emmanuel.bossy@espci.fr , IHP, 12 février2014emmanuel.bossy@espci.fr , IHP, 12 février2014
Photoacoustic imaging
with coherent light
Emmanuel Bossy
Institut Langevin, ESPCI ParisTech
CNRS UMR 7587, INSERM U979
Workshop Inverse Problems and Imaging
Institut Henri Poincaré, 12 February 2014
emmanuel.bossy@espci.fr , IHP, 12 février2014
Background: waves and images in complex media
Incident wave
Incident wave
emmanuel.bossy@espci.fr , IHP, 12 février2014
Ultrasound
Visible light
Optics and acoustics in biological tissue
emmanuel.bossy@espci.fr , IHP, 12 février2014
Resolution = optics ∩ ultrasound
Ultrasound
Visible light
Coupling optics and acoustics in biological tissue
emmanuel.bossy@espci.fr , IHP, 12 février2014
Photoacoustics in optically scattering media
emmanuel.bossy@espci.fr , IHP, 12 février2014
Heat confinement regime
X
emmanuel.bossy@espci.fr , IHP, 12 février2014
X
Heat confinement regime
emmanuel.bossy@espci.fr , IHP, 12 février2014
Heat AND stress confinement regime
emmanuel.bossy@espci.fr , IHP, 12 février2014
Heat AND stress confinement regime: initial value problem
emmanuel.bossy@espci.fr , IHP, 12 février2014
time
pressure
2
s
R
T
c
 
0
.
2
P R
P
r
 
Heat AND stress confinement regime: initial value problem
emmanuel.bossy@espci.fr , IHP, 12 février2014
Manohar S. et al, Optics Express 15(19), 2007
Manohar S. et al, Physics in Medicine & Biology 50(11), 2005
• 2D PVDF array
• Light wavelength : 1064 nm
• Ultrasound frequency : 1 MHz
• Imaging depth : ~ 2 cm
• Resolution : ~ 2 mm
• Acquisition time : ~ 30 min
Examples of applications: breast tumor imaging
emmanuel.bossy@espci.fr , IHP, 12 février2014
Zhang E. et al, Physics in Medicine and Biology 54(4), 2009
• Optical detection with a Fabry-Perot
• Light wavelength : 670 nm
• Ultrasound frequency : 0 ─ 20 MHz
• Imaging depth : ~ 6 mm
• Resolution : ~ 100 µm
• Acquisition time : ~ 15 min
Examples of applications: vascularization imaging
emmanuel.bossy@espci.fr , IHP, 12 février2014
Hu S. et al, Optics Letters 36(7), 2011
• Focused single element transducer
• dual light wavelength : 561&570 nm
• Ultrasound frequency : 30 ─ 70 MHz
• Imaging depth : < 1 mm
• Resolution : ~ 10 µm
• Acquisition time : ~ 80 min
Hu S. et al, Optics Letters 36(7), 2011
Examples of applications: functional imaging
emmanuel.bossy@espci.fr , IHP, 12 février2014
Principles of photoacoustic image formation ?
Two different configurations:
• Reconstruction-free imaging
• Reconstruction-based imaging
emmanuel.bossy@espci.fr , IHP, 12 février2014
time ( “=“ distance)
Reconstruction-free imaging
emmanuel.bossy@espci.fr , IHP, 12 février2014
Hu S. et al, Optics Letters 36(7), 2011
time ( “=“ distance)
Reconstruction-free imaging
emmanuel.bossy@espci.fr , IHP, 12 février2014A. Funke, JFA, MF, ACB and E. Bossy, Applied Physics Letters 94(5), 2009
Set of raw photoacoustic signals
"reconstruction-based" : images are obtained by some reconstruction algorithm. Each point
of the final image is computed from multiple signals.
Reconstruction-based imaging (also tomography)
emmanuel.bossy@espci.fr , IHP, 12 février2014
Reconstruction-based imaging (also tomography)
Reconstructed image
"reconstruction-based" : images are obtained by some reconstruction algorithm. Each point
of the final image is computed from multiple signals.
A. Funke, JFA, MF, ACB and E. Bossy, Applied Physics Letters 94(5), 2009
emmanuel.bossy@espci.fr , IHP, 12 février2014
Photoacoustic imaging
with coherent light ?
emmanuel.bossy@espci.fr , IHP, 12 février2014
Photoacoustics in optically scattering media
emmanuel.bossy@espci.fr , IHP, 12 février2014
Enhanced photoacoustic imaging with speckle illumination
speckle illumination
J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013
emmanuel.bossy@espci.fr , IHP, 12 février2014
speckle illumination
fluctuations (N = 2) fluctuations (N = 50)
uniform illuminationphotograph
Enhanced photoacoustic imaging with speckle illumination
J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013
emmanuel.bossy@espci.fr , IHP, 12 février2014
speckle
illum.
Fluct.
(N = 50)
Fluct.
(N = 2)
uniform
illum.
Enhanced photoacoustic imaging with speckle illumination
J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013
photograph
emmanuel.bossy@espci.fr , IHP, 12 février2014
Wavefront shaping
for photoacoustic imaging?
emmanuel.bossy@espci.fr , IHP, 12 février2014
Enhanced photoacoustic imaging with controlled illumination?
Spatial light modulator (SLM)
(mostly liquid crystals)
Segmented, >1 million pixel
course : 1 microns
speed: 50Hz
Deformable mirrors
(piezo, magnetics…)
10-100 actuators (typ.)
course : 10-20 microns
Speed > kHz
Adaptive optics Diffractive optics, displays ….
emmanuel.bossy@espci.fr , IHP, 12 février2014
Optimization approach
emmanuel.bossy@espci.fr , IHP, 12 février2014
Optimization
Background: controlling light through scattering media
emmanuel.bossy@espci.fr , IHP, 12 février2014
Signal to optimizeSignal to optimize
See also Kong, F. et al., Opt. Lett. 36, 2053-2055 (2011)
(monochromatic,
long coherence
length)
X 10
Photoacoustic-guided optimization
emmanuel.bossy@espci.fr , IHP, 12 février2014
29Chaigne et al. arXiv preprint arXiv:1310.7535 (2013).
Photoacoustic-guided optimization with spectral filtering
emmanuel.bossy@espci.fr , IHP, 12 février2014
Transmission-matrix approach
emmanuel.bossy@espci.fr , IHP, 12 février2014
SLM : array of N pixels Linear system camera CCD : arrays of M pixels
=
An alternative approach: the transmission matrix (S. Gigan)
emmanuel.bossy@espci.fr , IHP, 12 février2014
Plane wave input
SLM
CCD
sample
SLM
CCD
sample
SLM
CCD
sample
S. Popoff, GL, RC, MF, ACB and S. Gigan. Phys. Rev. Lett. 104,100601 (2010)
An alternative approach: the transmission matrix (S. Gigan)
emmanuel.bossy@espci.fr , IHP, 12 février2014T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
(532nm, 10Hz, 10ns )
absorbing wires (diameter= 30µm)
• 140 pixels
• phase-only
• spherically focused
• 30MHz central freq
• f-number=2
The photoacoustic transmission-matrix approach
emmanuel.bossy@espci.fr , IHP, 12 février2014
SLM
The photoacoustic transmission-matrix approach
T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
emmanuel.bossy@espci.fr , IHP, 12 février2014
(arb.u.)
The photoacoustic transmission-matrix approach
T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
emmanuel.bossy@espci.fr , IHP, 12 février2014
Focusing through 0.5mm thick
chicken breast tissue
The photoacoustic transmission-matrix approach
T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
emmanuel.bossy@espci.fr , IHP, 12 février2014
2D photoacoustic imaging1D photoacoustic imaging
Mono-element ultrasonic transducer
Ultrasonic Array
The 2-D photoacoustic transmission-matrix approach
emmanuel.bossy@espci.fr , IHP, 12 février2014
(532nm, 10Hz, 10ns )
Black leaf skeleton
(140 pixels, phase-only)
(ultrasonic linear array)
The 2-D photoacoustic transmission-matrix approach
Submitted (arXiv:1402.0279)
emmanuel.bossy@espci.fr , IHP, 12 février2014
SLM : array of pixels
Photoacoustic
image: array of pixels
SLM: array of pixels
The photoacoustic transmission matrix
• Input modes= SLM pixels
• Output modes = Photoacoustic pixels
The 2-D photoacoustic transmission-matrix approach
Submitted (arXiv:1402.0279)
emmanuel.bossy@espci.fr , IHP, 12 février2014
The 2-D photoacoustic transmission-matrix approach
uniform
illumination
SLM-shaped
illumination
Submitted (arXiv:1402.0279)
emmanuel.bossy@espci.fr , IHP, 12 février2014
The 2-D photoacoustic transmission-matrix approach
The photoacoustic transmission-matrix contains information on multiple
random illuminations : equivalent to several speckle illumination
Submitted (arXiv:1402.0279)
emmanuel.bossy@espci.fr , IHP, 12 février2014
The 2-D photoacoustic transmission-matrix approach
The photoacoustic transmission-matrix contains information on multiple
random illumination : equivalent to several speckle illumination
Submitted (arXiv:1402.0279)
emmanuel.bossy@espci.fr , IHP, 12 février2014
43
Standard PA image
Modulation map
PA image when displaying
focusing pattern on SLM
The transmission matrix allows
Identifying the targets
The 2-D photoacoustic transmission-matrix approach
Submitted (arXiv:1402.0279)
emmanuel.bossy@espci.fr , IHP, 12 février2014
Conclusions …
emmanuel.bossy@espci.fr , IHP, 12 février2014
• Increase
 high resolution SLM
• Decrease
 small absorbers
 high frequency transducer
• Fast instrumentation
and measurements
grainsspeckle
pixelsSLM
N
N

pixelsSLMN
grainsspeckleN
45
Challenges Solutions
• Small speckle grains
α λ ≈ 1 μm
 Low enhancement
• Decorrelation of the sample
Challenges with deep-tissue experiments
emmanuel.bossy@espci.fr , IHP, 12 février2014
Acknowledgements
O. SimandouxA. Prost F. Poisson F. Mézière
T. Chaigne Dr. J. Gâteau Dr. O. Katz Pr. S. Gigan
Funding
ESPCI ParisTech, CNRS
INCA Grant Gold Fever
PEPS PSL-CNRS
Fondation Pierre-Gilles de Gennes
Dr. M. Varna

Photoacoustic Imaging with Coherent Light - Emmanuel Bossy

  • 1.
    emmanuel.bossy@espci.fr , IHP,12 février2014emmanuel.bossy@espci.fr , IHP, 12 février2014 Photoacoustic imaging with coherent light Emmanuel Bossy Institut Langevin, ESPCI ParisTech CNRS UMR 7587, INSERM U979 Workshop Inverse Problems and Imaging Institut Henri Poincaré, 12 February 2014
  • 2.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Background: waves and images in complex media Incident wave Incident wave
  • 3.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Ultrasound Visible light Optics and acoustics in biological tissue
  • 4.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Resolution = optics ∩ ultrasound Ultrasound Visible light Coupling optics and acoustics in biological tissue
  • 5.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Photoacoustics in optically scattering media
  • 6.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Heat confinement regime X
  • 7.
    emmanuel.bossy@espci.fr , IHP,12 février2014 X Heat confinement regime
  • 8.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Heat AND stress confinement regime
  • 9.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Heat AND stress confinement regime: initial value problem
  • 10.
    emmanuel.bossy@espci.fr , IHP,12 février2014 time pressure 2 s R T c   0 . 2 P R P r   Heat AND stress confinement regime: initial value problem
  • 11.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Manohar S. et al, Optics Express 15(19), 2007 Manohar S. et al, Physics in Medicine & Biology 50(11), 2005 • 2D PVDF array • Light wavelength : 1064 nm • Ultrasound frequency : 1 MHz • Imaging depth : ~ 2 cm • Resolution : ~ 2 mm • Acquisition time : ~ 30 min Examples of applications: breast tumor imaging
  • 12.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Zhang E. et al, Physics in Medicine and Biology 54(4), 2009 • Optical detection with a Fabry-Perot • Light wavelength : 670 nm • Ultrasound frequency : 0 ─ 20 MHz • Imaging depth : ~ 6 mm • Resolution : ~ 100 µm • Acquisition time : ~ 15 min Examples of applications: vascularization imaging
  • 13.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Hu S. et al, Optics Letters 36(7), 2011 • Focused single element transducer • dual light wavelength : 561&570 nm • Ultrasound frequency : 30 ─ 70 MHz • Imaging depth : < 1 mm • Resolution : ~ 10 µm • Acquisition time : ~ 80 min Hu S. et al, Optics Letters 36(7), 2011 Examples of applications: functional imaging
  • 14.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Principles of photoacoustic image formation ? Two different configurations: • Reconstruction-free imaging • Reconstruction-based imaging
  • 15.
    emmanuel.bossy@espci.fr , IHP,12 février2014 time ( “=“ distance) Reconstruction-free imaging
  • 16.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Hu S. et al, Optics Letters 36(7), 2011 time ( “=“ distance) Reconstruction-free imaging
  • 17.
    emmanuel.bossy@espci.fr , IHP,12 février2014A. Funke, JFA, MF, ACB and E. Bossy, Applied Physics Letters 94(5), 2009 Set of raw photoacoustic signals "reconstruction-based" : images are obtained by some reconstruction algorithm. Each point of the final image is computed from multiple signals. Reconstruction-based imaging (also tomography)
  • 18.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Reconstruction-based imaging (also tomography) Reconstructed image "reconstruction-based" : images are obtained by some reconstruction algorithm. Each point of the final image is computed from multiple signals. A. Funke, JFA, MF, ACB and E. Bossy, Applied Physics Letters 94(5), 2009
  • 19.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Photoacoustic imaging with coherent light ?
  • 20.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Photoacoustics in optically scattering media
  • 21.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Enhanced photoacoustic imaging with speckle illumination speckle illumination J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013
  • 22.
    emmanuel.bossy@espci.fr , IHP,12 février2014 speckle illumination fluctuations (N = 2) fluctuations (N = 50) uniform illuminationphotograph Enhanced photoacoustic imaging with speckle illumination J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013
  • 23.
    emmanuel.bossy@espci.fr , IHP,12 février2014 speckle illum. Fluct. (N = 50) Fluct. (N = 2) uniform illum. Enhanced photoacoustic imaging with speckle illumination J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013 photograph
  • 24.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Wavefront shaping for photoacoustic imaging?
  • 25.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Enhanced photoacoustic imaging with controlled illumination? Spatial light modulator (SLM) (mostly liquid crystals) Segmented, >1 million pixel course : 1 microns speed: 50Hz Deformable mirrors (piezo, magnetics…) 10-100 actuators (typ.) course : 10-20 microns Speed > kHz Adaptive optics Diffractive optics, displays ….
  • 26.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Optimization approach
  • 27.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Optimization Background: controlling light through scattering media
  • 28.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Signal to optimizeSignal to optimize See also Kong, F. et al., Opt. Lett. 36, 2053-2055 (2011) (monochromatic, long coherence length) X 10 Photoacoustic-guided optimization
  • 29.
    emmanuel.bossy@espci.fr , IHP,12 février2014 29Chaigne et al. arXiv preprint arXiv:1310.7535 (2013). Photoacoustic-guided optimization with spectral filtering
  • 30.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Transmission-matrix approach
  • 31.
    emmanuel.bossy@espci.fr , IHP,12 février2014 SLM : array of N pixels Linear system camera CCD : arrays of M pixels = An alternative approach: the transmission matrix (S. Gigan)
  • 32.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Plane wave input SLM CCD sample SLM CCD sample SLM CCD sample S. Popoff, GL, RC, MF, ACB and S. Gigan. Phys. Rev. Lett. 104,100601 (2010) An alternative approach: the transmission matrix (S. Gigan)
  • 33.
    emmanuel.bossy@espci.fr , IHP,12 février2014T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014) (532nm, 10Hz, 10ns ) absorbing wires (diameter= 30µm) • 140 pixels • phase-only • spherically focused • 30MHz central freq • f-number=2 The photoacoustic transmission-matrix approach
  • 34.
    emmanuel.bossy@espci.fr , IHP,12 février2014 SLM The photoacoustic transmission-matrix approach T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
  • 35.
    emmanuel.bossy@espci.fr , IHP,12 février2014 (arb.u.) The photoacoustic transmission-matrix approach T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
  • 36.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Focusing through 0.5mm thick chicken breast tissue The photoacoustic transmission-matrix approach T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
  • 37.
    emmanuel.bossy@espci.fr , IHP,12 février2014 2D photoacoustic imaging1D photoacoustic imaging Mono-element ultrasonic transducer Ultrasonic Array The 2-D photoacoustic transmission-matrix approach
  • 38.
    emmanuel.bossy@espci.fr , IHP,12 février2014 (532nm, 10Hz, 10ns ) Black leaf skeleton (140 pixels, phase-only) (ultrasonic linear array) The 2-D photoacoustic transmission-matrix approach Submitted (arXiv:1402.0279)
  • 39.
    emmanuel.bossy@espci.fr , IHP,12 février2014 SLM : array of pixels Photoacoustic image: array of pixels SLM: array of pixels The photoacoustic transmission matrix • Input modes= SLM pixels • Output modes = Photoacoustic pixels The 2-D photoacoustic transmission-matrix approach Submitted (arXiv:1402.0279)
  • 40.
    emmanuel.bossy@espci.fr , IHP,12 février2014 The 2-D photoacoustic transmission-matrix approach uniform illumination SLM-shaped illumination Submitted (arXiv:1402.0279)
  • 41.
    emmanuel.bossy@espci.fr , IHP,12 février2014 The 2-D photoacoustic transmission-matrix approach The photoacoustic transmission-matrix contains information on multiple random illuminations : equivalent to several speckle illumination Submitted (arXiv:1402.0279)
  • 42.
    emmanuel.bossy@espci.fr , IHP,12 février2014 The 2-D photoacoustic transmission-matrix approach The photoacoustic transmission-matrix contains information on multiple random illumination : equivalent to several speckle illumination Submitted (arXiv:1402.0279)
  • 43.
    emmanuel.bossy@espci.fr , IHP,12 février2014 43 Standard PA image Modulation map PA image when displaying focusing pattern on SLM The transmission matrix allows Identifying the targets The 2-D photoacoustic transmission-matrix approach Submitted (arXiv:1402.0279)
  • 44.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Conclusions …
  • 45.
    emmanuel.bossy@espci.fr , IHP,12 février2014 • Increase  high resolution SLM • Decrease  small absorbers  high frequency transducer • Fast instrumentation and measurements grainsspeckle pixelsSLM N N  pixelsSLMN grainsspeckleN 45 Challenges Solutions • Small speckle grains α λ ≈ 1 μm  Low enhancement • Decorrelation of the sample Challenges with deep-tissue experiments
  • 46.
    emmanuel.bossy@espci.fr , IHP,12 février2014 Acknowledgements O. SimandouxA. Prost F. Poisson F. Mézière T. Chaigne Dr. J. Gâteau Dr. O. Katz Pr. S. Gigan Funding ESPCI ParisTech, CNRS INCA Grant Gold Fever PEPS PSL-CNRS Fondation Pierre-Gilles de Gennes Dr. M. Varna