225508
:=( )u , ,0.5 1.5 0 -5.195011752
:=( )u , ,1.0 1.5 0 -6.221225517
:=( )u , ,1.5 1.5 0 -1.729165708
At Time t = 1.77, u(x,y,1.77);
u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*
Pi*(1/2)/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20
));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n
*Pi*.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10))
;u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*P
i*.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u
(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1
/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0
,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*c
os(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,
0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(
Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):
=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi
*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=e
20
valf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*1.
77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=eval
f(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*1.7
7*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));
:=( )u , ,0.5 0.5 0 -1.187083434
:=( )u , ,1.0 0.5 0 -1.528967272
:=( )u , ,1.5 0.5 0 -4.670921694
:=( )u , ,0.5 1.0 0 -1.528967268
:=( )u , ,1.0 1.0 0 -3.629418086
:=( )u , ,1.5 1.0 0 -13.59326888
:=( )u , ,0.5 1.5 0 -4.670921687
:=( )u , ,1.0 1.5 0 -13.59326889
:=( )u , ,1.5 1.5 0 -11.68786223
At t = 2.124, u(x,y,2.124);
u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*
Pi*(1/2)/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..20),n=1..2
0));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(
n*Pi*.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10
));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n
*Pi*.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)
);u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*P
i*1/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u
(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/
2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5
,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)
*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1
.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*
cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.
5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*co
s(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,
0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*co
s(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));
:=( )u , ,0.5 0.5 0 0.9685162845
:=( )u , ,1.0 0.5 0 1.547781108
:=( )u , ,1.5 0.5 0 0.7297354742
:=( )u , ,0.5 1.0 0 1.547781103
21
:=( )u , ,1.0 1.0 0 1.719660241
:=( )u , ,1.5 1.0 0 0.279360720
:=( )u , ,0.5 1.5 0 0.7297354758
:=( )u , ,1.0 1.5 0 0.2793607222
:=( )u , ,1.5 1.5 0 -5.769634646
At t = 2.478, u(x,y,2.478);
u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*
Pi*(1/2)/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..20),n=1..2
0));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(
n*Pi*.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10
));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n
*Pi*.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)
);u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*P
i*1/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u
(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/
2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5
,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)
*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1
.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*
cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.
5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*co
s(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,
0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*co
s(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));
:=( )u , ,0.5 0.5 0 2.487143177
:=( )u , ,1.0 0.5 0 3.642616396
:=( )u , ,1.5 0.5 0 8.242865097
:=( )u , ,0.5 1.0 0 3.642616399
:=( )u , ,1.0 1.0 0 4.730398447
:=( )u , ,1.5 1.0 0 9.747117351
:=( )u , ,0.5 1.5 0 8.242865090
:=( )u , ,1.0 1.5 0 9.747117338
:=( )u , ,1.5 1.5 0 10.05139973
22
?t (0.5,0.5) (1.0,0.5) (1.5,0.5) (0.5,1.0) (1.0,1.0) (1.5,1.0) (0.5,1.5) (1.0,1.5) (1.5,1.5)
0 14.0625 11.25 6.5625 11.25 9 5.25 6.5625 5.25 3.0625
0.354 12.375 18.4063 5.875 10.4063 8.25 4.65625 5.875 4.65625 2.625
0.708
1.062
1.416
1.77
2.124
2.478
?t (0.5,0.5) (1.0,0.5) (1.5,0.5) (0.5,1.0) (1.0,1.0) (1.5,1.0) (0.5,1.5) (1.0,1.5) (1.5,1.5)
0 15.230 11.996 6.254 11.996 9.776 5.096 6.254 5.096 2.657
0.354 13.732 11.487 5.850 11.487 8.957 4.517 5.850 4.517 2.208
0.708 -14.794 -4.233 -3.371 -4.233 6.555 2.913 -3.371 2.913 1.127
1.062 -4.761 -16.217 -3.595 -16.217 -15.821 -4.460 -3.595 -4.460 .131
1.416 -2.995 -5.291 -5.195 -5.291 -15.770 -6.221 -5.195 -6.221 -1.729
1.77 -1.187 -1.529 -4.671 -1.529 -3.629 -13.593 -4.671 -13.593 -11.688
2.124 .969 1.548 .730 1.548 1.720 .279 .730 .279 -5.770
2.478 2.487 3.643 8.242 3.643 4.730 9.747 8.242 9.747 10.051
To attain the values for each succeeding time step,
1
,,
1
,
010
101
010
2
1 −+
−










= k
ji
k
ji
k
ji UUU was
used.
Discrepancies in the values of the two charts could be due to using a 7-digit mantissa
instead of a 14-digit mantissa in Maple leading to significant round off errors. Another
possibility of obtaining different values between the two charts might arise from not
using enough terms in the limits of the double sum. Future research will be done to
investigate this phenomena as well as comparisons to the round and triangular drumheads
answering the ultimate question, “Can You Hear the Shape of a Drum?”
23
Works Cited
l Erwin Kreyszig, Advanced Engineering Mathematics, 8th edition
l David J. Griffiths, Quantum Mechanics, 2nd edition
l Gerald-Wheatley, Applied Numerical Analysis, 7th edition
l Michael D. Greenberg, Foundations of Applied Mathematics
l Discussions with Prof. Chris Papadopolous and Prof. Paul Lyman
l http://mathnt.mat.jhu.edu/zelditch/Teaching/F2005110.302/PDF%20Lectures/Dru
mundBessel.pdf
l http://www.falstad.com/mathphysics.html
l http://www.kettering.edu/%7Edrussell/demos.html

More Related Content

What's hot

Torsion of circular shafts
Torsion of circular shaftsTorsion of circular shafts
Torsion of circular shafts
aero103
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanika
miranteogbonna
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
Sam Alalimi
 

What's hot (20)

applications of second order differential equations
applications of second order differential equationsapplications of second order differential equations
applications of second order differential equations
 
Mit2 092 f09_lec20
Mit2 092 f09_lec20Mit2 092 f09_lec20
Mit2 092 f09_lec20
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First Degree
 
Solution a ph o 3
Solution a ph o 3Solution a ph o 3
Solution a ph o 3
 
Serway, raymond a physics for scientists and engineers (6e) solutions
Serway, raymond a   physics for scientists and engineers (6e) solutionsSerway, raymond a   physics for scientists and engineers (6e) solutions
Serway, raymond a physics for scientists and engineers (6e) solutions
 
Boyd chap10
Boyd chap10Boyd chap10
Boyd chap10
 
Solucionario serway cap 3
Solucionario serway cap 3Solucionario serway cap 3
Solucionario serway cap 3
 
Derivation of the Boltzmann Transport Equation
Derivation of the Boltzmann Transport EquationDerivation of the Boltzmann Transport Equation
Derivation of the Boltzmann Transport Equation
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 
Dynamic response to harmonic excitation
Dynamic response to harmonic excitationDynamic response to harmonic excitation
Dynamic response to harmonic excitation
 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
 
Torsion of circular shafts
Torsion of circular shaftsTorsion of circular shafts
Torsion of circular shafts
 
Damped system under Harmonic motion
Damped system under Harmonic motionDamped system under Harmonic motion
Damped system under Harmonic motion
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
 
Differential Equation_Half Life
Differential Equation_Half LifeDifferential Equation_Half Life
Differential Equation_Half Life
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanika
 
Solution Manual for Heat Convection second edition by Latif M. Jiji
Solution Manual for Heat Convection second edition by Latif M. JijiSolution Manual for Heat Convection second edition by Latif M. Jiji
Solution Manual for Heat Convection second edition by Latif M. Jiji
 
Transport phenomena Solved problems
Transport phenomena Solved problemsTransport phenomena Solved problems
Transport phenomena Solved problems
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
 

Viewers also liked

A study on singular perturbation correction to bond prices under affine term ...
A study on singular perturbation correction to bond prices under affine term ...A study on singular perturbation correction to bond prices under affine term ...
A study on singular perturbation correction to bond prices under affine term ...
Frank Fung
 
Chapter 2 pertubation
Chapter 2 pertubationChapter 2 pertubation
Chapter 2 pertubation
NBER
 
Waves in 2 Dimensions
Waves in 2 DimensionsWaves in 2 Dimensions
Waves in 2 Dimensions
Bruce Coulter
 
The two dimensional wave equation
The two dimensional wave equationThe two dimensional wave equation
The two dimensional wave equation
Germán Ceballos
 

Viewers also liked (12)

Elzaki transform homotopy perturbation method for solving porous medium equat...
Elzaki transform homotopy perturbation method for solving porous medium equat...Elzaki transform homotopy perturbation method for solving porous medium equat...
Elzaki transform homotopy perturbation method for solving porous medium equat...
 
A study on singular perturbation correction to bond prices under affine term ...
A study on singular perturbation correction to bond prices under affine term ...A study on singular perturbation correction to bond prices under affine term ...
A study on singular perturbation correction to bond prices under affine term ...
 
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
 
Time Dependent Perturbation Theory
Time Dependent Perturbation TheoryTime Dependent Perturbation Theory
Time Dependent Perturbation Theory
 
Perturbation
PerturbationPerturbation
Perturbation
 
Chapter 2 pertubation
Chapter 2 pertubationChapter 2 pertubation
Chapter 2 pertubation
 
Time Independent Perturbation Theory, 1st order correction, 2nd order correction
Time Independent Perturbation Theory, 1st order correction, 2nd order correctionTime Independent Perturbation Theory, 1st order correction, 2nd order correction
Time Independent Perturbation Theory, 1st order correction, 2nd order correction
 
Waves in 2 Dimensions
Waves in 2 DimensionsWaves in 2 Dimensions
Waves in 2 Dimensions
 
2 Dimensional Wave Equation Analytical and Numerical Solution
2 Dimensional Wave Equation Analytical and Numerical Solution2 Dimensional Wave Equation Analytical and Numerical Solution
2 Dimensional Wave Equation Analytical and Numerical Solution
 
The two dimensional wave equation
The two dimensional wave equationThe two dimensional wave equation
The two dimensional wave equation
 
Gravitation
GravitationGravitation
Gravitation
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similar to wave_equation

Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014
Abdul Rahman
 
Non equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flowsNon equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flows
Springer
 
Non equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flowsNon equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flows
Springer
 

Similar to wave_equation (20)

Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
Introduction to basic principles of fluid mechanics
Introduction to basic principles of fluid mechanicsIntroduction to basic principles of fluid mechanics
Introduction to basic principles of fluid mechanics
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
 
Non equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flowsNon equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flows
 
Non equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flowsNon equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flows
 
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuSolutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
 
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAPPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
 
ep ppt of it .pptx
ep ppt of it .pptxep ppt of it .pptx
ep ppt of it .pptx
 
Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte Carlo
 
lec_slides.pdf
lec_slides.pdflec_slides.pdf
lec_slides.pdf
 
A multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfacesA multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfaces
 
Sol83
Sol83Sol83
Sol83
 
Sol83
Sol83Sol83
Sol83
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
 
Rectangular waveguides
Rectangular waveguidesRectangular waveguides
Rectangular waveguides
 
Infor
InforInfor
Infor
 
The lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background and boundary conditionsThe lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background and boundary conditions
 

More from Rob Morien

REU Summer 2004
REU Summer 2004REU Summer 2004
REU Summer 2004
Rob Morien
 
Rotation_Matricies_Derivation_Kappa_Goniometer
Rotation_Matricies_Derivation_Kappa_GoniometerRotation_Matricies_Derivation_Kappa_Goniometer
Rotation_Matricies_Derivation_Kappa_Goniometer
Rob Morien
 
SRMS-5 Conference
SRMS-5 ConferenceSRMS-5 Conference
SRMS-5 Conference
Rob Morien
 
On Lewis_The Utility of Modal Realism
On Lewis_The Utility of Modal RealismOn Lewis_The Utility of Modal Realism
On Lewis_The Utility of Modal Realism
Rob Morien
 
The problem with the metamprphisis of plants
The problem with the metamprphisis of plantsThe problem with the metamprphisis of plants
The problem with the metamprphisis of plants
Rob Morien
 
The Problems of Modal Realism
The Problems of Modal RealismThe Problems of Modal Realism
The Problems of Modal Realism
Rob Morien
 
Surface_Science_Poster_2004
Surface_Science_Poster_2004Surface_Science_Poster_2004
Surface_Science_Poster_2004
Rob Morien
 
RJM-AB-CFD-Final-Project-Dec-18-2015
RJM-AB-CFD-Final-Project-Dec-18-2015RJM-AB-CFD-Final-Project-Dec-18-2015
RJM-AB-CFD-Final-Project-Dec-18-2015
Rob Morien
 

More from Rob Morien (10)

REU Summer 2004
REU Summer 2004REU Summer 2004
REU Summer 2004
 
Rotation_Matricies_Derivation_Kappa_Goniometer
Rotation_Matricies_Derivation_Kappa_GoniometerRotation_Matricies_Derivation_Kappa_Goniometer
Rotation_Matricies_Derivation_Kappa_Goniometer
 
SRMS-5 Conference
SRMS-5 ConferenceSRMS-5 Conference
SRMS-5 Conference
 
On Lewis_The Utility of Modal Realism
On Lewis_The Utility of Modal RealismOn Lewis_The Utility of Modal Realism
On Lewis_The Utility of Modal Realism
 
The problem with the metamprphisis of plants
The problem with the metamprphisis of plantsThe problem with the metamprphisis of plants
The problem with the metamprphisis of plants
 
kant vs. hume
kant vs. humekant vs. hume
kant vs. hume
 
The Problems of Modal Realism
The Problems of Modal RealismThe Problems of Modal Realism
The Problems of Modal Realism
 
Surface_Science_Poster_2004
Surface_Science_Poster_2004Surface_Science_Poster_2004
Surface_Science_Poster_2004
 
Tunneling
TunnelingTunneling
Tunneling
 
RJM-AB-CFD-Final-Project-Dec-18-2015
RJM-AB-CFD-Final-Project-Dec-18-2015RJM-AB-CFD-Final-Project-Dec-18-2015
RJM-AB-CFD-Final-Project-Dec-18-2015
 

wave_equation

  • 1. Numeric Comparisons to the 2- Dimensional Wave Equation Rob Morien Advanced Dynamics Fall 2005
  • 2. 2 Introduction In many physical situations it is desired to determine how a disturbance propagates through a particular medium, such as water, thin membranes and even extended bodies. It is the purpose of this paper to investigate the evolution of a disturbance through a thin membrane such as a square drumhead. Given an initial deflection above the undisturbed membrane plane it is possible to determine the elevation above or below the undisturbed plane at any time t through use of the two-dimensional wave equation. Before making these calculations, the wave equation is derived using the Lagrangian and Hamilton’s principle. After the wave equation has been derived it is possible to choose various initial deflections and prescribe various boundary and initial conditions to determine the different eigenvalues (frequencies) of each particular situation. This is done both analytically and numerically through the use of the central difference method. Comparisons of these two methods will be shown for a prescribed time step with the analytic solutions provided by Maple and central difference calculations provided by hand.
  • 3. 3 Analytic Method Given a stretched rectangular membrane, it is desired to determine the elevation of some point ( )tyxU ,, at any time t above the membrane plane given an initial disturbance. The Lagrangian is defined as VT −=L , where T is the kinetic energy, and V is the potential energy. Thus it is required to derive T and V. ( ) 2 2 , 2 1 2 1       == • yxUmmT r& where ),( yxU • is velocity and ),( yxU is displacement above or below the undisturbed membrane plane. ( ) ( )∫∫ ∫∫ =⇒= D D dydxyxm dydx m yx ,, ρρ So, ( )∫∫       ∂ ∂ = D dydx t U yxT 2 , 2 1 ρ In this case, ( )yx,ρ is the membrane density per unit area and is assumed constant. To get the potential energy, V, recall that VW ∆=→21 . ∫∫∫ +=⋅=→ dyFdxFdW yx 2 1 21 r r rF Let τ=F , where τ is the membrane’s tension per unit length and is assumed constant and uniform throughout the membrane. Referring to figure 2, ( )0,0 ( )0,a ( )ba,( )b,0 b a da db Figure 1 Figure 2
  • 4. 4 ( ) ( ) ( ) ( )areadabddbadabdW ττττ ==+= , where in this case the area refers to the surface area. It is found from the equation dydx y U x U dA 22 1       ∂ ∂ +      ∂ ∂ += ( ) ( ) ∫∫ ∫∫ ∂ ∂ ∂ ∂ + +≈       ∂ ∂ +      ∂ ∂ += D y U x U D dydx dydx y U x U dW 2 1 1 22 22 τ τ ( ) ( ) ( ) ( )                 + +−         + += ∫∫∫∫∫ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ D y U x U D y U x UU U dydxdydxWdU 2 1 2 1 2222 00111 0 τ Taking 00 =U (the undisturbed membrane plane) as the zero reference potential: ( ) ( ) ( ) ( )         − + +=         −         + += ∫∫∫∫∫∫ ∫∫∫∫∫ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ DD y U x U D DD y U x UU U dydxdydxdydx dydxdydxWdU 2 1 2 1 22 22 11 111 0 τ τ ( ) ( )∫∫ ∂ ∂ ∂ ∂ += D y U x U dydxV 22 11 2 τ This is the potential energy of the membrane. Therefore, VT −=L becomes ( ) ( ) ( ) ( )∫∫∫∫ ∂ ∂ ∂ ∂ ∂ ∂ +−= D y U x U D t U dydxdydxyx 222 11 2 , 2 1 τ ρL or ( ) ( ) ( ) ( )( )∫∫∫∫ ∂ ∂ ∂ ∂ ∂ ∂ +− D y U x U D t U dydxdydxyx 222 11 , 2 1 τρ Hamilton’s principle states that the actual motion connecting two known states of a system is the one that minimizes the integral: ( ) ( )[ ] minimum 2 1 minimum 2 1 2 1 2 1 222 =+−= ==−= ∫∫∫ ∫∫ t t D yxt t t t t dtdydxUUU dtdtVTI τρ L Therefore, the equation of motion becomes:
  • 5. 5 ( ) ( )0, =+− yyxxtt UUUyx τρ or ( )⇒+= yyxxtt UUU τρ 2 2 2 2 2 2 t U y U x U ∂ ∂ = ∂ ∂ + ∂ ∂ τ ρ Looking at the coefficient in front of the second derivative of the temporal coordinate       τ ρ , and inspecting its units: ( ) [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ]2 2 LT Lm L m T L, 2 2 == τ ρ yx . These units are consistent with velocity units squared. This is analogous to the equation for velocity, where velocity = distance/time. It can be asserted that the constant τ ρ is none other than the phase velocity of the wave squared. Therefore, this is the speed of the transverse waves traveling across the membrane. For convenience, let ρ τ =2 c . Then 2 2 22 2 2 2 1 t U cy U x U ∂ ∂ = ∂ ∂ + ∂ ∂ This is the 2-dimensional wave equation to be solved to determine the evolution of the wave. Since this equation is a second order partial differential equation of the form U t U 2 2 2 ∇− ∂ ∂ 0=+++++ FEDcBA yxyyxyxx σσσσσ with ACB CB BA −<−=      − =      2 1 10 01 detdet , the wave equation is a hyperbolic partial differential equation. It can be solved through the use of separation of variables, but before attacking this problem, it is best to first prescribe the initial and boundary conditions. For the boundary condition: Let 0=U on the boundary of the membrane for all 0≥t . Since this is a second order PDE, 2 initial conditions are required: Let ( ) ( )yxfyxU ,0,, = (given initial displacement ( )yxf , ) and ( )yxg t U t , 0 = ∂ ∂ = (given initial velocity ( )yxg , )
  • 6. 6 The wave equation will have a solution of the form ( ) ( ) ( ) ( )tyxtyxU φψχ=,, χψ φ χφ ψ ψφ χ xxxx U ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ψφ χ 2 2 2 2 xx U ∂ ∂ = ∂ ∂ χψ φ χφ ψ ψφ χ yyyy U ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ χφ ψ 2 2 2 2 yy U ∂ ∂ = ∂ ∂ χψ φ χφ ψ ψφ χ tttt U ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ χψ φ 2 2 2 2 tt U ∂ ∂ = ∂ ∂ Substituting these values into the wave equation: χψ φ χφ ψ ψφ χ 2 2 22 2 2 2 1 tcyx ∂ ∂ = ∂ ∂ + ∂ ∂ and dividing through the φψχ ,, terms: φ φ ψ ψ χ χ 1111 2 2 22 2 2 2 tcyx ∂ ∂ = ∂ ∂ + ∂ ∂ Now, it is necessary that both sides of this equation be equal to the same constant or else one side would be allowed to vary while the other side remain unchanged. 2 2 2 2 2 2 2 2 2 11 11 k yx k tc −= ∂ ∂ + ∂ ∂ −= ∂ ∂ ψ ψ χ χ φ φ The separation process can be continued further to show that both spatial derivatives are also both equal to constants.
  • 7. 7 kxBkxAk x cossin02 2 +⇒=+ ∂ ∂ 2 χ χ pyDpyCp y cossin02 2 2 +⇒=+ ∂ ∂ ψ ψ Recalling the boundary conditions, ( ) ( ) ( ) ,00,0,00 === ψχχ a and ( ) 0=aψ , 000cos0sin 000cos0sin m m =⇒=+ =⇒=+ DDC BBA ( ) ⇒== 0sin kaAaχ this is true only if a m k π = and m any integer ( ) ⇒== 0sin pbCaψ this is true only if b n p π = and n any integer Then ( )tyxU ,, becomes ( )t b yn a xm φ ππ sinsin . The solution to ( )tφ leads to what is known as the “time function.” ( ) 0222 2 2 =++ ∂ ∂ φ φ pkc t . Let νλ c= and 22 pk +=ν ⇒=+ ∂ ∂ 02 2 2 φλ φ t ( )tBtB mnmnmnmn λλ cossin* + 22 2 2 2 2 22 b n a m c b n a m cmn 22 +=+= π ππ λ ( ) ( )tBtB b xn a xm tyxU mnmnmnmn λλ ππ cossinsinsin,, * += From the superposition theorem, the sum of finitely many solutions ( )tyxU ,, is also a solution. ( )tyxU ,, then becomes a double sum. ( )∑∑ ∞ = ∞ = + 1 1 * sinsincossin m n mnmnmnmn b yn a xm tBtB ππ λλ From the initial condition ( ) ( )yxftyxU ,,, = , ( )0=t ( ) ( )yxft b yn a xm ByxU m n mnmn ,cossinsin0,, 1 1 == ∑∑ ∞ = ∞ = λ ππ , which is known as a double Fourier series. Recall from a Fourier series, the constant nB can be determined by
  • 8. 8 ( )∫ L dx L xn xf L 0 sin 2 π . It follows that mnB can also by determined by ( )∫∫ b a dydx b yn a xm yxf ab 0 0 sinsin, 4 ππ . ( ) ( )∑∑ ∫∫ ∞ = ∞ =        = 1 1 0 0 cossinsinsin, 4 0,, m n b a mnt b yn a xm dydx b yn ins a xm yxf ab yxU λ ππππ which is a solution to the wave equation whenever the initial velocity of some initial deflection is zero. It is also common to determine the position of any point given an initial velocity not equal to zero. Therefore, * mnB must be determined. This is done by taking the time derivative of ( )tyxU ,, at t = 0. ( ) ( )∑∑ ∑∑ ∞ = ∞ = = ∞ = ∞ = −=       + ∂ ∂ 1 1 * 01 1 * sinsin0sin0cos sinsincossin m n mnmnmnmnmnmn tm n mnmnmnmn b yn a xm BB b yn a xm tBtB t ππ λλλλ ππ λλ ( )yxg b yn a xm B m n mnmn ,sinsin 1 1 * == ∑∑ ∞ = ∞ = ππ λ where ( )yxg , is some initial velocity. * mnB can be determined through the use of “Fourier’s trick”: ( )∫∫= b a mn mn dydx b yn a xm yxg ab B 0 0 * sinsin, 4 ππ λ Then given an initial displacement, ( )yxf , , and some initial velocity, ( )yxg , , the solution to the two-dimensional wave equation will be of the form: ( ) ( ) ( ) t b yn a xm dydx b yn a xm yxfyxg ab tyxU mn m n b a mn λ ππππ λ cossinsinsinsin,, 14 ,, 1 1 0 0 ∑∑ ∫∫ ∞ = ∞ =             += For the examples in this paper, all functions will be assumed to start with initial velocity, ( ) 0, =yxg . As an example, choose c = 1, ( ) yxyxyxfba 2sinsinsin2sin,,2, −=== ππ ( ) ∑∑ ∞ = ∞ = = 1 1 cossinsin,, m n mnmn t b yn a xm BtyxU λ ππ 2 2 2 2 b n a m cmn += πλ
  • 9. 9 ( )∫∫= b a mn dydx b yn a xm yxf ab B 0 0 sinsin, 4 ππ ( ) ( ) ∫∫∫∫ ∫∫∫∫ ∫∫ −= −= − ππππ πππ π π π ππ ππ ππ ππ 0 2 0 2 0 2 0 2 2 0 0 2 2 0 0 2 2 0 0 sinsin 2 sin2sin 2 sin2sin 2 sinsin 2 2 sinsin2sinsin 2 2 sinsinsin2sin 2 sinsin2sinsinsin2sin 2 4 dxmxxdy ny ydxmxxdy ny y dydx ny mxyxdydx ny mxyx dydx b yn a xm yxyx nmB , = 2 2 π ( )I I I I1 2 3 4− 4 0 2 0 1, 2 1,0 sinsin 2, 2 2,0 sin2sin I m m dxmxx I m m dxmxx =     = ≠ = =     = ≠ = ∫ ∫ π π π π 1 2 2 2 0 2 0 2 0 2, 2,0 2, 2,0 2 sin 2 2 sin 22 2 sin 2 2 sin 2 sinsin I n n n n dy nyy dy nyy dy ny y =    = ≠ =    = ≠ == /⋅ / = ∫ ∫∫ ππ π π π π π π π π π ππ 3 2 2 2 0 2 0 2 0 4, 4,0 4, 4,0 2 sin 2 4 sin 22 2 sin 2 22 sin 2 sin2sin I n n n n dy nyy dy nyy dy ny y =    = ≠ =    = ≠ == /⋅ / = ∫ ∫∫ ππ π π π π π π π π π ππ nmB , = 2 2 π ( )I I I I1 2 3 4− =      == == ≠≠ 2m&4n1- 2m&21 4,2or2,10 n nm 4,2or2,1,0 1,1 4,22,2 ≠≠= −== nmB BB mn
  • 10. 10 ( ) 5 5 14 4 44 2 22 2,2 2222 2 2 2 2,2 = = + =+=+= λ π π π π ππ π ππ πλ c ( ) 8 44 4 164 2 42 4,2 222 2 2 2 4,2 = +=+=+= λ π π ππ π ππ πλ c ( ) t yx Bt yx BtyxU 4,24,22,22,2 cos 2 4 sin 2 sincos 2 2 sin 2 sin,, λ π π π π λ π π π π += ( ) tyxtyxtyxU 8cos2sin2sin5cossinsin,, −= Substituting any value for x, y, and t (anywhere within the membrane), this equation will tell you the height of the membrane at any time t.
  • 11. 11 Numerical Method Solutions to the wave equation can be approximated using numerical methods. The central difference approximation scheme provides nearly accurate solutions with minimum residual error.       ∂ ∂ + ∂ ∂ = ∂ ∂ 2 2 2 2 2 2 2 y U x U c t U Substituting these approximations back into the wave equation: ( ) ( ) ( )         ∆ +− + ∆ +− = ∆ +− −+−+ −+ 2 1,,1, 2 ,1,,12 2 1 ,, 1 , 222 y UUU x UUU c t UUU k ji k ji k ji k ji k ji k ji k ji k ji k ji ( ) ( ) ( ) ( ) ( ) ( ) ( )         ∆∆ +−∆++−∆ = ∆ +− −+−+ −+ 22 1,,1, 2 ,1,,1 2 2 2 1 ,, 1 , 222 yx UUUxUUUy c t UUU k ji k ji k ji k ji k ji k ji k ji k ji k ji Let yxh ∆=∆= iˆ jˆ h h 1=j 1=i 1ii = 1jj = 1, +ji ji ,1+ji, 1, −ji ji ,1− ( ) ( ) ( )2 1,,1, 2 2 2 ,1,,1 2 2 2 1 ,, 1 , 2 2 2 2 2 y UUU y U x UUU x U t UUU t U k ji k ji k ji k ji k ji k ji k ji k ji k ji ∆ +− = ∂ ∂ ∆ +− = ∂ ∂ ∆ +− = ∂ ∂ −+ −+ −+ These values are the central difference approximation for each derivative. The superscripts represent the time iteration number.
  • 12. 12 ( ) ( ) ( )         +−++− = ∆ +− −+−+ −+ 4 1,,1, 2 ,1,,1 2 2 2 1 ,, 1 , 222 h UUUhUUUh c t UUU k ji k ji k ji k ji k ji k ji k ji k ji k ji ( ) 2 ,1,1,,1,12 2 1 ,, 1 , 42 h UUUUU c t UUU k ji k ji k ji k ji k ji k ji k ji k ji −+++ = ∆ +− −+−+ −+ Solving for the displacement at time 1+kt : ( ) ( ) ( ) ( ) ( ) k ji k ji k ji k ji k ji k ji k ji k ji k ji k ji k ji U h tc UU h tc UUU h tc UUUU h tc U ,2 22 1 ,,2 22 1 ,,,2 22 1,1,,1,12 22 1 , 42 010 101 010 24         ∆ −+−           ∆ = −+ ∆ −+++ ∆ = − − −+−+ + Letting ( ) 2 1 2 22 = ∆ h tc , the last term will drop out. 2c h t =∆ U U U U U Ui j k i j k i j k i j k i j k i j k , , , , , ,( )+ − + + − − = + + + −1 1 1 1 1 11 2 Or, 1 ,, 1 , 010 101 010 2 1 −+ −           = k ji k ji k ji UUU To get the first time step, take 0=∂ ∂ tt U . Then 1 , 0 , 1 , 1 010 101 010 4 1 ji jiji U UU −           = . ( )jiji yxVtU ,1 , ∆= , so ( )jijiji yxVtUU , 010 101 010 4 1 0 , 1 , ∆+           = Assume the membrane is raised at the center with an initial displacement ( ) ( )( )( )( )2222,0 −+−+= yyxxyxU and bound at the edges.
  • 13. 13 This would look like: Assume the initial velocity is zero, that a = 2, b = 2, and c = 1. It is desired to find how the displacement varies with time. Allow 2 1 =∆=∆= yxh to obtain 9 interior nodes. The time increments are found from 354.0 2 2/1 2 ===∆ c h t ( )jijiji yxgtUU , 010 101 010 4 1 0 , 1 , ∆+           = since ( )yxg , is zero everywhere. The values in the charts below show the elevation at each node. The values in the second chart are analytical values obtained by Maple from the double infinite series (from 1 to 10):
  • 14. 14 ( ) ∑∑ ∞ = ∞ = = 1 1 cossinsin,, m n mnmn t b yn a xm BtyxU λ ππ ( ) ( )( ) ( )( )( )( )∫∫ ∫∫ −+−+= = 2 0 2 0 0 0 sinsin2222 22 4 sinsin, 4 dydx b yn a xm yyxx dydx b yn a xm yxf ab B b a mn ππ ππ ( )( ) ( )( ) ∫ ∫ ∫ ∫       −      −= −+−+= 2 0 2 0 22 2 0 2 0 2 sin4 2 sin 2 sin4 2 sin sin22sin22 dy ynyn ydx xmxm x dy b xn yydx a xm xx ππππ ππ = − −( )( )I I I I1 2 3 4 I2 = ∫ 2 0 2 sin4 dx xmπ = 8 1(cos( ) )m m π π − = πm 16 ( )m odd= I x m x dx1 2 0 2 2 = ∫ sin( ) π = − − − −8 2 2 12 2 3 3 (( )cos( ) ( sin( ) ))m m m m m π π π π π = − = − =       8 4 8 2 2 3 3 ( ) ( ) ( ) m m m odd m m even π π π I4 = ∫ 2 0 2 sin4 dy ynπ = 8 1(cos( ) )n n π π − = πn 16 ( )n odd=
  • 15. 15 I y n y dy3 2 0 2 2 = ∫ sin( ) π = − − − −8 2 2 12 2 3 3 (( ) cos( ) ( sin( ) ))n n n n n π π π π π = − = − =       8 4 8 2 2 3 3 ( ) ( ) ( ) n n n odd n n even π π π B m m m m m m m n n n n n n n mn = − − − −   − −    × − − − −   − −    8 2 2 1 8 1 8 2 2 1 8 1 2 2 3 3 2 2 3 3 (( ) cos( ) ( sin( ) )) (cos( ) ) (( )cos( ) ( sin( ) )) (cos( ) ) π π π π π π π π π π π π π π Maple Gives the displacements easily: B[m,n]:=Int(Int((x+2)*(x-2)*(y+2)*(y- 2)*sin(m*Pi*x/2)*sin(n*Pi*y/2),x=0..2),y=0..2); :=B ,m n d ⌠ ⌡    0 2 d ⌠ ⌡    0 2 ( )+x 2 ( )−x 2 ( )+y 2 ( )−y 2      sin m π x 2      sin n π y 2 x y u(x,y,t):=Sum(Sum(B[m,n]*sin(m*Pi*x/2)*sin(n*Pi*y/2)*cos(t* Pi*sqrt(m^2/4+n^2/4)),m=1..infinity),n=1..infinity); ( )u , ,x y t ∑ =n 1 ∞ ∑ =m 1 ∞ d ⌠ ⌡    0 2 d ⌠ ⌡    0 2 ( )+x 2 ( )−x 2 ( )+y 2 ( )−y 2      sin m π x 2      sin n π y 2 x y        :=      sin m π x 2      sin n π y 2        cos t π +m2 n2 2        At Time t = 0, u(x,y,0); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n* Pi*(1/2)/2),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum( B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2),m=1..10),n=1..10));u( 1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.
  • 16. 16 5/2),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]* sin(m*Pi*.5/2)*sin(n*Pi*1/2),m=1..10),n=1..10));u(1.0,1.0,0 ):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2),m=1..10 ),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5 /2)*sin(n*Pi*1/2),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(su m(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2),m=1..10),n=1..1 0));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n* Pi*1.5/2),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[ m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2),m=1..10),n=1..10)); :=( )u , ,0.5 0.5 0 15.22971493 :=( )u , ,1.0 0.5 0 11.99631509 :=( )u , ,1.5 0.5 0 6.253747587 :=( )u , ,0.5 1.0 0 11.99631508 :=( )u , ,1.0 1.0 0 9.775603853 :=( )u , ,1.5 1.0 0 5.096078137 :=( )u , ,0.5 1.5 0 6.253747591 :=( )u , ,1.0 1.5 0 5.096078137 :=( )u , ,1.5 1.5 0 2.656614646 At Time t = .354, u(x,y,.354); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n* Pi*(1/2)/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20 ));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n *Pi*.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)) ;u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*P i*.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u (0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1 /2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0 ,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*c os(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0, 0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos( Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0): =evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi *.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=e valf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*.3 54*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=eval f(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*.35 4*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)); :=( )u , ,0.5 0.5 0 13.73168329
  • 17. 17 :=( )u , ,1.0 0.5 0 11.48679972 :=( )u , ,1.5 0.5 0 5.850152116 :=( )u , ,0.5 1.0 0 11.48679970 :=( )u , ,1.0 1.0 0 8.957095820 :=( )u , ,1.5 1.0 0 4.516788103 :=( )u , ,0.5 1.5 0 5.850152118 :=( )u , ,1.0 1.5 0 4.516788106 :=( )u , ,1.5 1.5 0 2.207949353 At Time t = .708, u(x,y,.708); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n* Pi*(1/2)/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20 ));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n *Pi*.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)) ;u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*P i*.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u (0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1 /2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0 ,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*c os(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0, 0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos( Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0): =evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi *.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=e valf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*.7 08*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=eval f(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*.70 8*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)); :=( )u , ,0.5 0.5 0 -14.79433063 :=( )u , ,1.0 0.5 0 -4.233097635 :=( )u , ,1.5 0.5 0 -3.371121281 :=( )u , ,0.5 1.0 0 -4.233097637 :=( )u , ,1.0 1.0 0 6.555284339 :=( )u , ,1.5 1.0 0 2.912539267 :=( )u , ,0.5 1.5 0 -3.371121279 :=( )u , ,1.0 1.5 0 2.912539273
  • 18. 18 :=( )u , ,1.5 1.5 0 1.127100152 At Time t = 1.062, u(x,y,1.062); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n* Pi*(1/2)/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..20),n=1..2 0));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin( n*Pi*.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10 ));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n *Pi*.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10) );u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*P i*1/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u (1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/ 2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5 ,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2) *cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1 .5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)* cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1. 5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*co s(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5, 0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*co s(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)); :=( )u , ,0.5 0.5 0 -4.761423251 :=( )u , ,1.0 0.5 0 -16.21698752 :=( )u , ,1.5 0.5 0 -3.595003391 :=( )u , ,0.5 1.0 0 -16.21698752 :=( )u , ,1.0 1.0 0 -15.82088364 :=( )u , ,1.5 1.0 0 -4.459870815 :=( )u , ,0.5 1.5 0 -3.595003394 :=( )u , ,1.0 1.5 0 -4.459870825 :=( )u , ,1.5 1.5 0 0.1312790189 At Time t = 1.416, u(x,y,1.416); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n* Pi*(1/2)/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..20),n=1..2 0));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(
  • 19. 19 n*Pi*.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10 ));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n *Pi*.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10) );u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*P i*1/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u (1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/ 2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5 ,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2) *cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1 .5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)* cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1. 5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*co s(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5, 0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*co s(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)); :=( )u , ,0.5 0.5 0 -2.994597905 :=( )u , ,1.0 0.5 0 -5.290612631 :=( )u , ,1.5 0.5 0 -5.195011744 :=( )u , ,0.5 1.0 0 -5.290612625 :=( )u , ,1.0 1.0 0 -15.77018009 :=( )u , ,1.5 1.0 0 -6.221225508 :=( )u , ,0.5 1.5 0 -5.195011752 :=( )u , ,1.0 1.5 0 -6.221225517 :=( )u , ,1.5 1.5 0 -1.729165708 At Time t = 1.77, u(x,y,1.77); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n* Pi*(1/2)/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20 ));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n *Pi*.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)) ;u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*P i*.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u (0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1 /2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0 ,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*c os(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0, 0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos( Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0): =evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi *1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=e
  • 20. 20 valf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*1. 77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=eval f(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*1.7 7*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)); :=( )u , ,0.5 0.5 0 -1.187083434 :=( )u , ,1.0 0.5 0 -1.528967272 :=( )u , ,1.5 0.5 0 -4.670921694 :=( )u , ,0.5 1.0 0 -1.528967268 :=( )u , ,1.0 1.0 0 -3.629418086 :=( )u , ,1.5 1.0 0 -13.59326888 :=( )u , ,0.5 1.5 0 -4.670921687 :=( )u , ,1.0 1.5 0 -13.59326889 :=( )u , ,1.5 1.5 0 -11.68786223 At t = 2.124, u(x,y,2.124); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n* Pi*(1/2)/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..20),n=1..2 0));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin( n*Pi*.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10 ));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n *Pi*.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10) );u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*P i*1/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u (1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/ 2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5 ,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2) *cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1 .5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)* cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1. 5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*co s(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5, 0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*co s(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)); :=( )u , ,0.5 0.5 0 0.9685162845 :=( )u , ,1.0 0.5 0 1.547781108 :=( )u , ,1.5 0.5 0 0.7297354742 :=( )u , ,0.5 1.0 0 1.547781103
  • 21. 21 :=( )u , ,1.0 1.0 0 1.719660241 :=( )u , ,1.5 1.0 0 0.279360720 :=( )u , ,0.5 1.5 0 0.7297354758 :=( )u , ,1.0 1.5 0 0.2793607222 :=( )u , ,1.5 1.5 0 -5.769634646 At t = 2.478, u(x,y,2.478); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n* Pi*(1/2)/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..20),n=1..2 0));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin( n*Pi*.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10 ));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n *Pi*.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10) );u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*P i*1/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u (1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/ 2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5 ,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2) *cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1 .5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)* cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1. 5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*co s(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5, 0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*co s(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10)); :=( )u , ,0.5 0.5 0 2.487143177 :=( )u , ,1.0 0.5 0 3.642616396 :=( )u , ,1.5 0.5 0 8.242865097 :=( )u , ,0.5 1.0 0 3.642616399 :=( )u , ,1.0 1.0 0 4.730398447 :=( )u , ,1.5 1.0 0 9.747117351 :=( )u , ,0.5 1.5 0 8.242865090 :=( )u , ,1.0 1.5 0 9.747117338 :=( )u , ,1.5 1.5 0 10.05139973
  • 22. 22 ?t (0.5,0.5) (1.0,0.5) (1.5,0.5) (0.5,1.0) (1.0,1.0) (1.5,1.0) (0.5,1.5) (1.0,1.5) (1.5,1.5) 0 14.0625 11.25 6.5625 11.25 9 5.25 6.5625 5.25 3.0625 0.354 12.375 18.4063 5.875 10.4063 8.25 4.65625 5.875 4.65625 2.625 0.708 1.062 1.416 1.77 2.124 2.478 ?t (0.5,0.5) (1.0,0.5) (1.5,0.5) (0.5,1.0) (1.0,1.0) (1.5,1.0) (0.5,1.5) (1.0,1.5) (1.5,1.5) 0 15.230 11.996 6.254 11.996 9.776 5.096 6.254 5.096 2.657 0.354 13.732 11.487 5.850 11.487 8.957 4.517 5.850 4.517 2.208 0.708 -14.794 -4.233 -3.371 -4.233 6.555 2.913 -3.371 2.913 1.127 1.062 -4.761 -16.217 -3.595 -16.217 -15.821 -4.460 -3.595 -4.460 .131 1.416 -2.995 -5.291 -5.195 -5.291 -15.770 -6.221 -5.195 -6.221 -1.729 1.77 -1.187 -1.529 -4.671 -1.529 -3.629 -13.593 -4.671 -13.593 -11.688 2.124 .969 1.548 .730 1.548 1.720 .279 .730 .279 -5.770 2.478 2.487 3.643 8.242 3.643 4.730 9.747 8.242 9.747 10.051 To attain the values for each succeeding time step, 1 ,, 1 , 010 101 010 2 1 −+ −           = k ji k ji k ji UUU was used. Discrepancies in the values of the two charts could be due to using a 7-digit mantissa instead of a 14-digit mantissa in Maple leading to significant round off errors. Another possibility of obtaining different values between the two charts might arise from not using enough terms in the limits of the double sum. Future research will be done to investigate this phenomena as well as comparisons to the round and triangular drumheads answering the ultimate question, “Can You Hear the Shape of a Drum?”
  • 23. 23 Works Cited l Erwin Kreyszig, Advanced Engineering Mathematics, 8th edition l David J. Griffiths, Quantum Mechanics, 2nd edition l Gerald-Wheatley, Applied Numerical Analysis, 7th edition l Michael D. Greenberg, Foundations of Applied Mathematics l Discussions with Prof. Chris Papadopolous and Prof. Paul Lyman l http://mathnt.mat.jhu.edu/zelditch/Teaching/F2005110.302/PDF%20Lectures/Dru mundBessel.pdf l http://www.falstad.com/mathphysics.html l http://www.kettering.edu/%7Edrussell/demos.html