Time Reversed Acoustics
Acoustic propagation in a non dissipative fluid
p ( r , t ) acoustic pressure field (scalar)
ρ ( r ) is the density and c ( r ) is the sound velocity in an heterogeneous medium
2
 gradp(r(r) ) 
1
∂∂2 p(r,,tt))
p(r
grad( ( p , t , t
1
div
=0
div
−−

22
22
t
ρ r
ρ r c r, p
 ρ (r ,(p))  ρ (r ,(p))c ((r ) ) ∂∂t

In NonLinear Acoustics
In Linear Acoustics

Spatial Reciprocity

Time Reversal Invariance

∂2 p ( r , t )
This equation contains only

Then if p ( r , t ) is a solution

∂t 2

t1

t0

p ( r , − t ) is also a solution
∂ p(r ,t )
2

because

∂t 2

∂ p ( r , −t )

t1

2

=

∂t 2

p( r , t )

p( r ,− t )

t0
Time Reversal Cavity
RECEIVE MODE

p(ri, t )

Heterogeneous Medium Elementary transducers
ACOUSTIC SOURCE

RAMs

TRANSMIT MODE

p(ri, T − t )

ACOUSTIC SINK ??
Time Reversal Mirror
RECEIVE MODE
Elementary transducers
Heterogeneous Medium
ACOUSTIC SOURCE

p(ri,t)
RAMs

TRANSMIT MODE

p(ri,T− t)

INFORMATION LOST

DIFFRACTION LIMITED FOCAL SPOT
DEPENDING ON THE MIRROR ANGULAR APERTURE

Theory by D. Cassereau, M. Fink, D. Jackson, D.R. Dowling
Time Reversal in a multiple scattering medium
TRM array
Source

Multiple scattering
medium
Time reversed signals

?

A.Derode, A. Tourin, P. Roux, M. Fink
The experimental setup

Linear array, 128 transducers

Acoustic source
ν=3 MHz, λ=0.5 mm

Steel rods forest

Element size ¾λ
Amplitude

Transmitted signal through water recorded on transducer 64

20

40

60

80

100

120

140

160

Time (µs)
Amplitude

Transmitted signal through the rods recorded on transducer 64

20

40

60

80

100

120

140

160

Time (µs)

Amplitude

Time reversed wave recorded at the source location

20

40

60

80

Time (µs)

100

120

140

160
Spatial focusing of the time reversed wave

Amplitude

Mobile
hydrophone

0
-5
-10
-15
-20
-25
-30 -10

- 5

0
Distance (mm)

5

10
One-bit versus 8-bit time reversal
8 bit time-reversal, L=40 mm
1
0.5
0
-0.5
-1
-50

-25

0

25

50

time (µs)

One-bit time reversal, L=40 mm

3
1.5
0
-1.5
-3
-50

-25

0

25

50

time (µs)

-12

-6

0

6

12 (mm)

0
-5
dB

-10
-15
-20
-25
-30

8 bit
One bit
One channel time reversal mirror

0

Time reversed signal

-5
-10

S

dB -15
-20
-25
-30

-10

-5

0

5

10

Distance from the source (mm)

Directivity patterns of the time-reversed waves
around the source position with 128 transducers
(blue line) and 1 transducer (red line).
Time Reversal versus Phase Conjugation
TR.operation → p( x, t ) ⇔ p( x,-t )
If the source is monochromatic
p( x, t ) = Re P ( x )e jω t ∝ P ( x )e jω t + P * ( x )e − jω t
with P ( x ) complex function
P ( x) = P ( x) e

jφ ( x )

Thus the TR.operation →
p( x, −t ) ∝ P ( x )e − jω t + P * ( x )e jω t
or
P ( x ) ⇔ P * ( x ),or,φ ( x ) ⇔ −φ ( x )
Time Reversal versus Phase Conjugation
TR

Max p(x,t)
x

Source location

1 channel TRM

.
PC
P (x)
Field modulus

Pointlike
Phase Conjugated Mirror
Polychromatic Focusing
A Complex Representation of the Field

Im

Off axis

Re

Im

Source location

t

Field Modulus

Focusing quality depends on the field to field correlation

Ψ(ω Ψ (ω+δω)
) *
How many uncorrelated speckles δω
?
FT

?

∆ω

2

2.5

3

3.5

4

4.5

5

MHz

- *
Field-field correlation Ψ(ω)Ψ ( ω+ δω = fourier transform of the travel time distribution I (t )
)

δω

FT

I (t )
0

50

Thoules time,

100
150
Time (µs)

200

δτ =D2/L ~ 150 µs

250
2

2.5

3

δω = 8 kΗz

3.5
MHz

4

4.5

5

∆ω/δω =150
Focusing in monochromatic mode : the lens

Spatial Diversity

λF/D

D

F
Spatial and Frequency Diversity
Spatial and frequency diversity
One element time reversal mirror

-5

-5

-10

TR1

0

-10
dB

0

-15

-15

PC1

-20

-20

-25

-25
-10

-5

0

5

10

-10

Phase conjugation

-5

0

5

10

Time-reversal

128 elements time reversal mirror
0

0

PC128

-5

TR128

-5
-10

-15

-15
dB

-10

-20

-20

-25

-25

-30

-30
-35

-35
-10

-5

0

5

10

-10

-5

0

5

10
Communications in diffusive media with TRM
Central frequency 3.2 MHz (λ=0.46 mm)
Distance 27 cm (~ 600 λ)

20-element Array
pitch ~ λ

5 receivers
4 λ apart

L=40 mm, *=4.8mm
A.Derode, A. Tourin, J. de Rosny, M. Tanter, M. Fink, G. Papanicolaou
Modulation BPSK
T0 = 3.5 µs
0.7µs

+1

-1

Transmission of 5 random sequences of 2000 bits to the receivers

#1

#2

#3

#4

#5

Error rate

Diffusive medium

0

0

0

1

0

10-4

Homogeneous
medium

489

640

643

602

503

28.77 %
Spatial focusing
12345
0

-5

-1 0

-1 5

-2 0

-2 5
-1 5

-1 0

-5

0

Diffusive medium

5

10

15

water

1
2
3
4
5

16
mm

10 µs
Shannon Capacity (MIMO)
C = Log2 {det (I+SNR × tH* H)} bits/s/Hz
(Cover and Thomas 1991, Foschini 1998)

Propagation Operator
hijt 

FT

H(ω)

R=HE
The Time Reversal Operator tH* H
array

array
HE

E
H

tH * H

E

TR
tHH*

M. Tanter

E*

tH

TR

H*E*
Shannon Capacity in Diffusive Media
C = Log2 {det (I+SNR × tH* H )}

H = U D V∗
T

C = Log2 {det (I+SNR × tU* D2 U )}
U t U* = I
C = Log2 {det (I+SNR × D2 )}
C=

∑Log2 {1 + SNR × λi2}

i =1.. N

N independant channels, N degrees of freedom
Experimental results : singular values distribution
40×40 inter-element impulse responses
Homogeneous medium

Diffusive medium

→ At 3.2 MHz : 34 / 6 singular values (–32 dB)
The number of singular values is equal to the number of
independant focal spots that one can create on the receiving
array
The effect of boundaries on Time Reversal Mirror
acoustic
source

elementary
transducers

p( ri, t )

reflecting boundaries

p( ri,T − t )

Receive mode

Transmit mode
1 -Time Reversal in an Ultrasonic Waveguide
x

P. Roux, M. Fink

reflecting boundaries
water

S

40

128 elements

Hauteur du guide (mm)

H

vertical
transducer
array

O

y

L

-40

0

-20
0

-10

-20

-30

-40

0

-50

4
0

dB

0

Amplitude

1
0,5
0
-0,5
-1

-40

0

Time (µs)

40

20

8
0

Time
(µs)

10

0

mm

Depth
(mm)

-10

4
0

0

0

40

80µs
The Kaleidoscopic Effect : Virtual Transducers
mm
Amplitude (dB)

-20

-10

0

10

20

0

Open space

-10

Waveguide effect

-20
-30
-40
-50

guide d'onde
eau libre

A comparison between the focal spot with and without the waveguide
TRM
image
point S
source

real
TRM

aperture
aperture
of the TRM
of the TRM
in the
in free water waveguide

If the pitch is to large : grating lobes
Time Reversal in Ocean Acoustics

B. Kuperman, SCRIPPS

3.5 kHz SRA (’99 and ’00)

L = 78 m
N = 29

3.5 kHz tranceiver
Up-slope Experiment: Elba
10 km

30 m

100 m

1m
Diffraction limit
2 - Time-Reversal in a Chaotic Billiard
Silicon wafer – chaotic geometry

Coupling tips
Transducers
Ergodicity
Carsten Draeger, J de Rosny, M. Fink
Time-reversed field observed with an optical probe

2 ms : Heisenberg time of the cavity : time for any ray to reach
the vicinity of any point inside the cavity (in a wavelength)
With a one channel TRM, what is the SNR ?
wafer
scanned
region
15 mm
15 mm

How many uncorrelated speckle in
the frequency bandwidth of the
transducers ?
For an ergodic cavity it is equal
to the number of modes in the
bandwidth :

(a)

R

(b)

R

In our case 400 modes : thus
the SNR is the square of the mode
number = 20
(c)

R

(d)

R

Why Ergodicity does not garantee a
perfect time reversal ?

(e)

R

(f)

Waves are not particles and even not
rays : Modal theory only
R
The Cavity Formula

B

A

In terms of the cavity modes
A and B cannot exchange
all informations, because
A and B are always at the
antinodes of some modes

g ( B, A, t ) = ∑ψ n ( A)ψ n ( B )
n

ψ n eigenmodes
g(B, A,−t) ⊗g(B, A,t) = g(A, A,−t) ⊗g(B, B,t)
Carsten Draeger

sin(ωn t )

ωn
Origin of the diffraction limit
Wave focusing : 3 steps

Converging only
Monochromatic
exp {j(kr+ωt)} / r
with singularity
J. de Rosny, M. Fink

Both converging
and diverging
waves interfere
Sin (kr)/r . exp(jωt)
without singularity
Diffraction limit
(λ/2)

Diverging only
exp {j(-kr+ωt)} / r
with singularity
« Perfect » TR - the acoustic sink
Goal

converging

No interference
and singularity
exp {j(kr+ωt)} / r

No diffraction
limit

with singularity
Principle of the acoustic sink
Out of phase
The Acoustic Sink Formalism
1 ∂ 

p (r , t ) = f (t )δ (r − r0 )
 ∆− 2
2 
c ∂t 

Propagating
term

Point-like
source

1 ∂ 

p (r ,−t ) = f (−t )δ (r − r0 )
 ∆− 2
2 
c ∂t 

Converging
wave

Source at r0 excited by f(-t)
(TR source)
Focal spots with and without an acoustic sink

λ/14 tip
A nice application of Chaos : Interactive Objects
How to transform any object in a tactile screen ?
accelerometer
100Hz <∆Ω < 10kHz

A
1m

amplitude

1m

R. Ing, N. Quieffin, S. Catheline, M. Fink

Green’s function:
GA(t)
time
A
1m

amplitude

1m

Green’s function:
Time Reversal:
GG(-t)
A A(t)
amp.
amp.

B
A

GA(t)

GB(t)

amp.

Training step: library of Green functions

GC(t)

10ms

10ms

C

10ms

MEMORY
Localisation step by cross correlation

GC(-t)

amp.
amp.

GB(-t)

0.21

0.98

amp.

amp.

GB’(t)

GA(-t)

amp.

amp.

B

amp.

maxima:

0.33

MEMORY
POINT B
Tactile Objects
Some other examples
Time Reversal in Leaky Cavities and
Waveguides

• A new concept of smart transducer design
with reverberation and programmable
transmitters
• What happens if the source is outside the
waveguide ?
A first example : the D shape billiard
contact transducer

half-cylinder

hydrophone needle
Principle of time reversal focusing
r0
Hydrophone
needle

h( r0 , t)

u( r , t)
y

h( r0 , -t)

Time reversal process:

u(r, t) = h(r, t) ⊗h(r0 ,−t)
t

x
z
Time Reversal Focusing with steering

contact
transducer

130mm

moving pulsed source
y

100m
m

Abscissa x (mm)

-25

0

25
75

100
Time of arrival

125

x
z
A second example : the SINAI BILLIARD
z

x

30 emission
transducers
(1.5 MHz ,
5mm x 8 mm
pitch 1 mm)
Large transducer
element, not optimized

y
Motors

hydrophone

electronics

Electronics :
Fully programmable multi-channel
system.
Principle of TR Focusing

Emission
transducers

400 µs
2 µs µs
2

Hydrophone
(Fundamental and Harmonics)
dB 0

0.8

-5

Distance(mm)

0.6

Amplitude

FUNDAMENTAL

TR Kaleidoscope
0.4
0.2
0

-15
-25
-35

-0.2
-0.4
0

Spatial lobes : - 30 dB

Temporal lobes : - 38 dB
20

40

60

80

100

Time (µs)

-45

Distance(mm)
dB 0

0.6

Distance(mm)

Amplitude

HARMONIC

-5
0.4
0.2
0
-0.2

-15
-25
-35

-0.4

0

Temporal lobes : -60 dB 100
20
40
60
80
Time (µs)

Spatial Lobes ~ - 50 dB
Distance(mm)

-45
Building a 3D Image

Reception
transducer
(harmonic)

Distance (mm)

Emission
transducers

0
-20
-40
-60
-80
40
40

Object

20

Distance (mm)

20
0 0

Distance (mm)
The effect of dissipation on Time Reversal :
an example : the skull and brain therapy
In a dissipative medium

G. Montaldo; M. Tanter, M. Fink
Influence of the trabecular bone on the acoustic
propagation
Diploë :Porous zone
(c = 2700 m.s 1)

External wall
(c = 3000 m.s 1)

Internal wall
(c = 3000 m.s 1)

2
 grad p ( r , t ) 
∂ 
1 ∂ p (r , t )

−
=0
 1 +τ ( r )  ρ ( r ) div 


2
2
∂t 
ρ (r )

∂t

 c (r )

Breaking the time reversal invariance
The iterative method

o(-t)

o(t)+d(t)

d(t)

d(t)+d(t)

o(t)-d(t)

e(t)

e(-t)

c(t)

First transmit step :
the objective

T.R and reemission :
reconstruction of the
objective
Emission of the
lobes

Lobes reconstruction

c(-t)

e(-t)-c(-t)

The difference
eliminates the lobes
Experiments : improvement of the focal spot
Water
128 elts.
1.5 MHz
Pitch 0.5 mm

Absorbing
And aberrating
Ureol sample

128 elts.
1.5 MHz
Pitch 0.5 mm

F = 60 mm
0
-5

Amplitude in Db

-10
-15
-20

1

-25

10

-30

20

-35

30

-40
-45
0

10

20

30

40

Distance in mm

50

60

D = 60 mm
Experiments : Spatial and temporal focusing
Focusing after 30
iterations

Time Reversal
Focusing

0
1

-5

2

2

-10

3

3

-15

4

4

-20

5

5

-25

6

Time in µs

1

6

-30

7

10 20 30 40 50

Distance in mm

7

10 20 30 40 50

-35

Distance in mm

• Very simple operations : time reversal + signal substraction
• Inversion just limited by the propagation time
• Here, optimal focusing can be achieved in a few ms !!!
Focusing through the Skull
Classical Cylindrical law

Optimal signal to transmit

2
51

0

Transducer
number j

2
12 5 1

8

Spatial focusing
0

Transducer
number j

-5

Pressure (dB)

0

-10
-15
-20
-25
-30
-35
-20
-10
0
10
20
Distance from the initial point source
(mm)
300 elements Time Reversal Mirror (Therapy/Imaging)
Global view
(300 elements and C 4-2 echographic probe)

Front view
(300 elements and C 4-2 echographic probe)

Coupling + cooling system
128 Channels of a HDI 1000 scanner
200 Emission boards for THERAPY

Spherical active surface:
Aperture 180 mm
Focal dist. 140 mm

100 Emission/Reception boards for THERAPY+IMAGING
Correction of skull aberrations using an implanted hydrophone

Experimental scan
without correction

Experimental scan
with correction
(Time reversal + Amplitude
Compensation)

Acoustic Pressure measured at focus : - 70 Bars, 1600 W.cm-2 (with correction)
- 15 Bars, 80 W.cm-2 (without correction)
Transkull in vivo experiments
Transkull in vivo experiments
MRI

Histology

Transkull in vivo thermally induced necrosis

Time reversed acoustics - Mathias Fink

  • 1.
  • 2.
    Acoustic propagation ina non dissipative fluid p ( r , t ) acoustic pressure field (scalar) ρ ( r ) is the density and c ( r ) is the sound velocity in an heterogeneous medium 2  gradp(r(r) )  1 ∂∂2 p(r,,tt)) p(r grad( ( p , t , t 1 div =0 div −−  22 22 t ρ r ρ r c r, p  ρ (r ,(p))  ρ (r ,(p))c ((r ) ) ∂∂t In NonLinear Acoustics In Linear Acoustics Spatial Reciprocity Time Reversal Invariance ∂2 p ( r , t ) This equation contains only Then if p ( r , t ) is a solution ∂t 2 t1 t0 p ( r , − t ) is also a solution ∂ p(r ,t ) 2 because ∂t 2 ∂ p ( r , −t ) t1 2 = ∂t 2 p( r , t ) p( r ,− t ) t0
  • 3.
    Time Reversal Cavity RECEIVEMODE p(ri, t ) Heterogeneous Medium Elementary transducers ACOUSTIC SOURCE RAMs TRANSMIT MODE p(ri, T − t ) ACOUSTIC SINK ??
  • 4.
    Time Reversal Mirror RECEIVEMODE Elementary transducers Heterogeneous Medium ACOUSTIC SOURCE p(ri,t) RAMs TRANSMIT MODE p(ri,T− t) INFORMATION LOST DIFFRACTION LIMITED FOCAL SPOT DEPENDING ON THE MIRROR ANGULAR APERTURE Theory by D. Cassereau, M. Fink, D. Jackson, D.R. Dowling
  • 5.
    Time Reversal ina multiple scattering medium TRM array Source Multiple scattering medium Time reversed signals ? A.Derode, A. Tourin, P. Roux, M. Fink
  • 6.
    The experimental setup Lineararray, 128 transducers Acoustic source ν=3 MHz, λ=0.5 mm Steel rods forest Element size ¾λ
  • 7.
    Amplitude Transmitted signal throughwater recorded on transducer 64 20 40 60 80 100 120 140 160 Time (µs) Amplitude Transmitted signal through the rods recorded on transducer 64 20 40 60 80 100 120 140 160 Time (µs) Amplitude Time reversed wave recorded at the source location 20 40 60 80 Time (µs) 100 120 140 160
  • 8.
    Spatial focusing ofthe time reversed wave Amplitude Mobile hydrophone 0 -5 -10 -15 -20 -25 -30 -10 - 5 0 Distance (mm) 5 10
  • 9.
    One-bit versus 8-bittime reversal 8 bit time-reversal, L=40 mm 1 0.5 0 -0.5 -1 -50 -25 0 25 50 time (µs) One-bit time reversal, L=40 mm 3 1.5 0 -1.5 -3 -50 -25 0 25 50 time (µs) -12 -6 0 6 12 (mm) 0 -5 dB -10 -15 -20 -25 -30 8 bit One bit
  • 10.
    One channel timereversal mirror 0 Time reversed signal -5 -10 S dB -15 -20 -25 -30 -10 -5 0 5 10 Distance from the source (mm) Directivity patterns of the time-reversed waves around the source position with 128 transducers (blue line) and 1 transducer (red line).
  • 11.
    Time Reversal versusPhase Conjugation TR.operation → p( x, t ) ⇔ p( x,-t ) If the source is monochromatic p( x, t ) = Re P ( x )e jω t ∝ P ( x )e jω t + P * ( x )e − jω t with P ( x ) complex function P ( x) = P ( x) e jφ ( x ) Thus the TR.operation → p( x, −t ) ∝ P ( x )e − jω t + P * ( x )e jω t or P ( x ) ⇔ P * ( x ),or,φ ( x ) ⇔ −φ ( x )
  • 12.
    Time Reversal versusPhase Conjugation TR Max p(x,t) x Source location 1 channel TRM . PC P (x) Field modulus Pointlike Phase Conjugated Mirror
  • 13.
    Polychromatic Focusing A ComplexRepresentation of the Field Im Off axis Re Im Source location t Field Modulus Focusing quality depends on the field to field correlation Ψ(ω Ψ (ω+δω) ) *
  • 14.
    How many uncorrelatedspeckles δω ? FT ? ∆ω 2 2.5 3 3.5 4 4.5 5 MHz - * Field-field correlation Ψ(ω)Ψ ( ω+ δω = fourier transform of the travel time distribution I (t ) ) δω FT I (t ) 0 50 Thoules time, 100 150 Time (µs) 200 δτ =D2/L ~ 150 µs 250 2 2.5 3 δω = 8 kΗz 3.5 MHz 4 4.5 5 ∆ω/δω =150
  • 15.
    Focusing in monochromaticmode : the lens Spatial Diversity λF/D D F
  • 16.
    Spatial and FrequencyDiversity Spatial and frequency diversity One element time reversal mirror -5 -5 -10 TR1 0 -10 dB 0 -15 -15 PC1 -20 -20 -25 -25 -10 -5 0 5 10 -10 Phase conjugation -5 0 5 10 Time-reversal 128 elements time reversal mirror 0 0 PC128 -5 TR128 -5 -10 -15 -15 dB -10 -20 -20 -25 -25 -30 -30 -35 -35 -10 -5 0 5 10 -10 -5 0 5 10
  • 17.
    Communications in diffusivemedia with TRM Central frequency 3.2 MHz (λ=0.46 mm) Distance 27 cm (~ 600 λ) 20-element Array pitch ~ λ 5 receivers 4 λ apart L=40 mm, *=4.8mm A.Derode, A. Tourin, J. de Rosny, M. Tanter, M. Fink, G. Papanicolaou
  • 18.
    Modulation BPSK T0 =3.5 µs 0.7µs +1 -1 Transmission of 5 random sequences of 2000 bits to the receivers #1 #2 #3 #4 #5 Error rate Diffusive medium 0 0 0 1 0 10-4 Homogeneous medium 489 640 643 602 503 28.77 %
  • 19.
    Spatial focusing 12345 0 -5 -1 0 -15 -2 0 -2 5 -1 5 -1 0 -5 0 Diffusive medium 5 10 15 water 1 2 3 4 5 16 mm 10 µs
  • 20.
    Shannon Capacity (MIMO) C= Log2 {det (I+SNR × tH* H)} bits/s/Hz (Cover and Thomas 1991, Foschini 1998) Propagation Operator hijt  FT H(ω) R=HE
  • 21.
    The Time ReversalOperator tH* H array array HE E H tH * H E TR tHH* M. Tanter E* tH TR H*E*
  • 22.
    Shannon Capacity inDiffusive Media C = Log2 {det (I+SNR × tH* H )} H = U D V∗ T C = Log2 {det (I+SNR × tU* D2 U )} U t U* = I C = Log2 {det (I+SNR × D2 )} C= ∑Log2 {1 + SNR × λi2} i =1.. N N independant channels, N degrees of freedom
  • 23.
    Experimental results :singular values distribution 40×40 inter-element impulse responses Homogeneous medium Diffusive medium → At 3.2 MHz : 34 / 6 singular values (–32 dB) The number of singular values is equal to the number of independant focal spots that one can create on the receiving array
  • 24.
    The effect ofboundaries on Time Reversal Mirror acoustic source elementary transducers p( ri, t ) reflecting boundaries p( ri,T − t ) Receive mode Transmit mode
  • 25.
    1 -Time Reversalin an Ultrasonic Waveguide x P. Roux, M. Fink reflecting boundaries water S 40 128 elements Hauteur du guide (mm) H vertical transducer array O y L -40 0 -20 0 -10 -20 -30 -40 0 -50 4 0 dB 0 Amplitude 1 0,5 0 -0,5 -1 -40 0 Time (µs) 40 20 8 0 Time (µs) 10 0 mm Depth (mm) -10 4 0 0 0 40 80µs
  • 26.
    The Kaleidoscopic Effect: Virtual Transducers mm Amplitude (dB) -20 -10 0 10 20 0 Open space -10 Waveguide effect -20 -30 -40 -50 guide d'onde eau libre A comparison between the focal spot with and without the waveguide TRM image point S source real TRM aperture aperture of the TRM of the TRM in the in free water waveguide If the pitch is to large : grating lobes
  • 27.
    Time Reversal inOcean Acoustics B. Kuperman, SCRIPPS 3.5 kHz SRA (’99 and ’00) L = 78 m N = 29 3.5 kHz tranceiver
  • 28.
    Up-slope Experiment: Elba 10km 30 m 100 m 1m Diffraction limit
  • 29.
    2 - Time-Reversalin a Chaotic Billiard Silicon wafer – chaotic geometry Coupling tips Transducers Ergodicity Carsten Draeger, J de Rosny, M. Fink
  • 31.
    Time-reversed field observedwith an optical probe 2 ms : Heisenberg time of the cavity : time for any ray to reach the vicinity of any point inside the cavity (in a wavelength)
  • 32.
    With a onechannel TRM, what is the SNR ? wafer scanned region 15 mm 15 mm How many uncorrelated speckle in the frequency bandwidth of the transducers ? For an ergodic cavity it is equal to the number of modes in the bandwidth : (a) R (b) R In our case 400 modes : thus the SNR is the square of the mode number = 20 (c) R (d) R Why Ergodicity does not garantee a perfect time reversal ? (e) R (f) Waves are not particles and even not rays : Modal theory only R
  • 33.
    The Cavity Formula B A Interms of the cavity modes A and B cannot exchange all informations, because A and B are always at the antinodes of some modes g ( B, A, t ) = ∑ψ n ( A)ψ n ( B ) n ψ n eigenmodes g(B, A,−t) ⊗g(B, A,t) = g(A, A,−t) ⊗g(B, B,t) Carsten Draeger sin(ωn t ) ωn
  • 34.
    Origin of thediffraction limit Wave focusing : 3 steps Converging only Monochromatic exp {j(kr+ωt)} / r with singularity J. de Rosny, M. Fink Both converging and diverging waves interfere Sin (kr)/r . exp(jωt) without singularity Diffraction limit (λ/2) Diverging only exp {j(-kr+ωt)} / r with singularity
  • 35.
    « Perfect »TR - the acoustic sink Goal converging No interference and singularity exp {j(kr+ωt)} / r No diffraction limit with singularity
  • 36.
    Principle of theacoustic sink Out of phase
  • 37.
    The Acoustic SinkFormalism 1 ∂   p (r , t ) = f (t )δ (r − r0 )  ∆− 2 2  c ∂t   Propagating term Point-like source 1 ∂   p (r ,−t ) = f (−t )δ (r − r0 )  ∆− 2 2  c ∂t   Converging wave Source at r0 excited by f(-t) (TR source)
  • 39.
    Focal spots withand without an acoustic sink λ/14 tip
  • 40.
    A nice applicationof Chaos : Interactive Objects How to transform any object in a tactile screen ? accelerometer 100Hz <∆Ω < 10kHz A 1m amplitude 1m R. Ing, N. Quieffin, S. Catheline, M. Fink Green’s function: GA(t) time
  • 41.
  • 42.
    amp. amp. B A GA(t) GB(t) amp. Training step: libraryof Green functions GC(t) 10ms 10ms C 10ms MEMORY
  • 43.
    Localisation step bycross correlation GC(-t) amp. amp. GB(-t) 0.21 0.98 amp. amp. GB’(t) GA(-t) amp. amp. B amp. maxima: 0.33 MEMORY POINT B
  • 44.
  • 45.
  • 46.
    Time Reversal inLeaky Cavities and Waveguides • A new concept of smart transducer design with reverberation and programmable transmitters • What happens if the source is outside the waveguide ?
  • 47.
    A first example: the D shape billiard contact transducer half-cylinder hydrophone needle
  • 48.
    Principle of timereversal focusing r0 Hydrophone needle h( r0 , t) u( r , t) y h( r0 , -t) Time reversal process: u(r, t) = h(r, t) ⊗h(r0 ,−t) t x z
  • 49.
    Time Reversal Focusingwith steering contact transducer 130mm moving pulsed source y 100m m Abscissa x (mm) -25 0 25 75 100 Time of arrival 125 x z
  • 50.
    A second example: the SINAI BILLIARD z x 30 emission transducers (1.5 MHz , 5mm x 8 mm pitch 1 mm) Large transducer element, not optimized y Motors hydrophone electronics Electronics : Fully programmable multi-channel system.
  • 51.
    Principle of TRFocusing Emission transducers 400 µs 2 µs µs 2 Hydrophone
  • 52.
    (Fundamental and Harmonics) dB0 0.8 -5 Distance(mm) 0.6 Amplitude FUNDAMENTAL TR Kaleidoscope 0.4 0.2 0 -15 -25 -35 -0.2 -0.4 0 Spatial lobes : - 30 dB Temporal lobes : - 38 dB 20 40 60 80 100 Time (µs) -45 Distance(mm) dB 0 0.6 Distance(mm) Amplitude HARMONIC -5 0.4 0.2 0 -0.2 -15 -25 -35 -0.4 0 Temporal lobes : -60 dB 100 20 40 60 80 Time (µs) Spatial Lobes ~ - 50 dB Distance(mm) -45
  • 53.
    Building a 3DImage Reception transducer (harmonic) Distance (mm) Emission transducers 0 -20 -40 -60 -80 40 40 Object 20 Distance (mm) 20 0 0 Distance (mm)
  • 54.
    The effect ofdissipation on Time Reversal : an example : the skull and brain therapy In a dissipative medium G. Montaldo; M. Tanter, M. Fink
  • 55.
    Influence of thetrabecular bone on the acoustic propagation Diploë :Porous zone (c = 2700 m.s 1) External wall (c = 3000 m.s 1) Internal wall (c = 3000 m.s 1) 2  grad p ( r , t )  ∂  1 ∂ p (r , t )  − =0  1 +τ ( r )  ρ ( r ) div    2 2 ∂t  ρ (r )  ∂t   c (r ) Breaking the time reversal invariance
  • 56.
    The iterative method o(-t) o(t)+d(t) d(t) d(t)+d(t) o(t)-d(t) e(t) e(-t) c(t) Firsttransmit step : the objective T.R and reemission : reconstruction of the objective Emission of the lobes Lobes reconstruction c(-t) e(-t)-c(-t) The difference eliminates the lobes
  • 57.
    Experiments : improvementof the focal spot Water 128 elts. 1.5 MHz Pitch 0.5 mm Absorbing And aberrating Ureol sample 128 elts. 1.5 MHz Pitch 0.5 mm F = 60 mm 0 -5 Amplitude in Db -10 -15 -20 1 -25 10 -30 20 -35 30 -40 -45 0 10 20 30 40 Distance in mm 50 60 D = 60 mm
  • 58.
    Experiments : Spatialand temporal focusing Focusing after 30 iterations Time Reversal Focusing 0 1 -5 2 2 -10 3 3 -15 4 4 -20 5 5 -25 6 Time in µs 1 6 -30 7 10 20 30 40 50 Distance in mm 7 10 20 30 40 50 -35 Distance in mm • Very simple operations : time reversal + signal substraction • Inversion just limited by the propagation time • Here, optimal focusing can be achieved in a few ms !!!
  • 59.
    Focusing through theSkull Classical Cylindrical law Optimal signal to transmit 2 51 0 Transducer number j 2 12 5 1 8 Spatial focusing 0 Transducer number j -5 Pressure (dB) 0 -10 -15 -20 -25 -30 -35 -20 -10 0 10 20 Distance from the initial point source (mm)
  • 60.
    300 elements TimeReversal Mirror (Therapy/Imaging) Global view (300 elements and C 4-2 echographic probe) Front view (300 elements and C 4-2 echographic probe) Coupling + cooling system 128 Channels of a HDI 1000 scanner 200 Emission boards for THERAPY Spherical active surface: Aperture 180 mm Focal dist. 140 mm 100 Emission/Reception boards for THERAPY+IMAGING
  • 61.
    Correction of skullaberrations using an implanted hydrophone Experimental scan without correction Experimental scan with correction (Time reversal + Amplitude Compensation) Acoustic Pressure measured at focus : - 70 Bars, 1600 W.cm-2 (with correction) - 15 Bars, 80 W.cm-2 (without correction)
  • 62.
    Transkull in vivoexperiments
  • 63.
    Transkull in vivoexperiments MRI Histology Transkull in vivo thermally induced necrosis