SlideShare a Scribd company logo
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 1 of 17
Industrial Instrumentation
Flow Measurement
Sl. No.
1.
Newtonโ€™s Law of Viscosity: Shear stress is directly proportional to the velocity
gradient.
๐‰ = ๐
๐’…๐’–
๐’…๐’š
๐‘‘๐‘ข
๐‘‘๐‘ฆ
= ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘‘๐‘’๐‘“๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก๐‘–๐‘œ๐‘› (๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘’๐‘›๐‘ก),
๐œ‡ = ๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐œ = ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  = ๐น ๐ด
โ„
Flow
๐‘ญ = โˆ†๐‘ธ =
๐‘ธ๐’–๐’‚๐’๐’•๐’Š๐’•๐’š
๐‘ป๐’Š๐’Ž๐’†
Volume Flow Rate
๐‘ธ =
๐‘ฝ๐’๐’๐’–๐’Ž๐’†
๐‘ป๐’Š๐’Ž๐’†
Flow Velocity
๐‘ฝ =
๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† (๐‘ธ)
๐‘จ๐’“๐’†๐’‚ (๐‘จ)
Mass or Weight Flow Rate
๐‘พ = ๐†๐‘ธ
Hagen Poiseuille Equation
For a Newtonian incompressible fluid, there is a pressure drop in the fluid flow
which is proportional to the fluid viscosity.
(Assumptions: Incompressible Newtonian fluid, laminar flow through pipe of
constant circular cross-section, no acceleration in fluid velocity)
โˆ†๐‘ƒ =
8๐œ‡๐‘™๐‘„
๐œ‹(๐ท 2
โ„ )4
๐‘ธ =
๐…โˆ†๐‘ท๐‘ซ๐Ÿ’
๐Ÿ๐Ÿ๐Ÿ–๐๐’
๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’, ๐ท = ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ,
๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘™ = ๐‘๐‘–๐‘๐‘’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž
Reynolds Number
A dimensionless number used in fluid mechanics to indicate whether fluid flow
past a body or in a duct is steady or turbulent.
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 2 of 17
๐‘น๐’† =
๐’—๐’…๐†
๐
๐‘ฃ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ; ๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’; ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ; ๐œ‡ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ,
๐‘…๐‘’ < 2000 (๐‘™๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ)
๐‘…๐‘’ > 4000 (๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก)
๐‘…๐‘’2000 <> 4000 ๐‘‡๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐น๐‘™๐‘œ๐‘ค
Kingโ€™s Law
The greater the velocity of the gas across the probes, the greater the cooling effect.
The actual mass flow rate is calculated by measuring the variable power required to
maintain this constant temperature difference as the gas flows across the sensor.
๐‘พ =
๐‘ฏ
โˆ†๐‘ป๐‘ช๐‘ท
๐ถ๐‘ƒ = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘ฆ, ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค, ๐ป = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘–๐‘›๐‘๐‘–๐‘ก, โˆ†๐‘‡ = ๐‘‡๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’
Bernoulli's Equation
Bernoulli's principle says that a rise (fall) in pressure in a flowing fluid must always
be accompanied by a decrease (increase) in the speed, and conversely, i.e. an
increase (decrease) in the speed of the fluid results in a decrease (increase) in the
pressure.
๐‘ƒ +
1
2
๐œŒ๐‘‰2
+ ๐œŒ๐‘”โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐œ•
๐œ•๐‘ 
(
๐‘ฃ2
2
+
๐‘ƒ
๐œŒ
+ ๐‘”. โ„Ž) = 0
๐‘ฃ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ ๐‘๐‘’๐‘’๐‘‘, ๐‘ƒ = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘” = ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ, โ„Ž = โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก
๐œŒ๐‘”โ„Ž = ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โ„Ž๐‘’๐‘Ž๐‘‘,
1
2
๐œŒ๐‘‰2
= ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ โ„Ž๐‘’๐‘Ž๐‘‘ (๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘ฃ2
2
+
๐‘ƒ
๐œŒ
+ ๐‘”. โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘ฃ2
2๐‘”
+
๐‘ƒ
๐›พ
+ โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐›พ = ๐œŒ. ๐‘”
๐œŒ๐‘ฃ2
2
+ ๐‘ƒ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
(๐‘”, โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก)
๐†๐’—๐Ÿ
๐Ÿ
๐Ÿ
+ ๐‘ท๐Ÿ =
๐†๐’—๐Ÿ
๐Ÿ
๐Ÿ
+ ๐‘ท๐Ÿ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’•
๐‘ƒ1
๐œŒ
โˆ’
๐‘ƒ2
๐œŒ
=
1
2
(๐‘ฃ2
2
โˆ’ ๐‘ฃ1
2)
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 3 of 17
(๐‘ฃ2
2
โˆ’ ๐‘ฃ1
2) = 2
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
๐œŒ
๐‘„ = ๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2
๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐‘ƒ1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘ƒ2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’,
๐‘ฃ1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘ฃ2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ,
๐ด1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โˆ’ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐ด2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โˆ’ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž,
๐‘ธ =
๐‘จ๐Ÿ
โˆš๐Ÿ โˆ’ (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐Ÿ
โˆš
๐Ÿ(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
๐†
2.
Variable Head or Differential Pressure Flow Meter
๐‘ญ๐’๐’–๐’Š๐’… ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘ฝ = ๐‘ฌโˆš๐Ÿ๐’ˆ๐’‰
๐†
โ„
๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐‘ฌ๐‘จโˆš๐Ÿ๐’ˆ๐’‰
๐†
โ„
๐‘ด๐’‚๐’”๐’” ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘พ = ๐† โˆ— ๐‘ฌ๐‘จโˆš๐Ÿ๐’ˆ๐’‰
๐†
โ„
๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐‘จ๐’‘๐’‘๐’“๐’๐’‚๐’„๐’‰ (๐‘ฌ) =
๐Ÿ
โˆš๐Ÿ โˆ’ (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐Ÿ
๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’; ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’
๐ด = ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โ€“ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘–๐‘  ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘”
โ„Ž = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ โ„Ž๐‘’๐‘Ž๐‘‘ (๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’) ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก
๐‘” = ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘‘๐‘ข๐‘’ ๐‘ก๐‘œ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ; ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘–๐‘‘
๐พ =
๐ถ๐‘‘
โˆš1 โˆ’ ๐›พ4
๐›พ = ๐‘…๐‘Ž๐‘ก๐‘–๐‘œ ๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘’๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ/๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘’ = ๐‘‘/๐ท
Coefficient of Discharge (๐‘ช๐’…)
It is the ration of the actual discharge to the theoretical discharge.
๐‘ช๐’๐’†๐’‡๐’‡๐’Š๐’„๐’Š๐’†๐’๐’• ๐’๐’‡ ๐‘ซ๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† ๐‘ช๐’… =
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’
๐‘ธ๐’Š๐’…๐’†๐’‚๐’
Vena Contracta (ฮฒ)
The Vena Contracta is the downstream point in a fluid stream where the pressure is
the lowest, and the fluid velocity is the highest, and the stream diameter is the least.
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 4 of 17
๐œท = ๐‘ช๐‘ช. ๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’†
Contraction Factor/Coefficient (๐‘ช๐‘ช)
The Contraction Coefficient is the ration of the area of the jet at the vena contacta
to the area of the orifice.
๐‘ช๐‘ช =
๐‘จ๐’“๐’†๐’‚ ๐’‚๐’• ๐‘ฝ๐’†๐’๐’‚ ๐‘ช๐’๐’๐’•๐’“๐’‚๐’„๐’•๐’‚
๐‘จ๐’“๐’†๐’‚ ๐’๐’‡ ๐‘ถ๐’“๐’Š๐’‡๐’Š๐’„๐’†
=
๐œท
๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’†
โ‰… 0.6 โˆ’ 0.75
Flow Coefficient (๐‘ช๐‘ฝ)
The Flow Coefficient of any device is a relative measure of its efficiency at allowing
fluid flow, and it describes the relationship between the pressure drop (โˆ†๐‘ƒ) across
the orifice/obstruction valve and the corresponding flow rate.
๐‘ช๐‘ฝ = ๐‘ธโˆš
๐‘บ๐‘ฎ
โˆ†๐‘ท
โˆ†๐‘ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘†๐บ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ
Rate of Discharge:
๐‘„ = ๐ด1๐‘‰1 = ๐ด2๐‘‰2
Applying Bernoulliโ€™s equation (ideal flow assumption)
๐‘ƒ1 +
๐œŒ๐‘‰1
2
2
= ๐‘ƒ2 +
๐œŒ๐‘‰2
2
2
The differential pressure head โˆ†โ„Ž is given by:
๐‘ƒ1 โˆ’ ๐‘ƒ2
๐œŒ๐‘”
= โˆ†โ„Ž
3.
Venturi Meter
๐‘ƒ1 โˆ’ ๐‘ƒ2 =
๐œŒ
2
(๐‘ฃ2
2
โˆ’ ๐‘ฃ1
2)
๐‘ƒ1
๐‘ค1
+ ๐‘1 +
๐‘ฃ1
2
2๐‘”
=
๐‘ƒ2
๐‘ค2
+ ๐‘2 +
๐‘ฃ2
2
2๐‘”
๐‘ƒ1 & ๐‘ƒ2 = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐‘ฃ1 & ๐‘ฃ2 = ๐‘Ž๐‘ฃ. ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐‘ค1 & ๐‘ค2 = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐ด1 & ๐ด2 = ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐‘1 & ๐‘2 = ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐œŒ, ๐œŒ1 & ๐œŒ2 = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 5 of 17
Considering the venture meter being held horizontal and fluid at inlet & throat of
same density
๐‘1 = ๐‘2; ๐œŒ1 = ๐œŒ2; ๐‘š = ๐œŒ1๐ด1๐‘ฃ1 = ๐œŒ2๐ด2๐‘ฃ2
๐‘ฃ2
2
โˆ’ ๐‘ฃ1
2
2๐‘”
=
๐‘ƒ1 โˆ’ ๐‘ƒ2
๐‘ค
By equation of continuity
๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2
๐‘ฃ1 = (
๐ด2
๐ด1
) ๐‘ฃ2
๐‘ฃ2 =
1
โˆš1 โˆ’ (
๐ด2
๐ด1
)
2
โˆ— โˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2) = ๐ธโˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
Considering few losses, ๐‘ฃ2 is multiplied with a factor ๐ถ๐‘ฃ called the coefficient of
velocity.
๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) = ๐ถ๐‘ฃ๐ธโˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
Discharge (volume flow rate)
๐‘„ = ๐ด2๐‘ฃ2 = ๐ถ๐‘ฃ๐ด2๐ธโˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
Considering contraction factor ๐ถ๐‘
๐‘„๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ = ๐ถ๐‘๐ถ๐‘ฃ๐ด2๐ธโˆš
2๐‘”
๐‘ค
(๐‘1 โˆ’ ๐‘2)
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘จ๐Ÿ๐‘ฌ๐œถโˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) = ๐‘ช๐’…๐‘จ๐Ÿ๐‘ฌ๐œถโˆš
๐Ÿ๐’ˆ
๐’˜
โˆ†๐‘ท
๐ท๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐ถ๐‘‘ = ๐ถ๐‘๐ถ๐‘ฃ; ๐›ผ = ๐‘Ž ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’,
โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’
๐‘ค = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘, ๐ธ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด๐‘๐‘๐‘Ÿ๐‘œ๐‘Ž๐‘โ„Ž, ๐ด2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘Ž๐‘Ÿ๐‘’๐‘Ž.
4.
Orifice
Vena-contracta is a point where the liquid jet issued from the orifice has the least
diameter, minimum pressure and maximum velocity. It is located at as distance
๐ท1 2
โ„ from the orifice plate approximately.
Actual velocity at vena-contracta is
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 6 of 17
๐’—๐Ÿ(๐’‚๐’„๐’•๐’–๐’‚๐’) =
๐‘ช๐’—
โˆš๐Ÿ โˆ’ (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐Ÿ
โˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) = ๐‘ช๐’—๐‘ฌโˆš
๐Ÿ๐’ˆ
๐’˜
โˆ†๐‘ท
The jet of liquid coming out of the orifice plate contracts to a minimum area ๐ด0 at
the vena-contracta.
Area of the vena-contracta is ๐‘จ๐ŸŽ = ๐‘ช๐’„๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’†
โˆด ๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) =
๐ถ๐‘ฃ
โˆš1 โˆ’ (
๐ถ๐‘๐ด0
๐ด1
)
2
โˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
๐ท๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ = ๐ด2๐‘ฃ2 = ๐ถ๐‘๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™)
โˆด ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’—๐‘ช๐’„
๐‘จ๐ŸŽ
โˆš๐Ÿ โˆ’ (
๐‘ช๐’„๐‘จ๐ŸŽ
๐‘จ๐Ÿ
)
๐Ÿ
โˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
Taking into account the effect of temperature (๐›ผ)
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘จ๐ŸŽ๐‘ฌ๐œถโˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
Let ๐พ = ๐ถ๐‘‘๐ธ
โˆด ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ๐œถ๐‘จ๐ŸŽโˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
Mass Flow across an Orifice Plate
๐‘ธ๐’Ž =
๐‘ช๐’…
โˆš๐Ÿ โˆ’ ๐œท๐Ÿ’
๐
๐…
๐Ÿ’
๐’…๐Ÿ
โˆš๐Ÿโˆ†๐‘ท โˆ— ๐†๐Ÿ
๐‘„๐‘š = ๐‘œ๐‘Ÿ๐‘–๐‘“๐‘–๐‘๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ถ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐›ฝ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ,
๐œ– = ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐‘‘ = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ,
โˆ†๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ
5.
Flow Nozzle
The discharge through a flow nozzle is
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ๐‘ฌ๐‘จ๐’•๐’‰๐’“๐’๐’‚๐’•โˆš
๐Ÿ
๐†
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 7 of 17
๐พ =
๐ถ๐‘‘
โˆš1 โˆ’ (
๐ด2
๐ด1
)
2
=
๐ถ๐‘‘
โˆš1 โˆ’ (
๐‘‘2
๐‘‘1
)
2
, ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ.
6.
Dall Tube
๐‘ฝ = ๐‘ฒ โˆ— โˆš๐‘ซ๐‘ท
๐‘‰ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’;
๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘๐‘Ž๐‘™ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘ 
7.
Pitot Tube
Using Bernoulliโ€™s theorem, we have
๐‘ƒ
๐‘ค
=
๐‘ฃ2
2๐‘”
+
๐‘ƒ0
๐‘ค
๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก; ๐‘ƒ0 = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ (๐‘ฃ) = โˆš
2๐‘”
๐‘ค
(๐‘ƒ โˆ’ ๐‘ƒ0) = โˆš
2๐‘”
๐œŒ
(๐‘ƒ โˆ’ ๐‘ƒ0)
๐’—๐’Ž๐’†๐’‚๐’ = ๐‘ช๐’—โˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ƒ โˆ’ ๐‘ƒ0) = ๐‘ช๐’—โˆš
๐Ÿ๐’ˆ
๐†
(๐‘ƒ โˆ’ ๐‘ƒ0)
๐ถ๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ
Stagnation Pressure:
๐‘†๐‘ก๐‘Ž๐‘”๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ + ๐ท๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘ƒ๐‘ ๐‘ก๐‘Ž๐‘” = ๐‘ƒ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ + (
๐œŒ๐‘ฃ2
2
)
โˆด ๐‘ญ๐’๐’๐’˜ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’— = โˆš
๐Ÿ(๐‘ท๐’”๐’•๐’‚๐’ˆ โˆ’ ๐‘ท๐’”๐’•๐’‚๐’•๐’Š๐’„)
๐†
8.
Annubar
๐‘ธ โˆ ๐‘ฒโˆš๐‘ซ๐‘ท
๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐พ = ๐‘Ž๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก.
๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐ป๐‘–๐‘”โ„Ž ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ (๐ป๐‘ƒ) โˆ’ ๐ฟ๐‘œ๐‘ค ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ (๐ฟ๐‘ƒ)
Annubar Flow Measurement:
๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ณ๐’Š๐’’๐’–๐’Š๐’…) ๐‘ธ๐‘ฝ = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ
๐‘ญ๐’‚๐’‚โˆš
๐‘ซ๐‘ท
๐‘ฎ๐‘ญ
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 8 of 17
๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ฎ๐’‚๐’”) ๐‘ธ๐‘ด๐’‚๐’”๐’” = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ
๐‘ญ๐’‚๐’‚โˆš
๐‘ซ๐‘ท
๐†๐‘ญ
๐‘ด๐’‚๐’”๐’” ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ฎ๐’‚๐’” &๐‘บ๐’•๐’†๐’‚๐’Ž) ๐‘ธ๐‘ด๐’‚๐’”๐’” = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ
๐’€๐’‚๐‘ญ๐’‚๐’‚โˆš
๐‘ท โˆ— ๐‘ซ๐‘ท
๐‘ป
๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐พ = ๐ด๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก,
๐ท = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘ƒ = ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘‡ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’,
๐‘ = ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐บ๐น = ๐‘†๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ,
๐‘Œ๐‘Ž = ๐ด๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐ธ๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐น๐‘Ž๐‘Ž = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ
9.
Elbow Tap
๐ถ๐‘˜
๐‘ฃ2
2๐‘”
=
๐‘ƒ0
๐œŒ๐‘”
+ ๐‘0 โˆ’
๐‘ƒ๐‘–
๐œŒ๐‘”
โˆ’ ๐‘๐‘–
๐‘๐‘– ๐‘Ž๐‘›๐‘‘ ๐‘๐‘œ = ๐‘™๐‘œ๐‘ค๐‘’๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ โ„Ž๐‘–๐‘”โ„Ž๐‘’๐‘ ๐‘ก ๐‘ก๐‘Ž๐‘๐‘๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘–๐‘›๐‘ก๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ.
The flow rate is measured by the following equation.
๐‘ธ = ๐‘จ โˆ— ๐’— =
๐‘จ
โˆš๐‘ช๐’Œ
โˆš๐Ÿ๐’ˆ(
๐‘ท๐’
๐†๐’ˆ
+ ๐’๐ŸŽ โˆ’
๐‘ท๐’Š
๐†๐’ˆ
โˆ’ ๐’๐’Š) = ๐‘ช. ๐‘จโˆš๐Ÿ๐’ˆ(
๐‘ท๐’
๐†๐’ˆ
+ ๐’๐ŸŽ โˆ’
๐‘ท๐’Š
๐†๐’ˆ
โˆ’ ๐’๐’Š)
10
Segmental Wedge Flow Meter
๐‘ธ๐‘ฝ โˆ ๐‘ฒโˆš๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ
11.
Weir
Applying Bernoulliโ€™s equation at undisturbed region of upstream flow and at the
crest of the weir, we get
๐ป +
๐‘‰1
2
2๐‘”
= (๐ป โˆ’ ๐‘ฆ) +
๐‘‰2
2
2๐‘”
๐‘‰1, ๐‘‰2 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค, ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ž๐‘ก ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ.
๐‘‰2 = โˆš2๐‘”(โ„Ž +
๐‘‰1
2
2๐‘”
)
If ๐‘‰1 is small compared to ๐‘‰2, then
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘ฆ๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ = โˆš2๐‘”๐‘ฆ,
๐‘ฆ = depth from the top surface of water level.
For a Weir, the general Elemental Discharge is given as
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 9 of 17
๐‘ฌ๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’ ๐’…๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† = โˆš๐Ÿ๐’ˆ๐’š๐‘ณ๐‘พ๐’…๐’š
๐‘ฌ๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’ ๐’…๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† ๐’๐’‡ ๐’•๐’‰๐’Š๐’ ๐’๐’‚๐’š๐’†๐’“ ๐‘ธ = ๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐’š ๐‘ณ๐‘พ ๐’…๐’š
๐ถ๐‘‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’, ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› 0.57 ๐‘Ž๐‘›๐‘‘ 0.64; ๐ฟ๐‘Š ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž.
Weir Flow Rate ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘ณ๐‘พโˆš๐Ÿ๐’ˆ๐’š โˆซ โˆš๐’š๐’…๐’š
๐‘ฏ
๐ŸŽ
=
๐Ÿ
๐Ÿ‘
๐‘ช๐’…๐‘ณ๐‘พโˆš๐Ÿ๐’ˆ(๐‘ฏ)
๐Ÿ‘
๐Ÿ
โ„
Flow Discharge through Rectangular Weir
๐‘ธ =
๐Ÿ
๐Ÿ‘
๐‘ช๐’…๐‘ณโˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“
=
๐Ÿ
๐Ÿ‘
๐‘ช๐’…(๐‘ณ๐‘พ โˆ’ ๐ŸŽ. ๐Ÿ๐‘ฏ)โˆš๐Ÿ๐’ˆ(๐‘ฏ)
๐Ÿ‘
๐Ÿ
โ„
= ๐Ÿ‘. ๐Ÿ‘๐Ÿ‘(๐‘ณ โˆ’ ๐ŸŽ. ๐Ÿ๐‘ฏ)๐‘ฏ๐Ÿ.๐Ÿ“
๐ถ๐‘‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’; ๐ป = ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘–๐‘› ๐‘›๐‘œ๐‘ก๐‘โ„Ž; ๐ฟ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘›๐‘œ๐‘ก๐‘โ„Ž;
Flow Discharge through V-notch
๐‘ธ =
๐Ÿ–
๐Ÿ๐Ÿ“
๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“
๐ญ๐š๐ง
๐œฝ
๐Ÿ
= ๐Ÿ. ๐Ÿ’๐Ÿ– (๐’•๐’‚๐’
๐œฝ
๐Ÿ
) ๐‘ฏ๐Ÿ.๐Ÿ“
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘Ž๐‘ก ๐‘ฃ โˆ’ ๐‘›๐‘œ๐‘ก๐‘โ„Ž
Flow Discharge through trapezoidal notch (summation rectangular and v-notch)
๐‘ธ =
๐Ÿ
๐Ÿ‘
๐‘ช๐’…๐‘ณโˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“
+
๐Ÿ–
๐Ÿ๐Ÿ“
๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“
๐ญ๐š๐ง
๐œฝ
๐Ÿ
= ๐Ÿ‘. ๐Ÿ‘๐Ÿ”๐Ÿ• โˆ— ๐‘ณ โˆ— ๐‘ฏ๐Ÿ.๐Ÿ“
12.
Flume
Actual discharge through a flume
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ =
๐‘ช๐‘จ๐Ÿ
โˆš๐Ÿ + (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐Ÿ
โˆš๐Ÿ๐’ˆ๐’‰ = ๐‘ช๐‘จ๐Ÿ๐‘ฌโˆš๐Ÿ๐’ˆ๐’‰
The free-flow rate (Q) for a Palmer-Bowlus Flume is given as
๐‘ธ = ๐‘ช๐‘ฏ๐’‚
๐’
โˆ’ ๐‘ธ๐‘ฌ
๐ถ = ๐‘ฃ๐‘’๐‘›๐‘ก๐‘ข๐‘Ÿ๐‘– ๐‘“๐‘™๐‘ข๐‘š๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก (0.95 ๐‘ก๐‘œ 1); โ„Ž = โ„Ž1 โˆ’ โ„Ž2,
๐‘„๐ธ = ๐‘ ๐‘ข๐‘๐‘š๐‘’๐‘Ÿ๐‘”๐‘’๐‘›๐‘๐‘’ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›
Maximum discharge through venture flume is given as
๐‘ธ๐’Ž๐’‚๐’™ = ๐Ÿ. ๐Ÿ•๐’ƒ๐Ÿ๐‘ฏ๐Ÿ.๐Ÿ“
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 10 of 17
๐‘2 = ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ฃ๐‘’๐‘›๐‘ก๐‘ข๐‘Ÿ๐‘– ๐‘“๐‘™๐‘ข๐‘š๐‘’
The maximum value of flow in a venture flume occurs when โ„Ž2 = (
2
3
) โ„Ž
Accuracy of flumes are higher that of weirs.
The free-flow discharge rate (Q) in a Parshall flume is given as
๐‘ธ = ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ’๐Ÿ•
๐Ÿ‘ โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’•
๐‘ธ = ๐Ÿ. ๐ŸŽ๐Ÿ”๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ–
๐Ÿ” โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’•
๐‘ธ = ๐Ÿ‘. ๐ŸŽ๐Ÿ•๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ‘
๐Ÿ— โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’•
๐‘ธ = (๐Ÿ‘. ๐Ÿ”๐Ÿ–๐Ÿ•๐Ÿ“๐‘ณ = ๐Ÿ. ๐Ÿ“)๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ‘
๐Ÿ๐ŸŽ โˆ’ ๐Ÿ“๐ŸŽ ๐’‡๐’†๐’†๐’• ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’•
๐‘„ = ๐น๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ฟ = ๐‘ค๐‘–๐‘‘๐‘กโ„Ž ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘š๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก, ๐ป = ๐ป๐‘’๐‘Ž๐‘‘ (๐‘“๐‘’๐‘’๐‘ก)
13.
Variable-Area Flow Meter
Drag Force
The Drag Force ๐‘ญ๐’…๐’“๐’‚๐’ˆ is a force acting opposite to the relative motion of the objects
which is a function of the fluid velocity. Drag force is proportional to velocity for a
laminar flow and proportional to the velocity squared for a turbulent flow.
The numerical expression for ๐‘ญ๐’…๐’“๐’‚๐’ˆ
๐‘ญ๐’…๐’“๐’‚๐’ˆ =
โˆ†๐‘ท
โˆ†๐‘ธ
= ๐๐‘จ
๐๐’—
๐๐’›
The Drag Force ๐‘ญ๐’…๐’“๐’‚๐’ˆ is also expressed as,
๐‘ญ๐’…๐’“๐’‚๐’ˆ =
๐Ÿ
๐Ÿ
๐†๐’—๐Ÿ
๐‘ช๐‘ซ๐‘จ
๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐ด = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘ช๐‘ซ = ๐ท๐‘Ÿ๐‘Ž๐‘” ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก,
โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’, โˆ†๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘Ÿ๐‘œ๐‘“๐‘–๐‘™๐‘’, ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ,
Force Balance Equation of Variable Area Flow Meter
๐‘ญ๐’…๐’“๐’‚๐’ˆ + ๐‘ญ๐’ƒ๐’–๐’๐’š๐’‚๐’๐’„๐’š = ๐‘ญ๐’˜๐’†๐’Š๐’ˆ๐’‰๐’•
๐‘จ๐’‡(๐‘ท๐’… โˆ’ ๐‘ท๐’–) + ๐†๐’‡๐’‡๐’ˆ๐‘ฝ๐’‡ = ๐†๐’‡๐’ˆ๐‘ฝ๐’‡
(๐‘ท๐’… โˆ’ ๐‘ท๐’–) =
๐‘ฝ๐’‡
๐‘จ๐’‡
๐’ˆ(๐†๐’‡ โˆ’ ๐†๐’‡๐’‡)
๐œŒ๐‘“, ๐œŒ๐‘“๐‘“ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก & ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ; ๐‘‰๐‘“ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก.
๐‘ƒ๐‘‘, ๐‘ƒ๐‘ข = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘Ž๐‘Ÿ๐‘‘ & ๐‘ข๐‘๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ.
Flow rate ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ is given as
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 11 of 17
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ(๐‘จ๐’• โˆ’ ๐‘จ๐’‡)
๐พ = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐ถ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก,
๐ด๐‘ก = ๐‘ก๐‘ข๐‘๐‘’ โˆ’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘Ž๐‘ก ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘™๐‘’๐‘ฃ๐‘’๐‘™, ๐ด๐‘“ = ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ž๐‘Ÿ๐‘’๐‘Ž,
(๐ด๐‘ก โˆ’ ๐ด๐‘“) = ๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘Ž๐‘›๐‘›๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘ข๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก,
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…
๐‘จ๐Ÿ๐‘จ๐Ÿ
โˆš๐‘จ๐Ÿ
๐Ÿ
โˆ’ ๐‘จ๐Ÿ
๐Ÿ
โˆš๐Ÿ๐’ˆโˆšโˆ†๐’‰ =
๐‘ช๐’…(๐‘จ๐’• โˆ’ ๐‘จ๐’‡)
โˆš๐Ÿ โˆ’ (๐‘จ๐’• โˆ’ ๐‘จ๐’‡)
๐Ÿ
/๐‘จ๐’•
๐Ÿ
โˆš๐Ÿ๐’ˆโˆš
๐‘ฝ๐’‡
๐‘จ๐’‡
(๐†๐’‡ โˆ’ ๐†๐’‡๐’‡)
๐†๐’‡๐’‡
If the angle of taper is ฮธ (which is very small), then
๐‘จ๐’• =
๐…
๐Ÿ’
(๐‘ซ๐’Š + ๐’š๐’•๐’‚๐’๐œฝ)๐Ÿ
=
๐…
๐Ÿ’
๐‘ซ๐’Š
๐Ÿ
+
๐…
๐Ÿ
๐’š๐‘ซ๐’Š๐’•๐’‚๐’๐œฝ
๐‘ฆ = ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค. ๐‘Ÿ. ๐‘ก. ๐‘–๐‘›๐‘™๐‘’๐‘ก; ๐ท๐‘– = ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ
๐…
๐Ÿ
๐‘ซ๐’Š๐’š๐’•๐’‚๐’๐œฝ + ๐‘ฒ (
๐…
๐Ÿ’
๐‘ซ๐’Š
๐Ÿ
โˆ’ ๐‘จ๐’‡) = ๐‘ฒ๐Ÿ๐’š + ๐‘ฒ๐Ÿ
14.
Rotameter
By Bernoulliโ€™s theorem and assuming the rotameter to be perfectly vertically
aligned, the energy equation is written as
๐‘2
๐‘ค
+
๐‘ฃ๐‘š2
2
2๐‘”
=
๐‘1
๐‘ค
+
๐‘ฃ๐‘š1
2
2๐‘”
๐‘œ๐‘Ÿ ๐‘ฃ๐‘š2
2
โˆ’ ๐‘ฃ๐‘š1
2
=
2๐‘”
๐‘ค
(๐‘1 โˆ’ ๐‘2)
๐‘ = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’; ๐‘ฃ๐‘š = ๐‘š๐‘’๐‘Ž๐‘› ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ; ๐‘ค = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก
For static equilibrium of the float at any position
๐ด๐‘“ (๐‘1 +
๐‘ฃ๐‘š1
2
2๐‘”
๐‘ค) + ๐‘ฃ๐‘“๐‘ค = ๐ด๐‘“๐‘2 + ๐‘ฃ๐‘“๐‘ค๐‘“
๐‘‰๐‘“ & ๐‘ค๐‘“ ๐‘Ž๐‘Ÿ๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
By the continuity equation, we have
๐‘„ = ๐‘‰
๐‘š๐ด1 = ๐ถ๐‘๐‘ฃ๐‘š2
๐ด2
๐ด1 = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘œ๐‘“ ๐‘ก๐‘Ž๐‘๐‘’๐‘Ÿ๐‘’๐‘‘ ๐‘ก๐‘ข๐‘๐‘’; ๐ด2 = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก & ๐‘ก๐‘ข๐‘๐‘’;
๐ถ๐‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 12 of 17
Thus we have,
๐‘ธ = ๐‘ช๐’„๐‘จ๐Ÿโˆš
๐Ÿ๐’ˆ๐’—๐’‡
๐‘จ๐’‡
(
๐’˜๐’‡
๐’˜
โˆ’ ๐Ÿ) = ๐‘ช๐’„๐‘จ๐Ÿโˆš
๐Ÿ๐’ˆ๐’—๐’‡
๐‘จ๐’‡
(
๐†๐’‡
๐†
โˆ’ ๐Ÿ)
๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐œŒ๐‘“ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก
๐‘ธ โˆ ๐’™; ๐‘ฅ = (๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก)
Rotameter Flow Rate is also obtained using the equation,
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ
๐…
๐Ÿ
๐‘ซ๐’Š๐’š๐’•๐’‚๐’๐œฝ + ๐‘ฒ (
๐…
๐Ÿ’
๐‘ซ๐’Š
๐Ÿ
โˆ’ ๐‘จ๐’‡) = ๐‘ฒ๐Ÿ๐’š + ๐‘ฒ๐Ÿ
๐‘น๐’๐’•๐’‚๐’Ž๐’†๐’•๐’†๐’“ ๐’ˆ๐’Š๐’—๐’†๐’” ๐’๐’Š๐’๐’†๐’‚๐’“ ๐’๐’–๐’•๐’‘๐’–๐’•
15.
Electromagnetic Flow Meter
๐‘ฌ = ๐‘ฉ. ๐’. ๐’—
๐ธ = ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘; ๐ต = ๐‘“๐‘™๐‘ข๐‘ฅ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ; ๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ;
๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ
The volume flow rate for a circular pipe of diameter (D) is given as,
๐‘ธ = ๐‘จ โˆ— ๐’— = ๐… โˆ— (
๐‘ซ
๐Ÿ
)
๐Ÿ
โˆ— ๐’— =
๐…๐‘ซ๐Ÿ
๐’—
๐Ÿ’
=
๐…๐‘ซ๐Ÿ
๐Ÿ’
๐‘ฌ
๐‘ฉ. ๐‘ซ
=
๐…๐‘ซ๐‘ฌ
๐Ÿ’๐‘ฉ
16.
Turbine Flow Meter
๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐’Œ โˆ— ๐’
โ€œKโ€ factor of the turbine element (e.g. pulses per gallon); = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘™๐‘Ž๐‘‘๐‘’
๐‘ฌ = โˆ’
๐’…๐‹
๐’…๐’•
๐ธ = ๐ด๐ถ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘˜ ๐‘ข๐‘ ๐‘๐‘œ๐‘–๐‘™; ๐œ‘ = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘“๐‘–๐‘’๐‘™๐‘‘;
17.
Target Flow Meter
๐‘ญ๐’… =
๐Ÿ
๐Ÿ
๐‘ช๐’…๐†๐’ˆ๐‘ฝ๐Ÿ
๐‘จ
๐น๐‘‘ = ๐ท๐‘Ÿ๐‘Ž๐‘” ๐น๐‘œ๐‘Ÿ๐‘๐‘’, ๐ถ๐‘‘=overall drag coefficient; ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ,
๐ด = ๐‘ก๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ก ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘‰ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
18.
Thermal Flow Meter
For Hot Wire Thermal Flow Meter
๐’’๐’• = โˆ†๐‘ป [๐‘ฒ + ๐Ÿ(๐’Œ๐‘ช๐’—๐†๐…๐’…๐‘ฝ๐’‚๐’—๐’ˆ)
๐Ÿ
๐Ÿ
โ„
]
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 13 of 17
๐‘ž๐‘ก = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘™๐‘œ๐‘ ๐‘  ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘๐‘’๐‘Ÿ ๐‘ข๐‘›๐‘–๐‘ก ๐‘ก๐‘–๐‘š๐‘’, โˆ†๐‘‡ = ๐‘š๐‘’๐‘Ž๐‘› ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ค๐‘–๐‘Ÿ๐‘’,
๐‘‘ = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘˜ = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ, ๐ถ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘โ€ฒ
๐‘  ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก,
๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘‰
๐‘Ž๐‘ฃ๐‘” = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
For Heat Transfer Thermal Flow Meter
๐‘พ =
๐‘ฏ
โˆ†๐‘ป๐‘ช๐’‘
๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค, ๐ป = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘–๐‘›๐‘๐‘ข๐‘ก, โˆ†๐‘‡ = ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘–๐‘› ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’,
๐ถ๐‘ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก;
Kingโ€™s Law for Hot Wire Anemometer:
๐’‰๐‘ซ
๐’Œ
= ๐ŸŽ. ๐Ÿ‘๐ŸŽ + ๐ŸŽ. ๐Ÿ“โˆš(
๐†๐‘ฝ๐‘ซ
๐
)
โ„Ž = ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘–๐‘™๐‘š ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ โ„Ž๐‘’๐‘Ž๐‘ก ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ;
๐‘˜ = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ โ„Ž๐‘œ๐‘ก ๐‘ค๐‘–๐‘Ÿ๐‘’; ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘;
๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š; ๐œ‡ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘;
๐ท = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ โ„Ž๐‘œ๐‘ก ๐‘ค๐‘–๐‘Ÿ๐‘’; ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘…๐‘’ = ๐œŒ๐‘‰๐ท ๐œ‡
โ„
๐ผ2
๐‘…๐‘ค = โ„Ž. ๐ด(๐‘‡๐‘ค โˆ’ ๐‘‡๐‘“)
โ„Ž = ๐›ผ + ๐›ฝโˆš๐‘ฃ
๐‘ฐ๐Ÿ
=
๐‘จ(๐œถ + ๐œทโˆš๐’—)(๐‘ป๐’˜ โˆ’ ๐‘ป๐’‡)
๐‘น๐’˜
= ๐‘ช๐Ÿ + ๐‘ช๐Ÿโˆš๐’—
๐ผ = ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก, ๐‘…๐‘ค = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’,
๐‘‡๐‘ค = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐‘‡๐‘“ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’,
๐ด = โ„Ž๐‘’๐‘Ž๐‘‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, โ„Ž = ๐‘“๐‘ข๐‘›๐‘. ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ,
๐›ผ, ๐›ฝ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐ถ1, ๐ถ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
19.
Vortex Flow Meter
๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘ญ๐’๐’–๐’Š๐’… = ๐‘ฝ๐’๐’“๐’•๐’†๐’™ ๐’‡๐’“๐’†๐’’๐’–๐’†๐’๐’„๐’š / ๐’Œ โˆ’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“
๐‘˜ โˆ’ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘ฆ๐‘–๐‘›๐‘” ๐‘ค๐‘–๐‘กโ„Ž ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ
๐‘บ๐’•๐’“๐’๐’–๐’‰๐’‚๐’ ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ ๐‘บ =
๐’‡๐’”๐’…
๐‘ฝ
๐‘“๐‘† = ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘‘๐‘‘๐‘–๐‘›๐‘” ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ;
๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘™๐‘ข๐‘“๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ; ๐‘‰ = ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘œ๐‘ค;
๐‘ฝ๐’๐’“๐’•๐’†๐’™ ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ =
๐…
๐Ÿ’
๐’…๐Ÿ
๐‘ฝ๐’– = (
๐…
๐Ÿ’
๐’…๐Ÿ
โˆ’ ๐’‰ โˆ— ๐’…) ๐‘ฝ๐’…
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 14 of 17
๐‘‰
๐‘ข = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘‰๐‘‘ = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, โ„Ž = ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ
Vortex Shedding Meter
๐’‡ =
๐‘ต๐’”๐’•๐’—
๐‘ซ
๐‘“ = ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘‘๐‘‘๐‘–๐‘›๐‘” ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ;
๐ท = ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘™๐‘ข๐‘“๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ; ๐‘๐‘ ๐‘ก = ๐‘†๐‘ก๐‘Ÿ๐‘œ๐‘ขโ„Ž๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ;
20.
Ultrasonic Flow Meter
โˆ†๐’‡ =
๐Ÿ๐’—๐’‡๐’„๐’๐’”๐œฝ
๐’„
ฮ”๐‘“ = ๐ท๐‘œ๐‘๐‘๐‘™๐‘’๐‘Ÿ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘ โ„Ž๐‘–๐‘“๐‘ก;
๐‘ฃ = ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ (๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™๐‘™๐‘ฆ, ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’)
๐‘“ = ๐น๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘–๐‘›๐‘๐‘–๐‘‘๐‘’๐‘›๐‘ก ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’;
๐œƒ = ๐ด๐‘›๐‘”๐‘™๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘‘๐‘ข๐‘๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘–๐‘๐‘’ ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ๐‘™๐‘–๐‘›๐‘’๐‘ ;
๐‘ = ๐‘†๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘ ๐‘  ๐‘“๐‘™๐‘ข๐‘–๐‘‘
Fluid Flow Rate ๐‘ธ in a pipe of cross-section area ๐‘จ is given as
๐‘ธ = ๐‘จ โˆ— ๐’— =
๐‘จ โˆ— ๐’„ โˆ— โˆ†๐’‡
๐Ÿ๐’‡ โˆ— ๐’„๐’๐’”๐œฝ
US Flow Meter Transit Time (t):
โˆ†๐’• = (๐’•๐Ÿ โˆ’ ๐’•๐Ÿ) =
๐‘™
๐‘‰
๐‘  + ๐‘‰๐‘๐‘œ๐‘ ๐œƒ
โˆ’
๐‘™
๐‘‰
๐‘  โˆ’ ๐‘‰๐‘๐‘œ๐‘ ๐œƒ
=
2๐‘™๐‘‰๐‘๐‘œ๐‘ ๐œƒ
๐‘‰
๐‘ 
2 โˆ’ ๐‘‰๐‘๐‘œ๐‘ ๐œƒ2
โˆ†๐’• = (๐’•๐Ÿ โˆ’ ๐’•๐Ÿ) =
๐’
๐‘ฝ๐’” โˆ’ ๐‘ฝ๐‘๐‘œ๐‘ ๐œƒ
โˆ’
๐’
๐‘ฝ๐’” + ๐‘ฝ๐‘๐‘œ๐‘ ๐œƒ
=
๐Ÿ๐’๐‘ฝ
๐‘ฝ๐’”
๐Ÿ
(โˆต ๐‘ฝ โ‰ช ๐‘ฝ๐’”)
๐‘‰
๐‘  = ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘Ž๐‘›๐‘‘ ๐‘‰ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ,
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘’๐‘‘ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘Ÿ ๐‘Ž๐‘“๐‘ก๐‘’๐‘Ÿ ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ ๐‘–๐‘‘๐‘’
US Flow Meter Doppler Shift:
๐ฏ =
โˆ†๐’‡๐’„
๐Ÿ๐’‡๐ŸŽ๐’„๐’๐’”๐œฝ
= โˆ†๐’‡๐‘ฒ
ฮธ
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 15 of 17
โˆ†๐‘“ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘‘ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘, ๐‘ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘‘๐‘ข๐‘๐‘’๐‘Ÿ,
๐‘“๐‘œ = ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ ๐‘ ๐‘–๐‘œ๐‘›,
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘Ÿ ๐‘๐‘Ÿ๐‘ฆ๐‘ ๐‘ก๐‘Ž๐‘™ ๐‘ค. ๐‘Ÿ. ๐‘ก ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘’๐‘Ÿ ๐‘Ž๐‘ฅ๐‘–๐‘ 
I. Crystal placed inside the tube
โˆ†๐‘ก1 =
๐‘‘
๐ถ + ๐‘ฃ
; โˆ†๐‘ก2 =
๐‘‘
๐ถ โˆ’ ๐‘ฃ
โˆ†๐’• = โˆ†๐’•๐Ÿ โˆ’ โˆ†๐’•๐Ÿ =
๐Ÿ๐’…๐’—
๐‘ช๐Ÿ โˆ’ ๐’—๐Ÿ
โˆ†๐’• =
๐Ÿ๐’…๐’—
๐‘ช๐Ÿ
(๐’‚๐’”๐’”๐’–๐’Ž๐’Š๐’๐’ˆ ๐‘ช โ‰ซ ๐’—)
๐ถ = ๐‘ ๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘š๐‘’๐‘‘๐‘–๐‘ข๐‘š; ๐‘ฃ = ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘;
๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘‡ & ๐‘…
It is linearly proportional to flow velocity (v).
When sinusoidal signal frequency of ๐‘“ Hz travels along the fluid flow, it has a
phase shift of
โˆ†๐œ‘1 =
2๐œ‹๐‘“๐‘‘
๐ถ + ๐‘ฃ
๐‘Ÿ๐‘Ž๐‘‘
When sinusoidal signal frequency of ๐‘“ Hz travels against the fluid flow, it has a
phase shift of
โˆ†๐œ‘2 =
2๐œ‹๐‘“๐‘‘
๐ถ โˆ’ ๐‘ฃ
๐‘Ÿ๐‘Ž๐‘‘
Velocity of fluid can be measured by either measuring the transient time or the
phase shift.
II. Crystals (T & R) placed outside the tube
โˆ†๐‘ก =
2๐‘‘ cos ๐œƒ
๐ถ2
๐‘ฃ
๐’— =
โˆ†๐’•๐‘ช๐Ÿ
๐Ÿ๐’… ๐œ๐จ๐ฌ ๐œฝ
๐œƒ = ๐‘–๐‘›๐‘๐‘™๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘‡ & ๐‘…
III. US method using feedback
Pulse repetition frequency in forward loop
1
โˆ†๐‘ก1
= ๐‘“1
Pulse repetition frequency in backward loop
1
โˆ†๐‘ก2
= ๐‘“2
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 16 of 17
โˆ†๐‘ก1 =
๐‘‘
๐ถ + ๐‘ฃ cos ๐œƒ
; โˆ†๐‘“1 =
๐ถ + ๐‘ฃ cos ๐œƒ
๐‘‘
โˆ†๐‘ก2 =
๐‘‘
๐ถ โˆ’ ๐‘ฃ cos ๐œƒ
; โˆ†๐‘“2 =
๐ถ โˆ’ ๐‘ฃ cos ๐œƒ
๐‘‘
โˆ†๐’‡ = ๐’‡๐Ÿ โˆ’ ๐’‡๐Ÿ =
๐Ÿ๐’— ๐œ๐จ๐ฌ ๐œฝ
๐’…
IV. US Doppler Flowmeter
โˆ†๐’‡ = ๐’‡๐’• โˆ’ ๐’‡๐’“ =
๐Ÿ ๐’‡๐’•๐œ๐จ๐ฌ ๐œฝ๐’—
๐‘ช
V. Laser Doppler Anemometer
๐’‡ =
๐Ÿ๐’— ๐ฌ๐ข๐ง ๐œฝ ๐Ÿ
โ„
๐€
๐‘“ = ๐ท๐‘œ๐‘๐‘๐‘™๐‘’๐‘Ÿ ๐‘†โ„Ž๐‘–๐‘“๐‘ก ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐œ† = ๐‘ค๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘ ๐‘’๐‘Ÿ ๐‘๐‘’๐‘Ž๐‘š,
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ (๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘  โˆ’ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’)
21.
Coriolis Effect
๐‘ญ๐’„ = โˆ’๐Ÿ๐’Ž๐Ž โˆ— ๐’—
๐ถ๐‘œ๐‘Ÿ๐‘–๐‘œ๐‘™๐‘–๐‘  ๐น๐‘œ๐‘Ÿ๐‘๐‘’
= โˆ’2 โˆ— (๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก) โˆ— (๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ)
โˆ— (๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘” ๐‘“๐‘Ÿ๐‘Ž๐‘š๐‘’)
22.
Variable Reluctance Tachogenerator
๐‘น๐’†๐’๐’–๐’„๐’•๐’‚๐’๐’„๐’† ๐‘น =
๐‘ด๐‘ด๐‘ญ
โˆ…
โˆด ๐‘ด๐‘ด๐‘ญ = ๐‘น โˆ— โˆ…
๐ธ๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ๐ธ๐‘€๐น = โˆ’
๐‘‘โˆ…
๐‘‘๐‘ก
= โˆ’
๐‘‘โˆ…
๐‘‘๐œƒ
.
๐‘‘๐œƒ
๐‘‘๐‘ก
โˆ…๐‘‡ = ๐‘›โˆ… = ๐‘›
๐‘€๐‘€๐น
๐‘…
โˆ…๐‘‡(๐œƒ) = ๐›ผ + ๐›ฝcos(๐‘›๐œƒ)
๐ธ๐‘€๐น = โˆ’
๐‘‘โˆ…๐‘‡
๐‘‘๐‘ก
= โˆ’
๐‘‘โˆ…๐‘‡
๐‘‘๐œƒ
๐‘‘๐œƒ
๐‘‘๐‘ก
๐‘‘โˆ…๐‘‡
๐‘‘๐œƒ
= โˆ’๐›ฝ๐‘›๐‘ ๐‘–๐‘›(๐‘›๐œƒ), ๐‘Ž๐‘›๐‘‘ ๐œƒ = ๐œ”๐‘ก, ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘œ๐‘–๐‘™ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘ 
๐‘‘๐œƒ
๐‘‘๐‘ก
= ๐œ”
โˆด ๐‘ฌ๐‘ด๐‘ญ = ๐œท๐’๐Ž๐ฌ๐ข๐ง(๐’๐Ž๐’•)
๐‘€๐‘€๐น = ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’, โˆ… = ๐‘“๐‘™๐‘ข๐‘ฅ; โˆ…๐‘‡ = ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘™๐‘ข๐‘ฅ, ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘œ๐‘–๐‘™ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘ ,
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›, ๐›ผ = ๐‘š๐‘’๐‘Ž๐‘› ๐‘“๐‘™๐‘ข๐‘ฅ, ๐›ฝ = ๐‘ก๐‘–๐‘š๐‘’ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘ฆ๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘ฅ ๐‘Ž๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’,
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 17 of 17
๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘คโ„Ž๐‘’๐‘’๐‘™ ๐‘ก๐‘’๐‘’๐‘กโ„Ž, ๐œ” = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘คโ„Ž๐‘’๐‘’๐‘™
23.
Linear Resistance Element Flow Meter
Hagen โ€“ Poiseulle Equation (๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ โˆ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ)
โˆ†๐‘ =
8๐œ‡๐ฟ๐‘„
๐œ‹๐‘…4
๐‘ธ =
๐…๐‘ซ๐Ÿ’
๐Ÿ๐Ÿ๐Ÿ–๐๐‘ณ
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘ค๐‘œ ๐‘’๐‘›๐‘‘๐‘ , ๐ฟ = ๐‘๐‘–๐‘๐‘’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž,
๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐‘… = ๐‘๐‘–๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘ , ๐œ‡ = ๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก,
(๐‘ƒ1 โˆ’ ๐‘ƒ2) = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ก๐‘ข๐‘๐‘’, ๐ท = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ,

More Related Content

What's hot

Ultrasonic flow measurement
Ultrasonic flow measurementUltrasonic flow measurement
Ultrasonic flow measurement
Pritesh Parikh
ย 
Hydraulics chapter 1
Hydraulics chapter 1Hydraulics chapter 1
Hydraulics chapter 1
Kashif Hashmi
ย 
Fluid mechanics - Motion of Fluid Particles and Stream
Fluid mechanics - Motion of Fluid Particles and StreamFluid mechanics - Motion of Fluid Particles and Stream
Fluid mechanics - Motion of Fluid Particles and Stream
Viraj Patel
ย 
Flow measurement part II
Flow measurement   part IIFlow measurement   part II
Flow measurement part II
Burdwan University
ย 
A Presentation on Field Instrumentation.
A Presentation on Field Instrumentation.A Presentation on Field Instrumentation.
A Presentation on Field Instrumentation.
Chinaza Clement Owuamalam
ย 
Strain gauge
Strain gaugeStrain gauge
Strain gauge
SAKSHICHIKSHE1
ย 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
preet yadav
ย 
Flow patterns and types of flow
Flow patterns and types of flowFlow patterns and types of flow
Flow patterns and types of flow
Kathan Sindhvad
ย 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamicsCik Minn
ย 
Presentation 2 ce 801
Presentation  2  ce 801Presentation  2  ce 801
Presentation 2 ce 801
World University of Bangladesh
ย 
Fluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentumFluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentum
Mohsin Siddique
ย 
selection criteria for flow meters
selection criteria for flow metersselection criteria for flow meters
selection criteria for flow meters
Muhammad Ahmad
ย 
Bernoulli's Principle
Bernoulli's PrincipleBernoulli's Principle
Bernoulli's Principleeliseb
ย 
Types of fluid flow
Types of fluid flowTypes of fluid flow
Types of fluid flow
Ramji dwivedi
ย 
Flow measurement
Flow measurement Flow measurement
Flow measurement
Vaibhav Suryawanshi
ย 
0 open channel intro 5
0 open channel   intro 50 open channel   intro 5
0 open channel intro 5
Refee Lubong
ย 
Compressible Fluid
Compressible FluidCompressible Fluid
Compressible Fluid
Dhaval Jalalpara
ย 
VENTURIMETER -Application of Bernoulli's Law
VENTURIMETER -Application of Bernoulli's LawVENTURIMETER -Application of Bernoulli's Law
VENTURIMETER -Application of Bernoulli's Law
Kundan Kumar
ย 
Flow Sensors
Flow SensorsFlow Sensors
Flow Sensors
Saralah Alizadeh Arand
ย 

What's hot (20)

Ultrasonic flow measurement
Ultrasonic flow measurementUltrasonic flow measurement
Ultrasonic flow measurement
ย 
Hydraulics chapter 1
Hydraulics chapter 1Hydraulics chapter 1
Hydraulics chapter 1
ย 
Fluid mechanics - Motion of Fluid Particles and Stream
Fluid mechanics - Motion of Fluid Particles and StreamFluid mechanics - Motion of Fluid Particles and Stream
Fluid mechanics - Motion of Fluid Particles and Stream
ย 
Flow measurement part II
Flow measurement   part IIFlow measurement   part II
Flow measurement part II
ย 
A Presentation on Field Instrumentation.
A Presentation on Field Instrumentation.A Presentation on Field Instrumentation.
A Presentation on Field Instrumentation.
ย 
Strain gauge
Strain gaugeStrain gauge
Strain gauge
ย 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
ย 
Flow patterns and types of flow
Flow patterns and types of flowFlow patterns and types of flow
Flow patterns and types of flow
ย 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
ย 
Presentation 2 ce 801
Presentation  2  ce 801Presentation  2  ce 801
Presentation 2 ce 801
ย 
Fluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentumFluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentum
ย 
selection criteria for flow meters
selection criteria for flow metersselection criteria for flow meters
selection criteria for flow meters
ย 
Bernoulli's Principle
Bernoulli's PrincipleBernoulli's Principle
Bernoulli's Principle
ย 
Types of fluid flow
Types of fluid flowTypes of fluid flow
Types of fluid flow
ย 
Flow measurement
Flow measurement Flow measurement
Flow measurement
ย 
Thermal Mass Flowmeter (ABB N.V.)
Thermal Mass Flowmeter (ABB N.V.)Thermal Mass Flowmeter (ABB N.V.)
Thermal Mass Flowmeter (ABB N.V.)
ย 
0 open channel intro 5
0 open channel   intro 50 open channel   intro 5
0 open channel intro 5
ย 
Compressible Fluid
Compressible FluidCompressible Fluid
Compressible Fluid
ย 
VENTURIMETER -Application of Bernoulli's Law
VENTURIMETER -Application of Bernoulli's LawVENTURIMETER -Application of Bernoulli's Law
VENTURIMETER -Application of Bernoulli's Law
ย 
Flow Sensors
Flow SensorsFlow Sensors
Flow Sensors
ย 

Similar to Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations.pdf

Industrial instrumentation flow measurement important equations
Industrial instrumentation   flow measurement important equationsIndustrial instrumentation   flow measurement important equations
Industrial instrumentation flow measurement important equations
Burdwan University
ย 
Industrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdfIndustrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdf
Burdwan University
ย 
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Burdwan University
ย 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
EngMyKer
ย 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
Wasswaderrick3
ย 
Laminar Flow.pptx
Laminar Flow.pptxLaminar Flow.pptx
Laminar Flow.pptx
vinukorekar
ย 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
MuhammadUsman1795
ย 
Electronic Measurement Flow Measurement
Electronic Measurement Flow MeasurementElectronic Measurement Flow Measurement
Electronic Measurement Flow Measurement
Burdwan University
ย 
FM CHAPTER 4.pptx
FM CHAPTER 4.pptxFM CHAPTER 4.pptx
FM CHAPTER 4.pptx
tarini8
ย 
Applications of Bernoullis eq. (venturi & Nozzle) 2
 Applications of Bernoullis eq. (venturi & Nozzle) 2 Applications of Bernoullis eq. (venturi & Nozzle) 2
Applications of Bernoullis eq. (venturi & Nozzle) 2
Dr. Ezzat Elsayed Gomaa
ย 
Fluid Mechanics (2).pdf
Fluid Mechanics (2).pdfFluid Mechanics (2).pdf
Fluid Mechanics (2).pdf
AnonymousQm0zbNk
ย 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks
9866560321sv
ย 
Applications of Bernoullis eq. (venturi & Nozzle)
 Applications of Bernoullis eq. (venturi & Nozzle) Applications of Bernoullis eq. (venturi & Nozzle)
Applications of Bernoullis eq. (venturi & Nozzle)
Dr. Ezzat Elsayed Gomaa
ย 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Burdwan University
ย 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
ChintanModi26
ย 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
vaibhav tailor
ย 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves PosterChristopher Wai
ย 
Fluid flow 2.pdf
Fluid flow 2.pdfFluid flow 2.pdf
Fluid flow 2.pdf
safuraqazi
ย 
Fluid flow by ankita yagnik
Fluid flow by ankita yagnikFluid flow by ankita yagnik
Fluid flow by ankita yagnik
Ankita Yagnik
ย 
Presentation Pipes
Presentation PipesPresentation Pipes
Presentation Pipes
MuhammadUsman1795
ย 

Similar to Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations.pdf (20)

Industrial instrumentation flow measurement important equations
Industrial instrumentation   flow measurement important equationsIndustrial instrumentation   flow measurement important equations
Industrial instrumentation flow measurement important equations
ย 
Industrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdfIndustrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdf
ย 
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
ย 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
ย 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
ย 
Laminar Flow.pptx
Laminar Flow.pptxLaminar Flow.pptx
Laminar Flow.pptx
ย 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
ย 
Electronic Measurement Flow Measurement
Electronic Measurement Flow MeasurementElectronic Measurement Flow Measurement
Electronic Measurement Flow Measurement
ย 
FM CHAPTER 4.pptx
FM CHAPTER 4.pptxFM CHAPTER 4.pptx
FM CHAPTER 4.pptx
ย 
Applications of Bernoullis eq. (venturi & Nozzle) 2
 Applications of Bernoullis eq. (venturi & Nozzle) 2 Applications of Bernoullis eq. (venturi & Nozzle) 2
Applications of Bernoullis eq. (venturi & Nozzle) 2
ย 
Fluid Mechanics (2).pdf
Fluid Mechanics (2).pdfFluid Mechanics (2).pdf
Fluid Mechanics (2).pdf
ย 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks
ย 
Applications of Bernoullis eq. (venturi & Nozzle)
 Applications of Bernoullis eq. (venturi & Nozzle) Applications of Bernoullis eq. (venturi & Nozzle)
Applications of Bernoullis eq. (venturi & Nozzle)
ย 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
ย 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
ย 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
ย 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
ย 
Fluid flow 2.pdf
Fluid flow 2.pdfFluid flow 2.pdf
Fluid flow 2.pdf
ย 
Fluid flow by ankita yagnik
Fluid flow by ankita yagnikFluid flow by ankita yagnik
Fluid flow by ankita yagnik
ย 
Presentation Pipes
Presentation PipesPresentation Pipes
Presentation Pipes
ย 

More from Burdwan University

2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf
Burdwan University
ย 
1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf
Burdwan University
ย 
Temperature Unit Conversions.pdf
Temperature Unit Conversions.pdfTemperature Unit Conversions.pdf
Temperature Unit Conversions.pdf
Burdwan University
ย 
Pressure Unit Conversions.pdf
Pressure Unit Conversions.pdfPressure Unit Conversions.pdf
Pressure Unit Conversions.pdf
Burdwan University
ย 
Medical specializations
Medical specializationsMedical specializations
Medical specializations
Burdwan University
ย 
Electronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q MeterElectronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q Meter
Burdwan University
ย 
Electronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor MeterElectronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor Meter
Burdwan University
ย 
Electronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - MeggerElectronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - Megger
Burdwan University
ย 
pH and Conductivity Measurement
pH and Conductivity MeasurementpH and Conductivity Measurement
pH and Conductivity Measurement
Burdwan University
ย 
Relative Humidity Measurement
Relative Humidity MeasurementRelative Humidity Measurement
Relative Humidity Measurement
Burdwan University
ย 
Viscosity Measurement
Viscosity MeasurementViscosity Measurement
Viscosity Measurement
Burdwan University
ย 
Electronic Measurement - Pressure Measurement
Electronic Measurement - Pressure MeasurementElectronic Measurement - Pressure Measurement
Electronic Measurement - Pressure Measurement
Burdwan University
ย 
Electronic Measurement - Level Measurement
Electronic Measurement - Level MeasurementElectronic Measurement - Level Measurement
Electronic Measurement - Level Measurement
Burdwan University
ย 
Electronic Measurement - Temperature Measurement
Electronic Measurement - Temperature MeasurementElectronic Measurement - Temperature Measurement
Electronic Measurement - Temperature Measurement
Burdwan University
ย 
5 Commonly Used Transducers
5 Commonly Used Transducers5 Commonly Used Transducers
5 Commonly Used Transducers
Burdwan University
ย 
Optical Instrumentation 12. Optical Fibre Losses
Optical Instrumentation   12. Optical Fibre LossesOptical Instrumentation   12. Optical Fibre Losses
Optical Instrumentation 12. Optical Fibre Losses
Burdwan University
ย 
Basics of Sensors & Transducers
Basics of Sensors & TransducersBasics of Sensors & Transducers
Basics of Sensors & Transducers
Burdwan University
ย 
Optical Instrumentation 3. Basics of Photometry
Optical Instrumentation   3. Basics of Photometry Optical Instrumentation   3. Basics of Photometry
Optical Instrumentation 3. Basics of Photometry
Burdwan University
ย 
Measurement System
Measurement SystemMeasurement System
Measurement System
Burdwan University
ย 
Workshop on Gandhian Philosophy
Workshop on Gandhian PhilosophyWorkshop on Gandhian Philosophy
Workshop on Gandhian Philosophy
Burdwan University
ย 

More from Burdwan University (20)

2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf
ย 
1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf
ย 
Temperature Unit Conversions.pdf
Temperature Unit Conversions.pdfTemperature Unit Conversions.pdf
Temperature Unit Conversions.pdf
ย 
Pressure Unit Conversions.pdf
Pressure Unit Conversions.pdfPressure Unit Conversions.pdf
Pressure Unit Conversions.pdf
ย 
Medical specializations
Medical specializationsMedical specializations
Medical specializations
ย 
Electronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q MeterElectronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q Meter
ย 
Electronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor MeterElectronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor Meter
ย 
Electronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - MeggerElectronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - Megger
ย 
pH and Conductivity Measurement
pH and Conductivity MeasurementpH and Conductivity Measurement
pH and Conductivity Measurement
ย 
Relative Humidity Measurement
Relative Humidity MeasurementRelative Humidity Measurement
Relative Humidity Measurement
ย 
Viscosity Measurement
Viscosity MeasurementViscosity Measurement
Viscosity Measurement
ย 
Electronic Measurement - Pressure Measurement
Electronic Measurement - Pressure MeasurementElectronic Measurement - Pressure Measurement
Electronic Measurement - Pressure Measurement
ย 
Electronic Measurement - Level Measurement
Electronic Measurement - Level MeasurementElectronic Measurement - Level Measurement
Electronic Measurement - Level Measurement
ย 
Electronic Measurement - Temperature Measurement
Electronic Measurement - Temperature MeasurementElectronic Measurement - Temperature Measurement
Electronic Measurement - Temperature Measurement
ย 
5 Commonly Used Transducers
5 Commonly Used Transducers5 Commonly Used Transducers
5 Commonly Used Transducers
ย 
Optical Instrumentation 12. Optical Fibre Losses
Optical Instrumentation   12. Optical Fibre LossesOptical Instrumentation   12. Optical Fibre Losses
Optical Instrumentation 12. Optical Fibre Losses
ย 
Basics of Sensors & Transducers
Basics of Sensors & TransducersBasics of Sensors & Transducers
Basics of Sensors & Transducers
ย 
Optical Instrumentation 3. Basics of Photometry
Optical Instrumentation   3. Basics of Photometry Optical Instrumentation   3. Basics of Photometry
Optical Instrumentation 3. Basics of Photometry
ย 
Measurement System
Measurement SystemMeasurement System
Measurement System
ย 
Workshop on Gandhian Philosophy
Workshop on Gandhian PhilosophyWorkshop on Gandhian Philosophy
Workshop on Gandhian Philosophy
ย 

Recently uploaded

Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
ย 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
ย 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
ย 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
ย 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
ย 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
ย 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
ย 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
ย 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
ย 
ๅœจ็บฟๅŠž็†(ANUๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅ›ฝ็ซ‹ๅคงๅญฆๆฏ•ไธš่ฏๅฝ•ๅ–้€š็Ÿฅไนฆไธ€ๆจกไธ€ๆ ท
ๅœจ็บฟๅŠž็†(ANUๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅ›ฝ็ซ‹ๅคงๅญฆๆฏ•ไธš่ฏๅฝ•ๅ–้€š็Ÿฅไนฆไธ€ๆจกไธ€ๆ ทๅœจ็บฟๅŠž็†(ANUๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅ›ฝ็ซ‹ๅคงๅญฆๆฏ•ไธš่ฏๅฝ•ๅ–้€š็Ÿฅไนฆไธ€ๆจกไธ€ๆ ท
ๅœจ็บฟๅŠž็†(ANUๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅ›ฝ็ซ‹ๅคงๅญฆๆฏ•ไธš่ฏๅฝ•ๅ–้€š็Ÿฅไนฆไธ€ๆจกไธ€ๆ ท
obonagu
ย 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
ย 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
ย 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
ย 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
ย 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
ย 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
ย 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
ย 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
ย 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
ย 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
ย 

Recently uploaded (20)

Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
ย 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
ย 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ย 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ย 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
ย 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
ย 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
ย 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
ย 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
ย 
ๅœจ็บฟๅŠž็†(ANUๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅ›ฝ็ซ‹ๅคงๅญฆๆฏ•ไธš่ฏๅฝ•ๅ–้€š็Ÿฅไนฆไธ€ๆจกไธ€ๆ ท
ๅœจ็บฟๅŠž็†(ANUๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅ›ฝ็ซ‹ๅคงๅญฆๆฏ•ไธš่ฏๅฝ•ๅ–้€š็Ÿฅไนฆไธ€ๆจกไธ€ๆ ทๅœจ็บฟๅŠž็†(ANUๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅ›ฝ็ซ‹ๅคงๅญฆๆฏ•ไธš่ฏๅฝ•ๅ–้€š็Ÿฅไนฆไธ€ๆจกไธ€ๆ ท
ๅœจ็บฟๅŠž็†(ANUๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅ›ฝ็ซ‹ๅคงๅญฆๆฏ•ไธš่ฏๅฝ•ๅ–้€š็Ÿฅไนฆไธ€ๆจกไธ€ๆ ท
ย 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
ย 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
ย 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
ย 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
ย 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
ย 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
ย 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
ย 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
ย 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
ย 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
ย 

Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations.pdf

  • 1. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 1 of 17 Industrial Instrumentation Flow Measurement Sl. No. 1. Newtonโ€™s Law of Viscosity: Shear stress is directly proportional to the velocity gradient. ๐‰ = ๐ ๐’…๐’– ๐’…๐’š ๐‘‘๐‘ข ๐‘‘๐‘ฆ = ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘‘๐‘’๐‘“๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก๐‘–๐‘œ๐‘› (๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘’๐‘›๐‘ก), ๐œ‡ = ๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐œ = ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  = ๐น ๐ด โ„ Flow ๐‘ญ = โˆ†๐‘ธ = ๐‘ธ๐’–๐’‚๐’๐’•๐’Š๐’•๐’š ๐‘ป๐’Š๐’Ž๐’† Volume Flow Rate ๐‘ธ = ๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ป๐’Š๐’Ž๐’† Flow Velocity ๐‘ฝ = ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† (๐‘ธ) ๐‘จ๐’“๐’†๐’‚ (๐‘จ) Mass or Weight Flow Rate ๐‘พ = ๐†๐‘ธ Hagen Poiseuille Equation For a Newtonian incompressible fluid, there is a pressure drop in the fluid flow which is proportional to the fluid viscosity. (Assumptions: Incompressible Newtonian fluid, laminar flow through pipe of constant circular cross-section, no acceleration in fluid velocity) โˆ†๐‘ƒ = 8๐œ‡๐‘™๐‘„ ๐œ‹(๐ท 2 โ„ )4 ๐‘ธ = ๐…โˆ†๐‘ท๐‘ซ๐Ÿ’ ๐Ÿ๐Ÿ๐Ÿ–๐๐’ ๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’, ๐ท = ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘™ = ๐‘๐‘–๐‘๐‘’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž Reynolds Number A dimensionless number used in fluid mechanics to indicate whether fluid flow past a body or in a duct is steady or turbulent.
  • 2. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 2 of 17 ๐‘น๐’† = ๐’—๐’…๐† ๐ ๐‘ฃ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ; ๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’; ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ; ๐œ‡ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘…๐‘’ < 2000 (๐‘™๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ) ๐‘…๐‘’ > 4000 (๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก) ๐‘…๐‘’2000 <> 4000 ๐‘‡๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐น๐‘™๐‘œ๐‘ค Kingโ€™s Law The greater the velocity of the gas across the probes, the greater the cooling effect. The actual mass flow rate is calculated by measuring the variable power required to maintain this constant temperature difference as the gas flows across the sensor. ๐‘พ = ๐‘ฏ โˆ†๐‘ป๐‘ช๐‘ท ๐ถ๐‘ƒ = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘ฆ, ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค, ๐ป = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘–๐‘›๐‘๐‘–๐‘ก, โˆ†๐‘‡ = ๐‘‡๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ Bernoulli's Equation Bernoulli's principle says that a rise (fall) in pressure in a flowing fluid must always be accompanied by a decrease (increase) in the speed, and conversely, i.e. an increase (decrease) in the speed of the fluid results in a decrease (increase) in the pressure. ๐‘ƒ + 1 2 ๐œŒ๐‘‰2 + ๐œŒ๐‘”โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐œ• ๐œ•๐‘  ( ๐‘ฃ2 2 + ๐‘ƒ ๐œŒ + ๐‘”. โ„Ž) = 0 ๐‘ฃ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ ๐‘๐‘’๐‘’๐‘‘, ๐‘ƒ = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘” = ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ, โ„Ž = โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐œŒ๐‘”โ„Ž = ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โ„Ž๐‘’๐‘Ž๐‘‘, 1 2 ๐œŒ๐‘‰2 = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ โ„Ž๐‘’๐‘Ž๐‘‘ (๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘ฃ2 2 + ๐‘ƒ ๐œŒ + ๐‘”. โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ฃ2 2๐‘” + ๐‘ƒ ๐›พ + โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐›พ = ๐œŒ. ๐‘” ๐œŒ๐‘ฃ2 2 + ๐‘ƒ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก (๐‘”, โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก) ๐†๐’—๐Ÿ ๐Ÿ ๐Ÿ + ๐‘ท๐Ÿ = ๐†๐’—๐Ÿ ๐Ÿ ๐Ÿ + ๐‘ท๐Ÿ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐‘ƒ1 ๐œŒ โˆ’ ๐‘ƒ2 ๐œŒ = 1 2 (๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2)
  • 3. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 3 of 17 (๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2) = 2 (๐‘ƒ1 โˆ’ ๐‘ƒ2) ๐œŒ ๐‘„ = ๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2 ๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐‘ƒ1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘ƒ2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘ฃ1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘ฃ2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐ด1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โˆ’ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐ด2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โˆ’ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘ธ = ๐‘จ๐Ÿ โˆš๐Ÿ โˆ’ ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐Ÿ โˆš ๐Ÿ(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) ๐† 2. Variable Head or Differential Pressure Flow Meter ๐‘ญ๐’๐’–๐’Š๐’… ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘ฝ = ๐‘ฌโˆš๐Ÿ๐’ˆ๐’‰ ๐† โ„ ๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐‘ฌ๐‘จโˆš๐Ÿ๐’ˆ๐’‰ ๐† โ„ ๐‘ด๐’‚๐’”๐’” ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘พ = ๐† โˆ— ๐‘ฌ๐‘จโˆš๐Ÿ๐’ˆ๐’‰ ๐† โ„ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐‘จ๐’‘๐’‘๐’“๐’๐’‚๐’„๐’‰ (๐‘ฌ) = ๐Ÿ โˆš๐Ÿ โˆ’ ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐Ÿ ๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’; ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐ด = ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โ€“ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘–๐‘  ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” โ„Ž = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ โ„Ž๐‘’๐‘Ž๐‘‘ (๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’) ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘” = ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘‘๐‘ข๐‘’ ๐‘ก๐‘œ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ; ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐พ = ๐ถ๐‘‘ โˆš1 โˆ’ ๐›พ4 ๐›พ = ๐‘…๐‘Ž๐‘ก๐‘–๐‘œ ๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘’๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ/๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘’ = ๐‘‘/๐ท Coefficient of Discharge (๐‘ช๐’…) It is the ration of the actual discharge to the theoretical discharge. ๐‘ช๐’๐’†๐’‡๐’‡๐’Š๐’„๐’Š๐’†๐’๐’• ๐’๐’‡ ๐‘ซ๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† ๐‘ช๐’… = ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ ๐‘ธ๐’Š๐’…๐’†๐’‚๐’ Vena Contracta (ฮฒ) The Vena Contracta is the downstream point in a fluid stream where the pressure is the lowest, and the fluid velocity is the highest, and the stream diameter is the least.
  • 4. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 4 of 17 ๐œท = ๐‘ช๐‘ช. ๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’† Contraction Factor/Coefficient (๐‘ช๐‘ช) The Contraction Coefficient is the ration of the area of the jet at the vena contacta to the area of the orifice. ๐‘ช๐‘ช = ๐‘จ๐’“๐’†๐’‚ ๐’‚๐’• ๐‘ฝ๐’†๐’๐’‚ ๐‘ช๐’๐’๐’•๐’“๐’‚๐’„๐’•๐’‚ ๐‘จ๐’“๐’†๐’‚ ๐’๐’‡ ๐‘ถ๐’“๐’Š๐’‡๐’Š๐’„๐’† = ๐œท ๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’† โ‰… 0.6 โˆ’ 0.75 Flow Coefficient (๐‘ช๐‘ฝ) The Flow Coefficient of any device is a relative measure of its efficiency at allowing fluid flow, and it describes the relationship between the pressure drop (โˆ†๐‘ƒ) across the orifice/obstruction valve and the corresponding flow rate. ๐‘ช๐‘ฝ = ๐‘ธโˆš ๐‘บ๐‘ฎ โˆ†๐‘ท โˆ†๐‘ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘†๐บ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ Rate of Discharge: ๐‘„ = ๐ด1๐‘‰1 = ๐ด2๐‘‰2 Applying Bernoulliโ€™s equation (ideal flow assumption) ๐‘ƒ1 + ๐œŒ๐‘‰1 2 2 = ๐‘ƒ2 + ๐œŒ๐‘‰2 2 2 The differential pressure head โˆ†โ„Ž is given by: ๐‘ƒ1 โˆ’ ๐‘ƒ2 ๐œŒ๐‘” = โˆ†โ„Ž 3. Venturi Meter ๐‘ƒ1 โˆ’ ๐‘ƒ2 = ๐œŒ 2 (๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2) ๐‘ƒ1 ๐‘ค1 + ๐‘1 + ๐‘ฃ1 2 2๐‘” = ๐‘ƒ2 ๐‘ค2 + ๐‘2 + ๐‘ฃ2 2 2๐‘” ๐‘ƒ1 & ๐‘ƒ2 = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐‘ฃ1 & ๐‘ฃ2 = ๐‘Ž๐‘ฃ. ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐‘ค1 & ๐‘ค2 = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐ด1 & ๐ด2 = ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐‘1 & ๐‘2 = ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐œŒ, ๐œŒ1 & ๐œŒ2 = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
  • 5. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 5 of 17 Considering the venture meter being held horizontal and fluid at inlet & throat of same density ๐‘1 = ๐‘2; ๐œŒ1 = ๐œŒ2; ๐‘š = ๐œŒ1๐ด1๐‘ฃ1 = ๐œŒ2๐ด2๐‘ฃ2 ๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2 2๐‘” = ๐‘ƒ1 โˆ’ ๐‘ƒ2 ๐‘ค By equation of continuity ๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2 ๐‘ฃ1 = ( ๐ด2 ๐ด1 ) ๐‘ฃ2 ๐‘ฃ2 = 1 โˆš1 โˆ’ ( ๐ด2 ๐ด1 ) 2 โˆ— โˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) = ๐ธโˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) Considering few losses, ๐‘ฃ2 is multiplied with a factor ๐ถ๐‘ฃ called the coefficient of velocity. ๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) = ๐ถ๐‘ฃ๐ธโˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) Discharge (volume flow rate) ๐‘„ = ๐ด2๐‘ฃ2 = ๐ถ๐‘ฃ๐ด2๐ธโˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) Considering contraction factor ๐ถ๐‘ ๐‘„๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ = ๐ถ๐‘๐ถ๐‘ฃ๐ด2๐ธโˆš 2๐‘” ๐‘ค (๐‘1 โˆ’ ๐‘2) ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘จ๐Ÿ๐‘ฌ๐œถโˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) = ๐‘ช๐’…๐‘จ๐Ÿ๐‘ฌ๐œถโˆš ๐Ÿ๐’ˆ ๐’˜ โˆ†๐‘ท ๐ท๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐ถ๐‘‘ = ๐ถ๐‘๐ถ๐‘ฃ; ๐›ผ = ๐‘Ž ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘ค = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘, ๐ธ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด๐‘๐‘๐‘Ÿ๐‘œ๐‘Ž๐‘โ„Ž, ๐ด2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘Ž๐‘Ÿ๐‘’๐‘Ž. 4. Orifice Vena-contracta is a point where the liquid jet issued from the orifice has the least diameter, minimum pressure and maximum velocity. It is located at as distance ๐ท1 2 โ„ from the orifice plate approximately. Actual velocity at vena-contracta is
  • 6. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 6 of 17 ๐’—๐Ÿ(๐’‚๐’„๐’•๐’–๐’‚๐’) = ๐‘ช๐’— โˆš๐Ÿ โˆ’ ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐Ÿ โˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) = ๐‘ช๐’—๐‘ฌโˆš ๐Ÿ๐’ˆ ๐’˜ โˆ†๐‘ท The jet of liquid coming out of the orifice plate contracts to a minimum area ๐ด0 at the vena-contracta. Area of the vena-contracta is ๐‘จ๐ŸŽ = ๐‘ช๐’„๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’† โˆด ๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) = ๐ถ๐‘ฃ โˆš1 โˆ’ ( ๐ถ๐‘๐ด0 ๐ด1 ) 2 โˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) ๐ท๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ = ๐ด2๐‘ฃ2 = ๐ถ๐‘๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) โˆด ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’—๐‘ช๐’„ ๐‘จ๐ŸŽ โˆš๐Ÿ โˆ’ ( ๐‘ช๐’„๐‘จ๐ŸŽ ๐‘จ๐Ÿ ) ๐Ÿ โˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) Taking into account the effect of temperature (๐›ผ) ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘จ๐ŸŽ๐‘ฌ๐œถโˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) Let ๐พ = ๐ถ๐‘‘๐ธ โˆด ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ๐œถ๐‘จ๐ŸŽโˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) Mass Flow across an Orifice Plate ๐‘ธ๐’Ž = ๐‘ช๐’… โˆš๐Ÿ โˆ’ ๐œท๐Ÿ’ ๐ ๐… ๐Ÿ’ ๐’…๐Ÿ โˆš๐Ÿโˆ†๐‘ท โˆ— ๐†๐Ÿ ๐‘„๐‘š = ๐‘œ๐‘Ÿ๐‘–๐‘“๐‘–๐‘๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ถ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐›ฝ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ, ๐œ– = ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐‘‘ = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, โˆ†๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ 5. Flow Nozzle The discharge through a flow nozzle is ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ๐‘ฌ๐‘จ๐’•๐’‰๐’“๐’๐’‚๐’•โˆš ๐Ÿ ๐† (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
  • 7. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 7 of 17 ๐พ = ๐ถ๐‘‘ โˆš1 โˆ’ ( ๐ด2 ๐ด1 ) 2 = ๐ถ๐‘‘ โˆš1 โˆ’ ( ๐‘‘2 ๐‘‘1 ) 2 , ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ. 6. Dall Tube ๐‘ฝ = ๐‘ฒ โˆ— โˆš๐‘ซ๐‘ท ๐‘‰ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’; ๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘๐‘Ž๐‘™ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  7. Pitot Tube Using Bernoulliโ€™s theorem, we have ๐‘ƒ ๐‘ค = ๐‘ฃ2 2๐‘” + ๐‘ƒ0 ๐‘ค ๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก; ๐‘ƒ0 = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ (๐‘ฃ) = โˆš 2๐‘” ๐‘ค (๐‘ƒ โˆ’ ๐‘ƒ0) = โˆš 2๐‘” ๐œŒ (๐‘ƒ โˆ’ ๐‘ƒ0) ๐’—๐’Ž๐’†๐’‚๐’ = ๐‘ช๐’—โˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ƒ โˆ’ ๐‘ƒ0) = ๐‘ช๐’—โˆš ๐Ÿ๐’ˆ ๐† (๐‘ƒ โˆ’ ๐‘ƒ0) ๐ถ๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ Stagnation Pressure: ๐‘†๐‘ก๐‘Ž๐‘”๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ + ๐ท๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘ƒ๐‘ ๐‘ก๐‘Ž๐‘” = ๐‘ƒ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ + ( ๐œŒ๐‘ฃ2 2 ) โˆด ๐‘ญ๐’๐’๐’˜ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’— = โˆš ๐Ÿ(๐‘ท๐’”๐’•๐’‚๐’ˆ โˆ’ ๐‘ท๐’”๐’•๐’‚๐’•๐’Š๐’„) ๐† 8. Annubar ๐‘ธ โˆ ๐‘ฒโˆš๐‘ซ๐‘ท ๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐พ = ๐‘Ž๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก. ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐ป๐‘–๐‘”โ„Ž ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ (๐ป๐‘ƒ) โˆ’ ๐ฟ๐‘œ๐‘ค ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ (๐ฟ๐‘ƒ) Annubar Flow Measurement: ๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ณ๐’Š๐’’๐’–๐’Š๐’…) ๐‘ธ๐‘ฝ = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ ๐‘ญ๐’‚๐’‚โˆš ๐‘ซ๐‘ท ๐‘ฎ๐‘ญ
  • 8. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 8 of 17 ๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ฎ๐’‚๐’”) ๐‘ธ๐‘ด๐’‚๐’”๐’” = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ ๐‘ญ๐’‚๐’‚โˆš ๐‘ซ๐‘ท ๐†๐‘ญ ๐‘ด๐’‚๐’”๐’” ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ฎ๐’‚๐’” &๐‘บ๐’•๐’†๐’‚๐’Ž) ๐‘ธ๐‘ด๐’‚๐’”๐’” = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ ๐’€๐’‚๐‘ญ๐’‚๐’‚โˆš ๐‘ท โˆ— ๐‘ซ๐‘ท ๐‘ป ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐พ = ๐ด๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐ท = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘ƒ = ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘‡ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐‘ = ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐บ๐น = ๐‘†๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐‘Œ๐‘Ž = ๐ด๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐ธ๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐น๐‘Ž๐‘Ž = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ 9. Elbow Tap ๐ถ๐‘˜ ๐‘ฃ2 2๐‘” = ๐‘ƒ0 ๐œŒ๐‘” + ๐‘0 โˆ’ ๐‘ƒ๐‘– ๐œŒ๐‘” โˆ’ ๐‘๐‘– ๐‘๐‘– ๐‘Ž๐‘›๐‘‘ ๐‘๐‘œ = ๐‘™๐‘œ๐‘ค๐‘’๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ โ„Ž๐‘–๐‘”โ„Ž๐‘’๐‘ ๐‘ก ๐‘ก๐‘Ž๐‘๐‘๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘–๐‘›๐‘ก๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ. The flow rate is measured by the following equation. ๐‘ธ = ๐‘จ โˆ— ๐’— = ๐‘จ โˆš๐‘ช๐’Œ โˆš๐Ÿ๐’ˆ( ๐‘ท๐’ ๐†๐’ˆ + ๐’๐ŸŽ โˆ’ ๐‘ท๐’Š ๐†๐’ˆ โˆ’ ๐’๐’Š) = ๐‘ช. ๐‘จโˆš๐Ÿ๐’ˆ( ๐‘ท๐’ ๐†๐’ˆ + ๐’๐ŸŽ โˆ’ ๐‘ท๐’Š ๐†๐’ˆ โˆ’ ๐’๐’Š) 10 Segmental Wedge Flow Meter ๐‘ธ๐‘ฝ โˆ ๐‘ฒโˆš๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ 11. Weir Applying Bernoulliโ€™s equation at undisturbed region of upstream flow and at the crest of the weir, we get ๐ป + ๐‘‰1 2 2๐‘” = (๐ป โˆ’ ๐‘ฆ) + ๐‘‰2 2 2๐‘” ๐‘‰1, ๐‘‰2 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค, ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ž๐‘ก ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ. ๐‘‰2 = โˆš2๐‘”(โ„Ž + ๐‘‰1 2 2๐‘” ) If ๐‘‰1 is small compared to ๐‘‰2, then ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘ฆ๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ = โˆš2๐‘”๐‘ฆ, ๐‘ฆ = depth from the top surface of water level. For a Weir, the general Elemental Discharge is given as
  • 9. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 9 of 17 ๐‘ฌ๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’ ๐’…๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† = โˆš๐Ÿ๐’ˆ๐’š๐‘ณ๐‘พ๐’…๐’š ๐‘ฌ๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’ ๐’…๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† ๐’๐’‡ ๐’•๐’‰๐’Š๐’ ๐’๐’‚๐’š๐’†๐’“ ๐‘ธ = ๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐’š ๐‘ณ๐‘พ ๐’…๐’š ๐ถ๐‘‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’, ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› 0.57 ๐‘Ž๐‘›๐‘‘ 0.64; ๐ฟ๐‘Š ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž. Weir Flow Rate ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘ณ๐‘พโˆš๐Ÿ๐’ˆ๐’š โˆซ โˆš๐’š๐’…๐’š ๐‘ฏ ๐ŸŽ = ๐Ÿ ๐Ÿ‘ ๐‘ช๐’…๐‘ณ๐‘พโˆš๐Ÿ๐’ˆ(๐‘ฏ) ๐Ÿ‘ ๐Ÿ โ„ Flow Discharge through Rectangular Weir ๐‘ธ = ๐Ÿ ๐Ÿ‘ ๐‘ช๐’…๐‘ณโˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“ = ๐Ÿ ๐Ÿ‘ ๐‘ช๐’…(๐‘ณ๐‘พ โˆ’ ๐ŸŽ. ๐Ÿ๐‘ฏ)โˆš๐Ÿ๐’ˆ(๐‘ฏ) ๐Ÿ‘ ๐Ÿ โ„ = ๐Ÿ‘. ๐Ÿ‘๐Ÿ‘(๐‘ณ โˆ’ ๐ŸŽ. ๐Ÿ๐‘ฏ)๐‘ฏ๐Ÿ.๐Ÿ“ ๐ถ๐‘‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’; ๐ป = ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘–๐‘› ๐‘›๐‘œ๐‘ก๐‘โ„Ž; ๐ฟ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘›๐‘œ๐‘ก๐‘โ„Ž; Flow Discharge through V-notch ๐‘ธ = ๐Ÿ– ๐Ÿ๐Ÿ“ ๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“ ๐ญ๐š๐ง ๐œฝ ๐Ÿ = ๐Ÿ. ๐Ÿ’๐Ÿ– (๐’•๐’‚๐’ ๐œฝ ๐Ÿ ) ๐‘ฏ๐Ÿ.๐Ÿ“ ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘Ž๐‘ก ๐‘ฃ โˆ’ ๐‘›๐‘œ๐‘ก๐‘โ„Ž Flow Discharge through trapezoidal notch (summation rectangular and v-notch) ๐‘ธ = ๐Ÿ ๐Ÿ‘ ๐‘ช๐’…๐‘ณโˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“ + ๐Ÿ– ๐Ÿ๐Ÿ“ ๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“ ๐ญ๐š๐ง ๐œฝ ๐Ÿ = ๐Ÿ‘. ๐Ÿ‘๐Ÿ”๐Ÿ• โˆ— ๐‘ณ โˆ— ๐‘ฏ๐Ÿ.๐Ÿ“ 12. Flume Actual discharge through a flume ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐‘จ๐Ÿ โˆš๐Ÿ + ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐Ÿ โˆš๐Ÿ๐’ˆ๐’‰ = ๐‘ช๐‘จ๐Ÿ๐‘ฌโˆš๐Ÿ๐’ˆ๐’‰ The free-flow rate (Q) for a Palmer-Bowlus Flume is given as ๐‘ธ = ๐‘ช๐‘ฏ๐’‚ ๐’ โˆ’ ๐‘ธ๐‘ฌ ๐ถ = ๐‘ฃ๐‘’๐‘›๐‘ก๐‘ข๐‘Ÿ๐‘– ๐‘“๐‘™๐‘ข๐‘š๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก (0.95 ๐‘ก๐‘œ 1); โ„Ž = โ„Ž1 โˆ’ โ„Ž2, ๐‘„๐ธ = ๐‘ ๐‘ข๐‘๐‘š๐‘’๐‘Ÿ๐‘”๐‘’๐‘›๐‘๐‘’ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› Maximum discharge through venture flume is given as ๐‘ธ๐’Ž๐’‚๐’™ = ๐Ÿ. ๐Ÿ•๐’ƒ๐Ÿ๐‘ฏ๐Ÿ.๐Ÿ“
  • 10. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 10 of 17 ๐‘2 = ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ฃ๐‘’๐‘›๐‘ก๐‘ข๐‘Ÿ๐‘– ๐‘“๐‘™๐‘ข๐‘š๐‘’ The maximum value of flow in a venture flume occurs when โ„Ž2 = ( 2 3 ) โ„Ž Accuracy of flumes are higher that of weirs. The free-flow discharge rate (Q) in a Parshall flume is given as ๐‘ธ = ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ’๐Ÿ• ๐Ÿ‘ โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’• ๐‘ธ = ๐Ÿ. ๐ŸŽ๐Ÿ”๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ– ๐Ÿ” โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’• ๐‘ธ = ๐Ÿ‘. ๐ŸŽ๐Ÿ•๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ‘ ๐Ÿ— โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’• ๐‘ธ = (๐Ÿ‘. ๐Ÿ”๐Ÿ–๐Ÿ•๐Ÿ“๐‘ณ = ๐Ÿ. ๐Ÿ“)๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ‘ ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ“๐ŸŽ ๐’‡๐’†๐’†๐’• ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’• ๐‘„ = ๐น๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ฟ = ๐‘ค๐‘–๐‘‘๐‘กโ„Ž ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘š๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก, ๐ป = ๐ป๐‘’๐‘Ž๐‘‘ (๐‘“๐‘’๐‘’๐‘ก) 13. Variable-Area Flow Meter Drag Force The Drag Force ๐‘ญ๐’…๐’“๐’‚๐’ˆ is a force acting opposite to the relative motion of the objects which is a function of the fluid velocity. Drag force is proportional to velocity for a laminar flow and proportional to the velocity squared for a turbulent flow. The numerical expression for ๐‘ญ๐’…๐’“๐’‚๐’ˆ ๐‘ญ๐’…๐’“๐’‚๐’ˆ = โˆ†๐‘ท โˆ†๐‘ธ = ๐๐‘จ ๐๐’— ๐๐’› The Drag Force ๐‘ญ๐’…๐’“๐’‚๐’ˆ is also expressed as, ๐‘ญ๐’…๐’“๐’‚๐’ˆ = ๐Ÿ ๐Ÿ ๐†๐’—๐Ÿ ๐‘ช๐‘ซ๐‘จ ๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐ด = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘ช๐‘ซ = ๐ท๐‘Ÿ๐‘Ž๐‘” ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’, โˆ†๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘Ÿ๐‘œ๐‘“๐‘–๐‘™๐‘’, ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, Force Balance Equation of Variable Area Flow Meter ๐‘ญ๐’…๐’“๐’‚๐’ˆ + ๐‘ญ๐’ƒ๐’–๐’๐’š๐’‚๐’๐’„๐’š = ๐‘ญ๐’˜๐’†๐’Š๐’ˆ๐’‰๐’• ๐‘จ๐’‡(๐‘ท๐’… โˆ’ ๐‘ท๐’–) + ๐†๐’‡๐’‡๐’ˆ๐‘ฝ๐’‡ = ๐†๐’‡๐’ˆ๐‘ฝ๐’‡ (๐‘ท๐’… โˆ’ ๐‘ท๐’–) = ๐‘ฝ๐’‡ ๐‘จ๐’‡ ๐’ˆ(๐†๐’‡ โˆ’ ๐†๐’‡๐’‡) ๐œŒ๐‘“, ๐œŒ๐‘“๐‘“ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก & ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ; ๐‘‰๐‘“ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก. ๐‘ƒ๐‘‘, ๐‘ƒ๐‘ข = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘Ž๐‘Ÿ๐‘‘ & ๐‘ข๐‘๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ. Flow rate ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ is given as
  • 11. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 11 of 17 ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ(๐‘จ๐’• โˆ’ ๐‘จ๐’‡) ๐พ = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐ถ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐ด๐‘ก = ๐‘ก๐‘ข๐‘๐‘’ โˆ’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘Ž๐‘ก ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘™๐‘’๐‘ฃ๐‘’๐‘™, ๐ด๐‘“ = ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, (๐ด๐‘ก โˆ’ ๐ด๐‘“) = ๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘Ž๐‘›๐‘›๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘ข๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก, ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’… ๐‘จ๐Ÿ๐‘จ๐Ÿ โˆš๐‘จ๐Ÿ ๐Ÿ โˆ’ ๐‘จ๐Ÿ ๐Ÿ โˆš๐Ÿ๐’ˆโˆšโˆ†๐’‰ = ๐‘ช๐’…(๐‘จ๐’• โˆ’ ๐‘จ๐’‡) โˆš๐Ÿ โˆ’ (๐‘จ๐’• โˆ’ ๐‘จ๐’‡) ๐Ÿ /๐‘จ๐’• ๐Ÿ โˆš๐Ÿ๐’ˆโˆš ๐‘ฝ๐’‡ ๐‘จ๐’‡ (๐†๐’‡ โˆ’ ๐†๐’‡๐’‡) ๐†๐’‡๐’‡ If the angle of taper is ฮธ (which is very small), then ๐‘จ๐’• = ๐… ๐Ÿ’ (๐‘ซ๐’Š + ๐’š๐’•๐’‚๐’๐œฝ)๐Ÿ = ๐… ๐Ÿ’ ๐‘ซ๐’Š ๐Ÿ + ๐… ๐Ÿ ๐’š๐‘ซ๐’Š๐’•๐’‚๐’๐œฝ ๐‘ฆ = ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค. ๐‘Ÿ. ๐‘ก. ๐‘–๐‘›๐‘™๐‘’๐‘ก; ๐ท๐‘– = ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ ๐… ๐Ÿ ๐‘ซ๐’Š๐’š๐’•๐’‚๐’๐œฝ + ๐‘ฒ ( ๐… ๐Ÿ’ ๐‘ซ๐’Š ๐Ÿ โˆ’ ๐‘จ๐’‡) = ๐‘ฒ๐Ÿ๐’š + ๐‘ฒ๐Ÿ 14. Rotameter By Bernoulliโ€™s theorem and assuming the rotameter to be perfectly vertically aligned, the energy equation is written as ๐‘2 ๐‘ค + ๐‘ฃ๐‘š2 2 2๐‘” = ๐‘1 ๐‘ค + ๐‘ฃ๐‘š1 2 2๐‘” ๐‘œ๐‘Ÿ ๐‘ฃ๐‘š2 2 โˆ’ ๐‘ฃ๐‘š1 2 = 2๐‘” ๐‘ค (๐‘1 โˆ’ ๐‘2) ๐‘ = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’; ๐‘ฃ๐‘š = ๐‘š๐‘’๐‘Ž๐‘› ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ; ๐‘ค = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก For static equilibrium of the float at any position ๐ด๐‘“ (๐‘1 + ๐‘ฃ๐‘š1 2 2๐‘” ๐‘ค) + ๐‘ฃ๐‘“๐‘ค = ๐ด๐‘“๐‘2 + ๐‘ฃ๐‘“๐‘ค๐‘“ ๐‘‰๐‘“ & ๐‘ค๐‘“ ๐‘Ž๐‘Ÿ๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ By the continuity equation, we have ๐‘„ = ๐‘‰ ๐‘š๐ด1 = ๐ถ๐‘๐‘ฃ๐‘š2 ๐ด2 ๐ด1 = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘œ๐‘“ ๐‘ก๐‘Ž๐‘๐‘’๐‘Ÿ๐‘’๐‘‘ ๐‘ก๐‘ข๐‘๐‘’; ๐ด2 = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก & ๐‘ก๐‘ข๐‘๐‘’; ๐ถ๐‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›
  • 12. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 12 of 17 Thus we have, ๐‘ธ = ๐‘ช๐’„๐‘จ๐Ÿโˆš ๐Ÿ๐’ˆ๐’—๐’‡ ๐‘จ๐’‡ ( ๐’˜๐’‡ ๐’˜ โˆ’ ๐Ÿ) = ๐‘ช๐’„๐‘จ๐Ÿโˆš ๐Ÿ๐’ˆ๐’—๐’‡ ๐‘จ๐’‡ ( ๐†๐’‡ ๐† โˆ’ ๐Ÿ) ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐œŒ๐‘“ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘ธ โˆ ๐’™; ๐‘ฅ = (๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก) Rotameter Flow Rate is also obtained using the equation, ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ ๐… ๐Ÿ ๐‘ซ๐’Š๐’š๐’•๐’‚๐’๐œฝ + ๐‘ฒ ( ๐… ๐Ÿ’ ๐‘ซ๐’Š ๐Ÿ โˆ’ ๐‘จ๐’‡) = ๐‘ฒ๐Ÿ๐’š + ๐‘ฒ๐Ÿ ๐‘น๐’๐’•๐’‚๐’Ž๐’†๐’•๐’†๐’“ ๐’ˆ๐’Š๐’—๐’†๐’” ๐’๐’Š๐’๐’†๐’‚๐’“ ๐’๐’–๐’•๐’‘๐’–๐’• 15. Electromagnetic Flow Meter ๐‘ฌ = ๐‘ฉ. ๐’. ๐’— ๐ธ = ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘; ๐ต = ๐‘“๐‘™๐‘ข๐‘ฅ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ; ๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ; ๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ The volume flow rate for a circular pipe of diameter (D) is given as, ๐‘ธ = ๐‘จ โˆ— ๐’— = ๐… โˆ— ( ๐‘ซ ๐Ÿ ) ๐Ÿ โˆ— ๐’— = ๐…๐‘ซ๐Ÿ ๐’— ๐Ÿ’ = ๐…๐‘ซ๐Ÿ ๐Ÿ’ ๐‘ฌ ๐‘ฉ. ๐‘ซ = ๐…๐‘ซ๐‘ฌ ๐Ÿ’๐‘ฉ 16. Turbine Flow Meter ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐’Œ โˆ— ๐’ โ€œKโ€ factor of the turbine element (e.g. pulses per gallon); = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘™๐‘Ž๐‘‘๐‘’ ๐‘ฌ = โˆ’ ๐’…๐‹ ๐’…๐’• ๐ธ = ๐ด๐ถ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘˜ ๐‘ข๐‘ ๐‘๐‘œ๐‘–๐‘™; ๐œ‘ = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘“๐‘–๐‘’๐‘™๐‘‘; 17. Target Flow Meter ๐‘ญ๐’… = ๐Ÿ ๐Ÿ ๐‘ช๐’…๐†๐’ˆ๐‘ฝ๐Ÿ ๐‘จ ๐น๐‘‘ = ๐ท๐‘Ÿ๐‘Ž๐‘” ๐น๐‘œ๐‘Ÿ๐‘๐‘’, ๐ถ๐‘‘=overall drag coefficient; ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐ด = ๐‘ก๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ก ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘‰ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ 18. Thermal Flow Meter For Hot Wire Thermal Flow Meter ๐’’๐’• = โˆ†๐‘ป [๐‘ฒ + ๐Ÿ(๐’Œ๐‘ช๐’—๐†๐…๐’…๐‘ฝ๐’‚๐’—๐’ˆ) ๐Ÿ ๐Ÿ โ„ ]
  • 13. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 13 of 17 ๐‘ž๐‘ก = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘™๐‘œ๐‘ ๐‘  ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘๐‘’๐‘Ÿ ๐‘ข๐‘›๐‘–๐‘ก ๐‘ก๐‘–๐‘š๐‘’, โˆ†๐‘‡ = ๐‘š๐‘’๐‘Ž๐‘› ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ค๐‘–๐‘Ÿ๐‘’, ๐‘‘ = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘˜ = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ, ๐ถ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘โ€ฒ ๐‘  ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก, ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘‰ ๐‘Ž๐‘ฃ๐‘” = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ For Heat Transfer Thermal Flow Meter ๐‘พ = ๐‘ฏ โˆ†๐‘ป๐‘ช๐’‘ ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค, ๐ป = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘–๐‘›๐‘๐‘ข๐‘ก, โˆ†๐‘‡ = ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘–๐‘› ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐ถ๐‘ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก; Kingโ€™s Law for Hot Wire Anemometer: ๐’‰๐‘ซ ๐’Œ = ๐ŸŽ. ๐Ÿ‘๐ŸŽ + ๐ŸŽ. ๐Ÿ“โˆš( ๐†๐‘ฝ๐‘ซ ๐ ) โ„Ž = ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘–๐‘™๐‘š ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ โ„Ž๐‘’๐‘Ž๐‘ก ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ; ๐‘˜ = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ โ„Ž๐‘œ๐‘ก ๐‘ค๐‘–๐‘Ÿ๐‘’; ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š; ๐œ‡ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐ท = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ โ„Ž๐‘œ๐‘ก ๐‘ค๐‘–๐‘Ÿ๐‘’; ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘…๐‘’ = ๐œŒ๐‘‰๐ท ๐œ‡ โ„ ๐ผ2 ๐‘…๐‘ค = โ„Ž. ๐ด(๐‘‡๐‘ค โˆ’ ๐‘‡๐‘“) โ„Ž = ๐›ผ + ๐›ฝโˆš๐‘ฃ ๐‘ฐ๐Ÿ = ๐‘จ(๐œถ + ๐œทโˆš๐’—)(๐‘ป๐’˜ โˆ’ ๐‘ป๐’‡) ๐‘น๐’˜ = ๐‘ช๐Ÿ + ๐‘ช๐Ÿโˆš๐’— ๐ผ = ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก, ๐‘…๐‘ค = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’, ๐‘‡๐‘ค = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐‘‡๐‘“ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐ด = โ„Ž๐‘’๐‘Ž๐‘‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, โ„Ž = ๐‘“๐‘ข๐‘›๐‘. ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐›ผ, ๐›ฝ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐ถ1, ๐ถ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ 19. Vortex Flow Meter ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘ญ๐’๐’–๐’Š๐’… = ๐‘ฝ๐’๐’“๐’•๐’†๐’™ ๐’‡๐’“๐’†๐’’๐’–๐’†๐’๐’„๐’š / ๐’Œ โˆ’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ ๐‘˜ โˆ’ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘ฆ๐‘–๐‘›๐‘” ๐‘ค๐‘–๐‘กโ„Ž ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘บ๐’•๐’“๐’๐’–๐’‰๐’‚๐’ ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ ๐‘บ = ๐’‡๐’”๐’… ๐‘ฝ ๐‘“๐‘† = ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘‘๐‘‘๐‘–๐‘›๐‘” ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ; ๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘™๐‘ข๐‘“๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ; ๐‘‰ = ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘œ๐‘ค; ๐‘ฝ๐’๐’“๐’•๐’†๐’™ ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐… ๐Ÿ’ ๐’…๐Ÿ ๐‘ฝ๐’– = ( ๐… ๐Ÿ’ ๐’…๐Ÿ โˆ’ ๐’‰ โˆ— ๐’…) ๐‘ฝ๐’…
  • 14. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 14 of 17 ๐‘‰ ๐‘ข = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘‰๐‘‘ = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, โ„Ž = ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ Vortex Shedding Meter ๐’‡ = ๐‘ต๐’”๐’•๐’— ๐‘ซ ๐‘“ = ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘‘๐‘‘๐‘–๐‘›๐‘” ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ; ๐ท = ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘™๐‘ข๐‘“๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ; ๐‘๐‘ ๐‘ก = ๐‘†๐‘ก๐‘Ÿ๐‘œ๐‘ขโ„Ž๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ; 20. Ultrasonic Flow Meter โˆ†๐’‡ = ๐Ÿ๐’—๐’‡๐’„๐’๐’”๐œฝ ๐’„ ฮ”๐‘“ = ๐ท๐‘œ๐‘๐‘๐‘™๐‘’๐‘Ÿ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘ โ„Ž๐‘–๐‘“๐‘ก; ๐‘ฃ = ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ (๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™๐‘™๐‘ฆ, ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’) ๐‘“ = ๐น๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘–๐‘›๐‘๐‘–๐‘‘๐‘’๐‘›๐‘ก ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’; ๐œƒ = ๐ด๐‘›๐‘”๐‘™๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘‘๐‘ข๐‘๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘–๐‘๐‘’ ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ๐‘™๐‘–๐‘›๐‘’๐‘ ; ๐‘ = ๐‘†๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘ ๐‘  ๐‘“๐‘™๐‘ข๐‘–๐‘‘ Fluid Flow Rate ๐‘ธ in a pipe of cross-section area ๐‘จ is given as ๐‘ธ = ๐‘จ โˆ— ๐’— = ๐‘จ โˆ— ๐’„ โˆ— โˆ†๐’‡ ๐Ÿ๐’‡ โˆ— ๐’„๐’๐’”๐œฝ US Flow Meter Transit Time (t): โˆ†๐’• = (๐’•๐Ÿ โˆ’ ๐’•๐Ÿ) = ๐‘™ ๐‘‰ ๐‘  + ๐‘‰๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐‘™ ๐‘‰ ๐‘  โˆ’ ๐‘‰๐‘๐‘œ๐‘ ๐œƒ = 2๐‘™๐‘‰๐‘๐‘œ๐‘ ๐œƒ ๐‘‰ ๐‘  2 โˆ’ ๐‘‰๐‘๐‘œ๐‘ ๐œƒ2 โˆ†๐’• = (๐’•๐Ÿ โˆ’ ๐’•๐Ÿ) = ๐’ ๐‘ฝ๐’” โˆ’ ๐‘ฝ๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐’ ๐‘ฝ๐’” + ๐‘ฝ๐‘๐‘œ๐‘ ๐œƒ = ๐Ÿ๐’๐‘ฝ ๐‘ฝ๐’” ๐Ÿ (โˆต ๐‘ฝ โ‰ช ๐‘ฝ๐’”) ๐‘‰ ๐‘  = ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘Ž๐‘›๐‘‘ ๐‘‰ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘’๐‘‘ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘Ÿ ๐‘Ž๐‘“๐‘ก๐‘’๐‘Ÿ ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ ๐‘–๐‘‘๐‘’ US Flow Meter Doppler Shift: ๐ฏ = โˆ†๐’‡๐’„ ๐Ÿ๐’‡๐ŸŽ๐’„๐’๐’”๐œฝ = โˆ†๐’‡๐‘ฒ ฮธ
  • 15. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 15 of 17 โˆ†๐‘“ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘‘ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘, ๐‘ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘‘๐‘ข๐‘๐‘’๐‘Ÿ, ๐‘“๐‘œ = ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ ๐‘ ๐‘–๐‘œ๐‘›, ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘Ÿ ๐‘๐‘Ÿ๐‘ฆ๐‘ ๐‘ก๐‘Ž๐‘™ ๐‘ค. ๐‘Ÿ. ๐‘ก ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘’๐‘Ÿ ๐‘Ž๐‘ฅ๐‘–๐‘  I. Crystal placed inside the tube โˆ†๐‘ก1 = ๐‘‘ ๐ถ + ๐‘ฃ ; โˆ†๐‘ก2 = ๐‘‘ ๐ถ โˆ’ ๐‘ฃ โˆ†๐’• = โˆ†๐’•๐Ÿ โˆ’ โˆ†๐’•๐Ÿ = ๐Ÿ๐’…๐’— ๐‘ช๐Ÿ โˆ’ ๐’—๐Ÿ โˆ†๐’• = ๐Ÿ๐’…๐’— ๐‘ช๐Ÿ (๐’‚๐’”๐’”๐’–๐’Ž๐’Š๐’๐’ˆ ๐‘ช โ‰ซ ๐’—) ๐ถ = ๐‘ ๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘š๐‘’๐‘‘๐‘–๐‘ข๐‘š; ๐‘ฃ = ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘‡ & ๐‘… It is linearly proportional to flow velocity (v). When sinusoidal signal frequency of ๐‘“ Hz travels along the fluid flow, it has a phase shift of โˆ†๐œ‘1 = 2๐œ‹๐‘“๐‘‘ ๐ถ + ๐‘ฃ ๐‘Ÿ๐‘Ž๐‘‘ When sinusoidal signal frequency of ๐‘“ Hz travels against the fluid flow, it has a phase shift of โˆ†๐œ‘2 = 2๐œ‹๐‘“๐‘‘ ๐ถ โˆ’ ๐‘ฃ ๐‘Ÿ๐‘Ž๐‘‘ Velocity of fluid can be measured by either measuring the transient time or the phase shift. II. Crystals (T & R) placed outside the tube โˆ†๐‘ก = 2๐‘‘ cos ๐œƒ ๐ถ2 ๐‘ฃ ๐’— = โˆ†๐’•๐‘ช๐Ÿ ๐Ÿ๐’… ๐œ๐จ๐ฌ ๐œฝ ๐œƒ = ๐‘–๐‘›๐‘๐‘™๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘‡ & ๐‘… III. US method using feedback Pulse repetition frequency in forward loop 1 โˆ†๐‘ก1 = ๐‘“1 Pulse repetition frequency in backward loop 1 โˆ†๐‘ก2 = ๐‘“2
  • 16. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 16 of 17 โˆ†๐‘ก1 = ๐‘‘ ๐ถ + ๐‘ฃ cos ๐œƒ ; โˆ†๐‘“1 = ๐ถ + ๐‘ฃ cos ๐œƒ ๐‘‘ โˆ†๐‘ก2 = ๐‘‘ ๐ถ โˆ’ ๐‘ฃ cos ๐œƒ ; โˆ†๐‘“2 = ๐ถ โˆ’ ๐‘ฃ cos ๐œƒ ๐‘‘ โˆ†๐’‡ = ๐’‡๐Ÿ โˆ’ ๐’‡๐Ÿ = ๐Ÿ๐’— ๐œ๐จ๐ฌ ๐œฝ ๐’… IV. US Doppler Flowmeter โˆ†๐’‡ = ๐’‡๐’• โˆ’ ๐’‡๐’“ = ๐Ÿ ๐’‡๐’•๐œ๐จ๐ฌ ๐œฝ๐’— ๐‘ช V. Laser Doppler Anemometer ๐’‡ = ๐Ÿ๐’— ๐ฌ๐ข๐ง ๐œฝ ๐Ÿ โ„ ๐€ ๐‘“ = ๐ท๐‘œ๐‘๐‘๐‘™๐‘’๐‘Ÿ ๐‘†โ„Ž๐‘–๐‘“๐‘ก ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐œ† = ๐‘ค๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘ ๐‘’๐‘Ÿ ๐‘๐‘’๐‘Ž๐‘š, ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ (๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘  โˆ’ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’) 21. Coriolis Effect ๐‘ญ๐’„ = โˆ’๐Ÿ๐’Ž๐Ž โˆ— ๐’— ๐ถ๐‘œ๐‘Ÿ๐‘–๐‘œ๐‘™๐‘–๐‘  ๐น๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ’2 โˆ— (๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก) โˆ— (๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ) โˆ— (๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘” ๐‘“๐‘Ÿ๐‘Ž๐‘š๐‘’) 22. Variable Reluctance Tachogenerator ๐‘น๐’†๐’๐’–๐’„๐’•๐’‚๐’๐’„๐’† ๐‘น = ๐‘ด๐‘ด๐‘ญ โˆ… โˆด ๐‘ด๐‘ด๐‘ญ = ๐‘น โˆ— โˆ… ๐ธ๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ๐ธ๐‘€๐น = โˆ’ ๐‘‘โˆ… ๐‘‘๐‘ก = โˆ’ ๐‘‘โˆ… ๐‘‘๐œƒ . ๐‘‘๐œƒ ๐‘‘๐‘ก โˆ…๐‘‡ = ๐‘›โˆ… = ๐‘› ๐‘€๐‘€๐น ๐‘… โˆ…๐‘‡(๐œƒ) = ๐›ผ + ๐›ฝcos(๐‘›๐œƒ) ๐ธ๐‘€๐น = โˆ’ ๐‘‘โˆ…๐‘‡ ๐‘‘๐‘ก = โˆ’ ๐‘‘โˆ…๐‘‡ ๐‘‘๐œƒ ๐‘‘๐œƒ ๐‘‘๐‘ก ๐‘‘โˆ…๐‘‡ ๐‘‘๐œƒ = โˆ’๐›ฝ๐‘›๐‘ ๐‘–๐‘›(๐‘›๐œƒ), ๐‘Ž๐‘›๐‘‘ ๐œƒ = ๐œ”๐‘ก, ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘œ๐‘–๐‘™ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘  ๐‘‘๐œƒ ๐‘‘๐‘ก = ๐œ” โˆด ๐‘ฌ๐‘ด๐‘ญ = ๐œท๐’๐Ž๐ฌ๐ข๐ง(๐’๐Ž๐’•) ๐‘€๐‘€๐น = ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’, โˆ… = ๐‘“๐‘™๐‘ข๐‘ฅ; โˆ…๐‘‡ = ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘™๐‘ข๐‘ฅ, ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘œ๐‘–๐‘™ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘ , ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›, ๐›ผ = ๐‘š๐‘’๐‘Ž๐‘› ๐‘“๐‘™๐‘ข๐‘ฅ, ๐›ฝ = ๐‘ก๐‘–๐‘š๐‘’ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘ฆ๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘ฅ ๐‘Ž๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’,
  • 17. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 17 of 17 ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘คโ„Ž๐‘’๐‘’๐‘™ ๐‘ก๐‘’๐‘’๐‘กโ„Ž, ๐œ” = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘คโ„Ž๐‘’๐‘’๐‘™ 23. Linear Resistance Element Flow Meter Hagen โ€“ Poiseulle Equation (๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ โˆ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ) โˆ†๐‘ = 8๐œ‡๐ฟ๐‘„ ๐œ‹๐‘…4 ๐‘ธ = ๐…๐‘ซ๐Ÿ’ ๐Ÿ๐Ÿ๐Ÿ–๐๐‘ณ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘ค๐‘œ ๐‘’๐‘›๐‘‘๐‘ , ๐ฟ = ๐‘๐‘–๐‘๐‘’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž, ๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐‘… = ๐‘๐‘–๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘ , ๐œ‡ = ๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, (๐‘ƒ1 โˆ’ ๐‘ƒ2) = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ก๐‘ข๐‘๐‘’, ๐ท = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ,