SlideShare a Scribd company logo
1 of 20
Download to read offline
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
2
Pressure (P):
โ€ข If F be the normal force acting on a surface of area A in contact with liquid,then
pressure exerted by liquid on this surface is: P =F / A
โ€ข Units : N /m2 or Pascal (S.I.) and Dyne/cm2 (C.G.S.)
โ€ข Dimension
:
[P] =
[F]
[A]
=
[MLT 2 ]
[L2 ]
=[ML-1T -2
]
โ€ข Atmospheric pressure:Its value on the surface of the earth at sea level is nearly
1.01*10 5N/ m2 or Pascal in S.I. other practical units of pressure are atmosphere,
bar and torr (mm of Hg)
โ€ข 1atm = 1.01 *10 5Pa = 1.01bar = 760 torr
โ€ข Fluid Pressure at aPoint:
Density ( ฯ):
dp=
dF
dA
โ€ข In a fluid, at a point, density ฯ is defined as: Mass/volume
โ€ข In case of homogenous isotropic substance, it has no directional properties, so is
a scalar.
โ€ข It has dimensions [ML-3] and S.I. unit kg/m3 while C.G.S. unit g/ccwith
1g / cc = 10 3kg / m 3
โ€ข Density of body = Density of substance
โ€ข Relative density or specific gravity which is defined
as:
RD
Densit
Density
of body
of water
Specific Weight ( w):
โ€ข It is defined as the weight per unit volume.
โ€ข Specific weight =
Weight
=
m.g
Volume Volume
Specific Gravity or Relative Density(s):
โ€ข It is the ratio of specific weight of fluid to the specific weight of a standard fluid.
Standard fluid is water in case of liquid and H2 or air in case of gas.
Specific gravity=
๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐น๐‘™๐‘ข๐‘–๐‘‘
๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐น๐‘™๐‘ข๐‘–๐‘‘
or
๐›พ
๐›พ๐‘ค
or
๐œŒ
๐œŒ๐‘ค
Where, ๐›พ Specific weight , and ๐œŒ
Density of water specific
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
3
Specific Volume ( v):
โ€ข Specific volume of liquid is defined as volume per unit mass. It is also defined as the
reciprocal of specific density.
โ€ข Specific volume =1/Density
Newtonโ€™s Law of viscosity
โ€ข ๐œ = ๐œ‡
๐‘‘๐‘ข
๐‘‘๐‘ฆ
Where ๐œ = Shear Stress, ๐œ‡= Co-efficient of viscosity or absolute viscosity
๐‘‘๐‘ข
๐‘‘๐‘ฆ
= Rate of angular deformation or rate of change of shear strain
Dynamic Viscosity and kinematic viscosity
โ€ข Dynamic Viscosity- Resistance offered by fluid to flow
โ€ข Units are Ns/m2
or Kg/ms
โ€ข 1 poise= 0.1 Ns/m2
โ€ข Kinematic Viscosity =
๐ท๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘‰๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ(๐œ‡)
๐‘€๐‘Ž๐‘ ๐‘  ๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ (๐œŒ)
โ€ข 1 Stoke= c.m2
/s = 10-4
m2
/s
Bulk Modulus
โ€ข Bulk modulus K=
dP
โˆ’dV
V
โ€ข Compressibility (ฮฒ) =
1
K = โˆ’dV
VdP
= dฯ
ฯdP
Where K= Bulk modulus of elasticity, ฯ= Density and V= Specific volume
Surface Tension
โ€ข The cohesive forces between liquid molecules are responsible for the phenomenon known as surface
tension
โ€ข Unit N/m
โ€ข Pressure inside drop P =
4ฯƒ
d
โ€ข Pressure inside bubble P =
8ฯƒ
d
โ€ข Pressure inside jet P =
2ฯƒ
d
Where d= Diameter of drop, P= Gauge pressure and ฯƒ= Surface tension
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
4
Capillary Action
โ€ข Height of water in capillary tube- ๐’‰ =
๐Ÿ’๐ˆ๐‘ช๐’๐’”๐œฝ
๐†๐’ˆ๐’…
โ„Ž=rise in capillary ๐œŽ= Surface tension of water
D= Diameter of tube
๐œƒ=Angle of contact between liquid and material
๐œƒ=<90o for water and glass and >90o for mercury and glass
Absolute Pressure
Hydrostatic law
๐’…๐‘ท
๐’…๐’‰
= ๐†๐’ˆ
๐–๐ก๐ž๐ซ๐ž ๐›’ = ๐ƒ๐ž๐ง๐ฌ๐ข๐ญ๐ฒ ๐š๐ง๐ ๐  = ๐€๐œ๐œ๐ž๐ฅ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง ๐๐ฎ๐ž ๐ญ๐จ ๐ ๐ซ๐š๐ฏ๐ข๐ญ๐ฒ
Manometers
โ€ข Piezometers
A
p gh
๏ฒ
=
abs atm gauge
abs atm vac
P P P
P P P
= +
= โˆ’
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
5
โ€ข U-Tube Manometer
1 1 2 2
A m B
P s gh s gh h gs P
+ โˆ’ โˆ’ =
Where s1,s2 and sm are density of fluids in
manometer
Hydrostatic Forces on submerged bodies
โ€ข Vertical Planes
Total Force ๐… = ๐›’๐ ๐€๐ก
ฬ…
โ€ข Center of Pressure
๐’‰โˆ—
=
๐‘ฐ๐’ˆ
๐‘จ๐’‰
ฬ…
+ ๐’‰
ฬ…
โ€ข Horizontal Surface
Total Force ๐… = ๐›’๐ ๐€๐ก
ฬ…
โ€ข Center of Pressure
๐’‰โˆ—
= ๐’™
ฬ…
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
6
โ€ข Forces on Inclined surface .
total C G
F gh A
๏ฒ
= ๏‚ด
โ€ข Centre of pressure
๐’‰โˆ—
=
๐‘ฐ๐’ˆ๐‘บ๐’Š๐’๐Ÿ
๐œฝ
๐‘จ๐’‰๐‘ช.๐‘ฎ
+ ๐’‰๐‘ช.๐‘ฎ
โ€ข Curved Surface โ€“
2 2
tan
R h v
v
h
F F F
F
F
๏ฑ
= +
=
Vertical component of force Fv
Weight of the liquid supported by
the curved surface over it up to the
free liquid surface
Horizontal component of force
Fh
Total pressure force on the vertical
projected area of the curved
surface
Completely submerged and floating at the interface of two liquids
1 1 2 2
B
F gV gV
๏ฒ ๏ฒ
= +
Where 1
V and 2
V are volumes
Body floating in a liquid
2
2
B
F V
๏ท
=
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
7
Principal of floatation
โ€ข If the body weight is equal to the buoyant force, the body will float
B
Mg W F gV
๏ฒ
= = =
Condition of stability
โ€ข Fully submerged body
Stable Equilibrium: G below B
Unstable Equilibrium: G above B
Neutral Equilibrium: G coincides with B
โ€ข Floating body
Stable Equilibrium: M above G
Unstable Equilibrium: M below G
Neutral Equilibrium: M coincides with G
Metacentric height (GM)
โ€ข Metacentre radius (BM)
I
BM
V
=
โ€ข Metacentric Height (GM)
GM BM BG
I
GM BG
V
= โˆ’
= โˆ’
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
8
Where I= Second moment area about body surface vertical axis
V = Volume of water displaced
Time period of transverse oscillation of floating body
โ€ข 2 G
K
T
gGM
๏ฐ
= KG= Least radius of gyration, GM=Meta- Centric Height
Continuity Equation
โ€ข ฯ1A1V1 = ฯ2A2V2
Where A,V are cross-section area of the flow and Velocity of flow respectively
For incompressible flow ฯ=constant so
A1V1 = A2V2
Generalized differential Continuity Equation
โ€ข
๐‘‘๐œŒ
๐‘‘๐‘ก
+
๐‘‘(๐œŒ๐‘ข)
๐‘‘๐‘ฅ
+
๐‘‘(๐œŒ๐‘ฃ)
๐‘‘๐‘ฆ
+
๐‘‘(๐œŒ๐‘ค)
๐‘‘๐‘ง
= 0
Where u,v and w are the velocities in x,y,and z direction respectively
For steady incompressible two dimensional flow, ฯ=constant and
๐‘‘๐œŒ
๐‘‘๐‘ก
= 0
๐‘‘๐‘ข
๐‘‘๐‘ฅ
+
๐‘‘๐‘ฃ
๐‘‘๐‘ฆ
= 0
Velocity and Acceleration of Fluid Particle
โ€ข Velo = ui
โƒ— + vj
โƒ— + wk
โƒ—โƒ—
โ€ข Acceleration in X-direction ๐‘Ž๐‘ฅ =
๐‘‘๐‘ข
๐‘‘๐‘ก
= ๐‘ข
๐‘‘๐‘ข
๐‘‘๐‘ฅ
+ ๐‘ฃ
๐‘‘๐‘ข
๐‘‘๐‘ฆ
+ ๐‘ค
๐‘‘๐‘ข
๐‘‘๐‘ง
+
๐‘‘๐‘ข
๐‘‘๐‘ก
Acceleration in Y-direction ๐‘Ž๐‘ฆ =
๐‘‘๐‘ฃ
๐‘‘๐‘ก
= ๐‘ข
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
+ ๐‘ฃ
๐‘‘๐‘ฃ
๐‘‘๐‘ฆ
+ ๐‘ค
๐‘‘๐‘ฃ
๐‘‘๐‘ง
+
๐‘‘๐‘ฃ
๐‘‘๐‘ก
Acceleration in Y-direction ๐‘Ž๐‘ง =
๐‘‘๐‘ค
๐‘‘๐‘ก
= ๐‘ข
๐‘‘๐‘ค
๐‘‘๐‘ฅ
+ ๐‘ฃ
๐‘‘๐‘ค
๐‘‘๐‘ฆ
+ ๐‘ค
๐‘‘๐‘ค
๐‘‘๐‘ง
+
๐‘‘๐‘ค
๐‘‘๐‘ก
For steady flow
๐‘‘๐‘ข
๐‘‘๐‘ก
=
๐‘‘๐‘ฃ
๐‘‘๐‘ก
=
๐‘‘๐‘ค
๐‘‘๐‘ก
= 0
๐‘Ž = โˆš๐‘Ž๐‘ฅ
2 + ๐‘Ž๐‘ฆ
2 + ๐‘Ž๐‘ค
2
Note- Local Acceleration due to increase in rate of velocity with respect to time at a point and
convective acceleration due to rate of change of position (
๐‘‘๐‘ข
๐‘‘๐‘ก
=
๐‘‘๐‘ฃ
๐‘‘๐‘ก
=
๐‘‘๐‘ค
๐‘‘๐‘ก
= 0)
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
9
Rotational fluid
ฯ‰z =
1
2
(
โˆ‚V
โˆ‚x
โˆ’
โˆ‚U
โˆ‚y
)
Vortex flow
โ€ข Free Vortex V*r=Constant
โ€ข Forced Vortex V=r ฯ‰ and ๐ป =
๐œ”2๐‘Ÿ2
2๐‘”
Velocity potential
โ€ข If โˆ… is the velocity function, then
๐‘ข = โˆ’
๐œ•โˆ…
๐œ•๐‘ฅ
, v=โˆ’
๐œ•โˆ…
๐œ•๐‘ฆ
, ๐‘ค = โˆ’
๐œ•โˆ…
๐œ•๐‘ง
โ€ข Polar direction
๐‘ข๐‘Ÿ = โˆ’
๐œ•โˆ…
๐œ•๐‘Ÿ
,๐‘ข๐œƒ = โˆ’
1
๐‘Ÿ
๐œ•โˆ…
๐œ•๐œƒ
Stream Function
โ€ข If ๏น is the Stream function , then
๐‘ข = โˆ’
๐œ•๏น
๐œ•๐‘ฆ
, v=
๐œ•๏น
๐œ•๐‘ฅ
Equipotential line
โ€ข Condition for Equipotential line ๐‘‘โˆ… = 0
So
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= โˆ’
๐‘ข
๐‘ฃ
Line of constant stream function
โ€ข Condition for constant stream function 0
d๏น =
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐‘ฃ
๐‘ข
Relation between stream function and velocity potential function
โ€ข
โˆ‚โˆ…
โˆ‚x
=
โˆ‚๏น
โˆ‚y
,
โˆ‚โˆ…
โˆ‚y
= โˆ’
โˆ‚๏น
โˆ‚x
Equation of motion
โ€ข ๐น
๐‘ฅ = ๐น
๐‘” + ๐น๐‘ƒ + ๐น
๐›พ + ๐น๐‘ก + ๐น๐ถ
Where,
Gravity force ๐น
๐‘”
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
10
Pressure force ๐น๐‘ƒ
Viscosity force ๐น
๐›พ
Turbulance force ๐น๐‘ก
Compressibility force ๐น๐ถ
โ€ข When Compressibility force ๐น๐ถ is negligible
๐น
๐‘ฅ = ๐น
๐‘” + ๐น๐‘ƒ + ๐น
๐›พ + ๐น๐‘ก is Reynoldโ€™s equation of motion
โ€ข ๐น๐‘ก is negligible
๐น
๐‘ฅ = ๐น
๐‘” + ๐น๐‘ƒ + ๐น
๐›พ is Navier- Stokes equation of motion
โ€ข When flow is assumed to be ideal, ๐น
๐›พ = 0
๐น
๐‘ฅ = ๐น
๐‘” + ๐น๐‘ƒ is Eulerโ€™s equation of motion
Eulerโ€™s equation of motion
โ€ข
๐‘‘๐‘
๐œŒ
+ ๐‘”๐‘‘๐‘ง + ๐‘ฃ๐‘‘๐‘ฃ = 0
Bernoulliโ€™s equation
โ€ข ๐‘ƒ + ๐œŒ๐‘”๐‘ง +
๐œŒ๐‘‰2
2
= 0
โ€ข
P
ฯg
+ z +
V2
2g
= 0
Where,
P
ฯg
= Pressure head
Z = Potential head
V2
2g
= Kinetic head
Application of Bernoulliโ€™s theorem
โ€ข Venturimeter
Qact = Cd
a1a2โˆš2gh
โˆša1
2 โˆ’ a2
2
Where,
Cd=Co-efficient of venturimeter which is <1
a1, a2= Area of cross section, h= Head
โ€ข Orifice meter
Vena contracta ๐ถ๐‘ =
Area of vena contracta
Area of orific
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
11
Discharge ๐ถ๐‘‘ = ๐ถ๐‘
โˆš1โˆ’(
ao
a1
)
2
โˆš1โˆ’(
ao
a1
)
2
๐‘๐‘
2
where,
a1= area of cross section before vena contracta
ao=Area of orifice
โ€ข Pitot Tube
๐•๐š๐œ๐ญ = ๐‚๐ฏโˆš๐Ÿ๐ (๐’๐ญ๐š๐ ๐ง๐š๐ญ๐ข๐จ๐ง ๐ก๐ž๐š๐ โˆ’ ๐’๐ญ๐š๐ญ๐ข๐œ ๐ก๐ž๐š๐)
Where ๐‚๐ฏ is co-efficient of velocity
Value of ๐’‰๐’‘ given by differential
โ€ข ๐’‰๐’‘ = ๐’š(
๐‘บ๐’Ž
๐‘บ
โˆ’ ๐Ÿ) where ๐‘บ๐’Ž > ๐‘บ
โ€ข ๐’‰๐’‘ = ๐’š(๐Ÿ โˆ’
๐‘บ๐’Ž
๐‘บ
) where S > ๐‘บ๐’Ž
๐‘บ๐’Ž, ๐‘บ are realtive density of
manometric fluid and fluid flowing
Momentum Equation
โ€ข F.dt= d(mv) known as impulse- momentum equation
Force exerted on flowing fluid by a bend pipe
โ€ข If ๐œŒ1 = ๐œŒ2 then net force acting on a fluid
โ€ข ๐‘ƒ1๐ด1 โˆ’ ๐‘ƒ1๐ด1๐ถ๐‘œ๐‘ ๐œƒ โˆ’ ๐น
๐‘ฅ =
Change in velocity in horizontal โˆ— mass of fluid
โ€ข Fy = ฯQ(change in velocity vertically) โˆ’ P2A2Sinฮธ
โ€ข Resultant force = โˆšFx
๐Ÿ + Fx
๐Ÿ
Viscous flow
โ€ข To be viscous flow Reynold number should be less than 2000
๐‘…๐‘’ =
๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’
๐‘‰๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’
=
๐œŒ๐‘‰๐ท
๐œ‡
<2000
Where, v=velocity of flow, ๐œ‡= viscosity of flow, D= Diameter of piper and ๐œŒ= Density of fluid
โ€ข Flow of viscous fluid through circular pipe
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
12
โžข Velocity u =
1
4ฮผ
(โˆ’
โˆ‚P
โˆ‚x
) [R2
โˆ’ r2]
โžข Shear stress ๐œ = (โˆ’
โˆ‚P
โˆ‚x
)
r
2
โžข Ratio of maximum to average velocity
Maximum Velocity
Average Velocity
= 2
โžข Drop of pressure in given length
P1 โˆ’ P2
ฯg
= hf =
32u
ฬ…ฮผL
ฯgD2
Also called Hagen Poiseuille Equation
Here u
ฬ…=average velocity, P1, P2 = Pressure at two different points in the pipe
โ€ข Flow of viscous fluid between two parallel plates
โžข Velocity u =
1
2ฮผ
(โˆ’
โˆ‚P
โˆ‚x
) [ty โˆ’ y2]
โžข Shear Stress ๐œ =
1
2
(โˆ’
โˆ‚P
โˆ‚x
) [t โˆ’ 2y]
โžข Ratio of maximum to average velocity
Maximum Velocity
Average Velocity
=
3
2
โžข Drop of pressure in given length
P1โˆ’P2
ฯg
= hf =
12u
ฬ…ฮผL
ฯgt2
Kinetic energy correction factor
ฮฑ =
K.E
sec
based on actual velocity
K.E
sec
based on average velocity
For laminar flow ฮฑ=2 and for turbulent flow ฮฑ=1.33
Momentum correction factor
ฮฒ =
Momentum
sec
based on actual velocity
Momentum
sec
based on average velocity
For laminar flow ฮฒ=1.33 and for turbulent flow ฮฒ=1.20
Loss of head due to friction in viscous flow
hf =
4flV2
2Dg
Where t is the thickness
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
13
Where f= friction co-efficient
For laminar flow ๐‘“ =
16
๐‘…๐‘’
where Re is Reynoldโ€™s number
For turbulent flow, coefficient of friction f =
0.079
Re
1
4
Chezyโ€™s Formula
V = Cโˆšmi , C = Chezy Constant = โˆš
ฯg
f
i = Loss of head per unit length of pipe=
โ„Ž๐‘“
๐ฟ
(hydraulic slope tan ฮธ)
m = Hydraulic mean depth
Mean velocity of flow m =
Area (A)
Wetted Perimeter(P)
Minor losses in pipe
โ€ข Loss of head due to sudden enlargement
he =
(V1 โˆ’ V1)2
2g
โ€ข Loss of head due to sudden contraction
he =
V2
2g
(
1
Cc
โˆ’ 1)
2
or he = 0.5
V2
2g
when Cc=0.65
โ€ข Loss of head due to entrance
๐’‰๐’†๐’๐’•๐’“๐’‚๐’๐’„๐’† = 0.5
V2
2g
โ€ข Loss due to exit pipe
=
๐‘ฝ๐Ÿ
๐Ÿ๐’ˆ
โ€ข Loss due to obstruction
=
V2
2g
(
A
Cc(Aโˆ’a)
โˆ’ 1)
2
โ€ข Losses due to bend
= K
๐‘ฝ๐Ÿ
๐Ÿ๐’ˆ
where k depends on bending of pipe
Hydraulic gradient and Total Energy line
โ€ข H.G.L=Pressure head+datum head
โ€ข T.G.L= Pressure head+datum head+Kinetic Head
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
14
Flow through pipes in series or compound pipes
Major loss = Head loss due to friction in each pipe
While, minor loss = Entrance loss + Expansion loss +
Contraction loss + Exit loss
Flow will remain constant
Equivalent pipe in series pipe
๐ฟ
๐‘‘5
=
๐ฟ1
๐‘‘1
5 +
๐ฟ2
๐‘‘2
5 +
๐ฟ3
๐‘‘3
5
Power Transmission through pipes
โ€ข P =
ฯgAV
1000
(H โˆ’ hf)
hf = loss due to friction
โ€ข Efficency of power transmission
๏จ =
๐‘ƒ๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘Ž๐‘๐‘™๐‘’ ๐‘Ž๐‘ก ๐‘œ๐‘ข๐‘ก๐‘™๐‘’๐‘ก
๐‘ƒ๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘ ๐‘ข๐‘๐‘๐‘™๐‘–๐‘’๐‘‘
=
๐ปโˆ’โ„Ž๐‘“
๐ป
โ€ข Condition for maximum transmission of power
๐ป = 3โ„Ž๐‘“ and ๏จ = 66%
Dimensional analysis:
Quantity Symbol Dimensio
ns
Mass m M
Length l L
Time t T
Temperature T ฮธ
Velocity u LT -1
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
15
Acceleration a LT -2
Momentum/Impulse mv MLT -1
Force F MLT -2
Energy - Work W ML 2T -2
Power P ML 2T -3
Moment of Force M ML 2T -2
Angular momentum - ML 2T -1
Angle ฮท M 0L 0T 0
Angular Velocity ฯ‰ T -1
Angular acceleration ฮฑ T -2
Area A L 2
Volume V L 3
First Moment of Area Ar L 3
Second Moment of Area I L 4
Density ฯ ML -3
Specific heat-
Constant
Pressure
C p L 2 T -2 ฮธ -1
Elastic Modulus E ML -1T -2
Flexural Rigidity EI ML 3T -2
Shear Modulus G ML -1T -2
Torsional rigidity GJ ML 3T -2
Stiffness k MT -2
Angular stiffness T/ฮท ML 2
T -2
Flexibiity 1/k M -1
T 2
Vorticity - T -1
Circulation - L 2
T -1
Viscosity ฮผ ML -1
T -1
Kinematic Viscosity ฯ„ L 2
T -1
Diffusivity - L 2
T -1
Friction coefficient f /ฮผ M 0
L 0
T 0
Restitution coefficient M 0
L 0
T 0
Specific heat-
Constant volume
C v
L 2
T-2
ฮธ -1
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
16
Dimensionless number
โ€ข Reynoldโ€™s number (Re)
๐‘…๐‘’ =
๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž๐‘™ ๐น๐‘œ๐‘Ÿ๐‘๐‘’
๐‘‰๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐น๐‘œ๐‘Ÿ๐‘๐‘’
=
๐œŒ๐‘‰๐ท
๐œ‡
โ€ข Froudeโ€™s Number (Fe)
Fe = โˆš
Inertia Force
Gravity Force
=
๐‘‰
โˆš๐ฟ๐‘”
โ€ข Eulerโ€™s Equation (Eu)
๐ธ๐‘ข = โˆš
๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐น๐‘œ๐‘Ÿ๐‘๐‘’
๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’
=
๐‘‰
โˆš๐‘ƒ
๐œŒ
โ„
โ€ข Weberโ€™s number (We)
๐‘Š๐‘’ =
๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐น๐‘œ๐‘Ÿ๐‘๐‘’
๐‘†๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’
=
๐‘‰
โˆš๐œŽ
๐œŒ๐ฟ
โ„
โ€ข Mach number (M)
๐‘€ =
๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž
๐ธ๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘ ๐น๐‘œ๐‘Ÿ๐‘๐‘’
=
๐‘‰
๐ถ
Velocity distribution for turbulent flow in pipe
v = vmax + 2.5Vโˆ—
loge (
Y
R
)
Where Vโˆ—
=โˆš
๐œ๐‘œ
๐œŒ
Shear or friction velocity, Y=distance from pipe wall, ๐œŒ=Density
Displacement Thickness (๐›…โˆ—
)
๐›…โˆ—
= โˆซ {1 โˆ’
๐‘ข
๐‘ˆ
} ๐‘‘๐‘ฆ
๐›ฟ
0
U=Stream Velocity, u=Velocity of fluid at the element, ฮด= boundary layer thickness
Momentum Thickness (ฮธ)
ฮธ = โˆซ
๐‘ข
๐‘ˆ
{1 โˆ’
๐‘ข
๐‘ˆ
} ๐‘‘๐‘ฆ
๐›ฟ
0
Energy Thickness (๐›…โˆ—โˆ—
)
๐›…โˆ—โˆ—
= โˆซ
๐‘ข
๐‘ˆ
{1 โˆ’
๐‘ข2
๐‘ˆ2
} ๐‘‘๐‘ฆ
๐›ฟ
0
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
17
Drag force on a flat plate due to boundary layer
ฯ„o
ฯU2
=
โˆ‚ฮธ
โˆ‚x
Know as Von Karman momentum integral equation
Drag force on plate obtained by ๐น๐ท = โˆซ โˆ†๐น = โˆซ ๐œ๐‘œ
๐ฟ
0
๐‘๐‘‘๐‘ฅ where, b if thickness of plate
Local (๐‚๐ƒ
โˆ—
)and average (๐‚๐ƒ) co-efficient of drag
CD
โˆ—
=
ฯ„0
ฯU2
2
โ„
, CD =
ฯ„0
ฯAU2
2
โ„
Boundary condition for the velocity profile
โ€ข At y=0, u=0
โ€ข At y=๐›ฟ, u=U
๐œ•๐‘ข
๐œ•๐‘ฆ
= 0
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
18
Saparation of boundary layer
Force exerted by jet on plate
โ€ข Force exerted by jet = mass of fluid striking per sec *
change in velocity =
ฯa(V)*(V โ€“ 0)
=ฯa(V)2
Force exerted by jet on inclined plate
โ€ข Fn=ฯa(V)2 Sinฮธ
โ€ข Force component in X-direction = Fn Sinฮธ
โ€ข Force component in Y-direction = Fn Cosฮธ
Force exerted by jet on curved plate
โ€ข Fx=ฯaV(V+V cosฮธ)
โ€ข Fy=ฯaV(0-V sinฮธ)
Force exerted by jet on curved plate , moving with some velocity
โ€ข Fx=ฯa(V-u)( (V-u)+ (V-u) cosฮธ)
โ€ข Fy=ฯa(V-u)(0-(V-u) sinฮธ)
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
19
Forced exerted by a jet on a hinged plate
โ€ข Sinฮธ =
ฯaV2
w
Hydraulic Efficiency =
๐๐จ๐ฐ๐ž๐ซ ๐๐ž๐ฅ๐ข๐ฏ๐ž๐ซ๐ž๐ ๐ญ๐จ ๐ซ๐ฎ๐ง๐ง๐ž๐ซ
๐๐จ๐ฐ๐ž๐ซ ๐ฌ๐ฎ๐ฉ๐ฉ๐ฅ๐ข๐ž๐ ๐ญ๐จ ๐ข๐ง๐ฅ๐ž๐ญ
=
๐‘.๐
๐–.๐
Mechanical Efficiency =
๐๐จ๐ฐ๐ž๐ซ ๐š๐ญ ๐ญ๐ก๐ž ๐ฌ๐ก๐š๐Ÿ๐ญ ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ญ๐ฎ๐ซ๐›๐ข๐ง๐ž
๐๐จ๐ฐ๐ž๐ซ ๐๐ž๐ฅ๐ข๐ฏ๐ž๐ซ๐ž๐ ๐›๐ฒ ๐ฐ๐š๐ญ๐ž๐ซ ๐ญ๐จ ๐ญ๐ก๐ž ๐ซ๐ฎ๐ง๐ง๐ž๐ซ
=
๐’.๐
๐‘.๐
Volumetric Efficiency =
๐•๐จ๐ฅ๐ฎ๐ฆ๐ž ๐จ๐Ÿ ๐ฐ๐š๐ญ๐ž๐ซ ๐š๐œ๐ญ๐ฎ๐š๐ฅ๐ฅ๐ฒ ๐ฌ๐ญ๐ซ๐ข๐ค๐ข๐ง๐  ๐ญ๐ก๐ž ๐ซ๐ฎ๐ง๐ง๐ž๐ซ
๐•๐จ๐ฅ๐ฎ๐ฆ๐ž ๐จ๐Ÿ ๐ฐ๐š๐ญ๐ž๐ซ ๐ฌ๐ฎ๐ฉ๐ฉ๐ฅ๐ข๐ž๐ ๐ญ๐จ ๐ญ๐ก๐ž ๐ญ๐ฎ๐ซ๐›๐ข๐ง๐ž
Overall Efficiency =
๐’๐ก๐š๐Ÿ๐ญ ๐๐จ๐ฐ๐ž๐ซ
๐–๐š๐ญ๐ž๐ซ ๐๐จ๐ฐ๐ž๐ซ
= Hydraulic Efficiency * Mechanical Efficiency
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
20
Work done by Pelton turbine
โ€ข Work ๐‘Š = ๐œŒ๐‘Ž๐‘‰1[๐‘‰๐œ”1 โˆ’ ๐‘‰๐œ”2]๐‘ข where ๐‘‰๐œ”1, ๐‘‰๐œ”2are whirl velocity
Hydraulic Efficiency
โ€ข Hydraulic Efficiency =
๐Ÿ[๐•๐›š๐Ÿยฑ๐•๐›š๐Ÿ]๐ฎ
๐•๐Ÿ
๐Ÿ
โ€ข When blade velocity= (inlet velocity of jet)/2 then,
Maximum efficiency
๐Ÿ+๐‘ช๐’๐’”โˆ…
๐Ÿ
Degree of reaction
R =
Change of pressure energy inside the runner
Change in total energy
Specific Speed
โ€ข For turbine ๐‘๐‘  =
๐‘โˆš๐‘ƒ
๐ป
5
4
โ„
where P= power, H= head and N= number of rotation
โ€ข Dimensionless Specific speed ๐‘๐‘  =
๐‘โˆš๐‘ƒ
(๐‘”๐ป)
5
4
โ„
Turbine Specific Speed
(S.I)
Specific Speed
(M.K.S)
Pelton 8.5 to 30 10 to 35
Pelton with two jets 30 to 51 35 to 60
Francis 51 to 255 60 to 300
Kaplan and propeller 255 to 860 300 to 1000
For Pumps, ๐‘๐‘  =
๐‘โˆš๐‘„
๐ป
3
4
โ„
where Q is discharge
Unit quantities
โ€ข Unit speed (Nu): N = NuโˆšH
โ€ข Unit Power (Pu): P = Pu โˆ— H
3
2
โ„
โ€ข Unit discharge (Qu): Q = QuโˆšH
Model laws of turbine
โ€ข
๐‘„
๐‘๐ท3 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
โ€ข
๐‘„
โˆš๐ป๐ท2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS
21
โ€ข
๐ป
๐‘2๐ท2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
โ€ข
๐‘ƒ
๐‘3๐ท5 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
โ€ข
๐‘ƒ
๐ป
3
2
โ„ ๐ท2
= ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
Net Positive suction Head in pump
โ€ข NPSH= Pressure head + Static head - Vapor pressure head of your product โ€“ Friction head loss

More Related Content

Similar to Fluid Mechanics (2)civil engineers sksks

Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryanish antony
ย 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10rtrujill
ย 
Mechanics of fluids note
Mechanics of fluids noteMechanics of fluids note
Mechanics of fluids noteSHAMJITH KM
ย 
CE 6451 FMM Unit 1 Properties of fluids
CE 6451 FMM  Unit 1 Properties of fluidsCE 6451 FMM  Unit 1 Properties of fluids
CE 6451 FMM Unit 1 Properties of fluidsAsha A
ย 
Chapter 5 -momentum_equation_and_its_applications
Chapter 5 -momentum_equation_and_its_applicationsChapter 5 -momentum_equation_and_its_applications
Chapter 5 -momentum_equation_and_its_applicationsZackRule
ย 
1.C.pdf
1.C.pdf1.C.pdf
1.C.pdfHaryadHewa
ย 
fluid-mechanics
fluid-mechanicsfluid-mechanics
fluid-mechanicsElias T Maida
ย 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfJamesLumales
ย 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxKeith Vaugh
ย 
Fluid mechanics study guide (Cheat sheet)
Fluid mechanics study guide (Cheat sheet)Fluid mechanics study guide (Cheat sheet)
Fluid mechanics study guide (Cheat sheet)Dan Al
ย 
Fluid Mechanics
Fluid MechanicsFluid Mechanics
Fluid MechanicsDhrumit Patel
ย 
flow of fluids
flow of fluidsflow of fluids
flow of fluidsjagan vana
ย 
Fluid flow by ankita yagnik
Fluid flow by ankita yagnikFluid flow by ankita yagnik
Fluid flow by ankita yagnikAnkita Yagnik
ย 
Fluid flow 2.pdf
Fluid flow 2.pdfFluid flow 2.pdf
Fluid flow 2.pdfsafuraqazi
ย 
Hidraulika
HidraulikaHidraulika
HidraulikaNanang s
ย 
Fluid Flow.pptx
Fluid Flow.pptxFluid Flow.pptx
Fluid Flow.pptxdhani71
ย 
Mechanics-of-Fluids.ppt
Mechanics-of-Fluids.pptMechanics-of-Fluids.ppt
Mechanics-of-Fluids.pptrudramadhabswain1
ย 

Similar to Fluid Mechanics (2)civil engineers sksks (20)

Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machinery
ย 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10
ย 
Mechanics of fluids note
Mechanics of fluids noteMechanics of fluids note
Mechanics of fluids note
ย 
CE 6451 FMM Unit 1 Properties of fluids
CE 6451 FMM  Unit 1 Properties of fluidsCE 6451 FMM  Unit 1 Properties of fluids
CE 6451 FMM Unit 1 Properties of fluids
ย 
Chapter 5 -momentum_equation_and_its_applications
Chapter 5 -momentum_equation_and_its_applicationsChapter 5 -momentum_equation_and_its_applications
Chapter 5 -momentum_equation_and_its_applications
ย 
fluid statics
fluid staticsfluid statics
fluid statics
ย 
1.C.pdf
1.C.pdf1.C.pdf
1.C.pdf
ย 
Basic Thermo
Basic ThermoBasic Thermo
Basic Thermo
ย 
fluid-mechanics
fluid-mechanicsfluid-mechanics
fluid-mechanics
ย 
Intro fluids
Intro fluidsIntro fluids
Intro fluids
ย 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdf
ย 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
ย 
Fluid mechanics study guide (Cheat sheet)
Fluid mechanics study guide (Cheat sheet)Fluid mechanics study guide (Cheat sheet)
Fluid mechanics study guide (Cheat sheet)
ย 
Fluid Mechanics
Fluid MechanicsFluid Mechanics
Fluid Mechanics
ย 
flow of fluids
flow of fluidsflow of fluids
flow of fluids
ย 
Fluid flow by ankita yagnik
Fluid flow by ankita yagnikFluid flow by ankita yagnik
Fluid flow by ankita yagnik
ย 
Fluid flow 2.pdf
Fluid flow 2.pdfFluid flow 2.pdf
Fluid flow 2.pdf
ย 
Hidraulika
HidraulikaHidraulika
Hidraulika
ย 
Fluid Flow.pptx
Fluid Flow.pptxFluid Flow.pptx
Fluid Flow.pptx
ย 
Mechanics-of-Fluids.ppt
Mechanics-of-Fluids.pptMechanics-of-Fluids.ppt
Mechanics-of-Fluids.ppt
ย 

More from 9866560321sv

ME101-Lecture11 civil engineers use ful and
ME101-Lecture11 civil engineers use ful andME101-Lecture11 civil engineers use ful and
ME101-Lecture11 civil engineers use ful and9866560321sv
ย 
civil ngineering of research for civil engner
civil ngineering of research for civil engnercivil ngineering of research for civil engner
civil ngineering of research for civil engner9866560321sv
ย 
Handbook of Formulae and Constafor nts.pdf
Handbook of Formulae and Constafor nts.pdfHandbook of Formulae and Constafor nts.pdf
Handbook of Formulae and Constafor nts.pdf9866560321sv
ย 
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdfMathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf9866560321sv
ย 
use ful for civil engineering for use fu
use ful for civil engineering for use fuuse ful for civil engineering for use fu
use ful for civil engineering for use fu9866560321sv
ย 
Strength of Materials formu laws for civ
Strength of Materials formu laws for civStrength of Materials formu laws for civ
Strength of Materials formu laws for civ9866560321sv
ย 

More from 9866560321sv (6)

ME101-Lecture11 civil engineers use ful and
ME101-Lecture11 civil engineers use ful andME101-Lecture11 civil engineers use ful and
ME101-Lecture11 civil engineers use ful and
ย 
civil ngineering of research for civil engner
civil ngineering of research for civil engnercivil ngineering of research for civil engner
civil ngineering of research for civil engner
ย 
Handbook of Formulae and Constafor nts.pdf
Handbook of Formulae and Constafor nts.pdfHandbook of Formulae and Constafor nts.pdf
Handbook of Formulae and Constafor nts.pdf
ย 
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdfMathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
ย 
use ful for civil engineering for use fu
use ful for civil engineering for use fuuse ful for civil engineering for use fu
use ful for civil engineering for use fu
ย 
Strength of Materials formu laws for civ
Strength of Materials formu laws for civStrength of Materials formu laws for civ
Strength of Materials formu laws for civ
ย 

Recently uploaded

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
ย 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
ย 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
ย 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
ย 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
ย 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
ย 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
ย 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
ย 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdfssuser54595a
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
ย 

Recently uploaded (20)

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
ย 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
ย 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
ย 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
ย 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
ย 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
ย 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
ย 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
ย 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
ย 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
ย 

Fluid Mechanics (2)civil engineers sksks

  • 1. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 2 Pressure (P): โ€ข If F be the normal force acting on a surface of area A in contact with liquid,then pressure exerted by liquid on this surface is: P =F / A โ€ข Units : N /m2 or Pascal (S.I.) and Dyne/cm2 (C.G.S.) โ€ข Dimension : [P] = [F] [A] = [MLT 2 ] [L2 ] =[ML-1T -2 ] โ€ข Atmospheric pressure:Its value on the surface of the earth at sea level is nearly 1.01*10 5N/ m2 or Pascal in S.I. other practical units of pressure are atmosphere, bar and torr (mm of Hg) โ€ข 1atm = 1.01 *10 5Pa = 1.01bar = 760 torr โ€ข Fluid Pressure at aPoint: Density ( ฯ): dp= dF dA โ€ข In a fluid, at a point, density ฯ is defined as: Mass/volume โ€ข In case of homogenous isotropic substance, it has no directional properties, so is a scalar. โ€ข It has dimensions [ML-3] and S.I. unit kg/m3 while C.G.S. unit g/ccwith 1g / cc = 10 3kg / m 3 โ€ข Density of body = Density of substance โ€ข Relative density or specific gravity which is defined as: RD Densit Density of body of water Specific Weight ( w): โ€ข It is defined as the weight per unit volume. โ€ข Specific weight = Weight = m.g Volume Volume Specific Gravity or Relative Density(s): โ€ข It is the ratio of specific weight of fluid to the specific weight of a standard fluid. Standard fluid is water in case of liquid and H2 or air in case of gas. Specific gravity= ๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐น๐‘™๐‘ข๐‘–๐‘‘ ๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐น๐‘™๐‘ข๐‘–๐‘‘ or ๐›พ ๐›พ๐‘ค or ๐œŒ ๐œŒ๐‘ค Where, ๐›พ Specific weight , and ๐œŒ Density of water specific
  • 2. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 3 Specific Volume ( v): โ€ข Specific volume of liquid is defined as volume per unit mass. It is also defined as the reciprocal of specific density. โ€ข Specific volume =1/Density Newtonโ€™s Law of viscosity โ€ข ๐œ = ๐œ‡ ๐‘‘๐‘ข ๐‘‘๐‘ฆ Where ๐œ = Shear Stress, ๐œ‡= Co-efficient of viscosity or absolute viscosity ๐‘‘๐‘ข ๐‘‘๐‘ฆ = Rate of angular deformation or rate of change of shear strain Dynamic Viscosity and kinematic viscosity โ€ข Dynamic Viscosity- Resistance offered by fluid to flow โ€ข Units are Ns/m2 or Kg/ms โ€ข 1 poise= 0.1 Ns/m2 โ€ข Kinematic Viscosity = ๐ท๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘‰๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ(๐œ‡) ๐‘€๐‘Ž๐‘ ๐‘  ๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ (๐œŒ) โ€ข 1 Stoke= c.m2 /s = 10-4 m2 /s Bulk Modulus โ€ข Bulk modulus K= dP โˆ’dV V โ€ข Compressibility (ฮฒ) = 1 K = โˆ’dV VdP = dฯ ฯdP Where K= Bulk modulus of elasticity, ฯ= Density and V= Specific volume Surface Tension โ€ข The cohesive forces between liquid molecules are responsible for the phenomenon known as surface tension โ€ข Unit N/m โ€ข Pressure inside drop P = 4ฯƒ d โ€ข Pressure inside bubble P = 8ฯƒ d โ€ข Pressure inside jet P = 2ฯƒ d Where d= Diameter of drop, P= Gauge pressure and ฯƒ= Surface tension
  • 3. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 4 Capillary Action โ€ข Height of water in capillary tube- ๐’‰ = ๐Ÿ’๐ˆ๐‘ช๐’๐’”๐œฝ ๐†๐’ˆ๐’… โ„Ž=rise in capillary ๐œŽ= Surface tension of water D= Diameter of tube ๐œƒ=Angle of contact between liquid and material ๐œƒ=<90o for water and glass and >90o for mercury and glass Absolute Pressure Hydrostatic law ๐’…๐‘ท ๐’…๐’‰ = ๐†๐’ˆ ๐–๐ก๐ž๐ซ๐ž ๐›’ = ๐ƒ๐ž๐ง๐ฌ๐ข๐ญ๐ฒ ๐š๐ง๐ ๐  = ๐€๐œ๐œ๐ž๐ฅ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง ๐๐ฎ๐ž ๐ญ๐จ ๐ ๐ซ๐š๐ฏ๐ข๐ญ๐ฒ Manometers โ€ข Piezometers A p gh ๏ฒ = abs atm gauge abs atm vac P P P P P P = + = โˆ’
  • 4. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 5 โ€ข U-Tube Manometer 1 1 2 2 A m B P s gh s gh h gs P + โˆ’ โˆ’ = Where s1,s2 and sm are density of fluids in manometer Hydrostatic Forces on submerged bodies โ€ข Vertical Planes Total Force ๐… = ๐›’๐ ๐€๐ก ฬ… โ€ข Center of Pressure ๐’‰โˆ— = ๐‘ฐ๐’ˆ ๐‘จ๐’‰ ฬ… + ๐’‰ ฬ… โ€ข Horizontal Surface Total Force ๐… = ๐›’๐ ๐€๐ก ฬ… โ€ข Center of Pressure ๐’‰โˆ— = ๐’™ ฬ…
  • 5. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 6 โ€ข Forces on Inclined surface . total C G F gh A ๏ฒ = ๏‚ด โ€ข Centre of pressure ๐’‰โˆ— = ๐‘ฐ๐’ˆ๐‘บ๐’Š๐’๐Ÿ ๐œฝ ๐‘จ๐’‰๐‘ช.๐‘ฎ + ๐’‰๐‘ช.๐‘ฎ โ€ข Curved Surface โ€“ 2 2 tan R h v v h F F F F F ๏ฑ = + = Vertical component of force Fv Weight of the liquid supported by the curved surface over it up to the free liquid surface Horizontal component of force Fh Total pressure force on the vertical projected area of the curved surface Completely submerged and floating at the interface of two liquids 1 1 2 2 B F gV gV ๏ฒ ๏ฒ = + Where 1 V and 2 V are volumes Body floating in a liquid 2 2 B F V ๏ท =
  • 6. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 7 Principal of floatation โ€ข If the body weight is equal to the buoyant force, the body will float B Mg W F gV ๏ฒ = = = Condition of stability โ€ข Fully submerged body Stable Equilibrium: G below B Unstable Equilibrium: G above B Neutral Equilibrium: G coincides with B โ€ข Floating body Stable Equilibrium: M above G Unstable Equilibrium: M below G Neutral Equilibrium: M coincides with G Metacentric height (GM) โ€ข Metacentre radius (BM) I BM V = โ€ข Metacentric Height (GM) GM BM BG I GM BG V = โˆ’ = โˆ’
  • 7. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 8 Where I= Second moment area about body surface vertical axis V = Volume of water displaced Time period of transverse oscillation of floating body โ€ข 2 G K T gGM ๏ฐ = KG= Least radius of gyration, GM=Meta- Centric Height Continuity Equation โ€ข ฯ1A1V1 = ฯ2A2V2 Where A,V are cross-section area of the flow and Velocity of flow respectively For incompressible flow ฯ=constant so A1V1 = A2V2 Generalized differential Continuity Equation โ€ข ๐‘‘๐œŒ ๐‘‘๐‘ก + ๐‘‘(๐œŒ๐‘ข) ๐‘‘๐‘ฅ + ๐‘‘(๐œŒ๐‘ฃ) ๐‘‘๐‘ฆ + ๐‘‘(๐œŒ๐‘ค) ๐‘‘๐‘ง = 0 Where u,v and w are the velocities in x,y,and z direction respectively For steady incompressible two dimensional flow, ฯ=constant and ๐‘‘๐œŒ ๐‘‘๐‘ก = 0 ๐‘‘๐‘ข ๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ ๐‘‘๐‘ฆ = 0 Velocity and Acceleration of Fluid Particle โ€ข Velo = ui โƒ— + vj โƒ— + wk โƒ—โƒ— โ€ข Acceleration in X-direction ๐‘Ž๐‘ฅ = ๐‘‘๐‘ข ๐‘‘๐‘ก = ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ + ๐‘ฃ ๐‘‘๐‘ข ๐‘‘๐‘ฆ + ๐‘ค ๐‘‘๐‘ข ๐‘‘๐‘ง + ๐‘‘๐‘ข ๐‘‘๐‘ก Acceleration in Y-direction ๐‘Ž๐‘ฆ = ๐‘‘๐‘ฃ ๐‘‘๐‘ก = ๐‘ข ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ + ๐‘ฃ ๐‘‘๐‘ฃ ๐‘‘๐‘ฆ + ๐‘ค ๐‘‘๐‘ฃ ๐‘‘๐‘ง + ๐‘‘๐‘ฃ ๐‘‘๐‘ก Acceleration in Y-direction ๐‘Ž๐‘ง = ๐‘‘๐‘ค ๐‘‘๐‘ก = ๐‘ข ๐‘‘๐‘ค ๐‘‘๐‘ฅ + ๐‘ฃ ๐‘‘๐‘ค ๐‘‘๐‘ฆ + ๐‘ค ๐‘‘๐‘ค ๐‘‘๐‘ง + ๐‘‘๐‘ค ๐‘‘๐‘ก For steady flow ๐‘‘๐‘ข ๐‘‘๐‘ก = ๐‘‘๐‘ฃ ๐‘‘๐‘ก = ๐‘‘๐‘ค ๐‘‘๐‘ก = 0 ๐‘Ž = โˆš๐‘Ž๐‘ฅ 2 + ๐‘Ž๐‘ฆ 2 + ๐‘Ž๐‘ค 2 Note- Local Acceleration due to increase in rate of velocity with respect to time at a point and convective acceleration due to rate of change of position ( ๐‘‘๐‘ข ๐‘‘๐‘ก = ๐‘‘๐‘ฃ ๐‘‘๐‘ก = ๐‘‘๐‘ค ๐‘‘๐‘ก = 0)
  • 8. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 9 Rotational fluid ฯ‰z = 1 2 ( โˆ‚V โˆ‚x โˆ’ โˆ‚U โˆ‚y ) Vortex flow โ€ข Free Vortex V*r=Constant โ€ข Forced Vortex V=r ฯ‰ and ๐ป = ๐œ”2๐‘Ÿ2 2๐‘” Velocity potential โ€ข If โˆ… is the velocity function, then ๐‘ข = โˆ’ ๐œ•โˆ… ๐œ•๐‘ฅ , v=โˆ’ ๐œ•โˆ… ๐œ•๐‘ฆ , ๐‘ค = โˆ’ ๐œ•โˆ… ๐œ•๐‘ง โ€ข Polar direction ๐‘ข๐‘Ÿ = โˆ’ ๐œ•โˆ… ๐œ•๐‘Ÿ ,๐‘ข๐œƒ = โˆ’ 1 ๐‘Ÿ ๐œ•โˆ… ๐œ•๐œƒ Stream Function โ€ข If ๏น is the Stream function , then ๐‘ข = โˆ’ ๐œ•๏น ๐œ•๐‘ฆ , v= ๐œ•๏น ๐œ•๐‘ฅ Equipotential line โ€ข Condition for Equipotential line ๐‘‘โˆ… = 0 So ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = โˆ’ ๐‘ข ๐‘ฃ Line of constant stream function โ€ข Condition for constant stream function 0 d๏น = ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฃ ๐‘ข Relation between stream function and velocity potential function โ€ข โˆ‚โˆ… โˆ‚x = โˆ‚๏น โˆ‚y , โˆ‚โˆ… โˆ‚y = โˆ’ โˆ‚๏น โˆ‚x Equation of motion โ€ข ๐น ๐‘ฅ = ๐น ๐‘” + ๐น๐‘ƒ + ๐น ๐›พ + ๐น๐‘ก + ๐น๐ถ Where, Gravity force ๐น ๐‘”
  • 9. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 10 Pressure force ๐น๐‘ƒ Viscosity force ๐น ๐›พ Turbulance force ๐น๐‘ก Compressibility force ๐น๐ถ โ€ข When Compressibility force ๐น๐ถ is negligible ๐น ๐‘ฅ = ๐น ๐‘” + ๐น๐‘ƒ + ๐น ๐›พ + ๐น๐‘ก is Reynoldโ€™s equation of motion โ€ข ๐น๐‘ก is negligible ๐น ๐‘ฅ = ๐น ๐‘” + ๐น๐‘ƒ + ๐น ๐›พ is Navier- Stokes equation of motion โ€ข When flow is assumed to be ideal, ๐น ๐›พ = 0 ๐น ๐‘ฅ = ๐น ๐‘” + ๐น๐‘ƒ is Eulerโ€™s equation of motion Eulerโ€™s equation of motion โ€ข ๐‘‘๐‘ ๐œŒ + ๐‘”๐‘‘๐‘ง + ๐‘ฃ๐‘‘๐‘ฃ = 0 Bernoulliโ€™s equation โ€ข ๐‘ƒ + ๐œŒ๐‘”๐‘ง + ๐œŒ๐‘‰2 2 = 0 โ€ข P ฯg + z + V2 2g = 0 Where, P ฯg = Pressure head Z = Potential head V2 2g = Kinetic head Application of Bernoulliโ€™s theorem โ€ข Venturimeter Qact = Cd a1a2โˆš2gh โˆša1 2 โˆ’ a2 2 Where, Cd=Co-efficient of venturimeter which is <1 a1, a2= Area of cross section, h= Head โ€ข Orifice meter Vena contracta ๐ถ๐‘ = Area of vena contracta Area of orific
  • 10. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 11 Discharge ๐ถ๐‘‘ = ๐ถ๐‘ โˆš1โˆ’( ao a1 ) 2 โˆš1โˆ’( ao a1 ) 2 ๐‘๐‘ 2 where, a1= area of cross section before vena contracta ao=Area of orifice โ€ข Pitot Tube ๐•๐š๐œ๐ญ = ๐‚๐ฏโˆš๐Ÿ๐ (๐’๐ญ๐š๐ ๐ง๐š๐ญ๐ข๐จ๐ง ๐ก๐ž๐š๐ โˆ’ ๐’๐ญ๐š๐ญ๐ข๐œ ๐ก๐ž๐š๐) Where ๐‚๐ฏ is co-efficient of velocity Value of ๐’‰๐’‘ given by differential โ€ข ๐’‰๐’‘ = ๐’š( ๐‘บ๐’Ž ๐‘บ โˆ’ ๐Ÿ) where ๐‘บ๐’Ž > ๐‘บ โ€ข ๐’‰๐’‘ = ๐’š(๐Ÿ โˆ’ ๐‘บ๐’Ž ๐‘บ ) where S > ๐‘บ๐’Ž ๐‘บ๐’Ž, ๐‘บ are realtive density of manometric fluid and fluid flowing Momentum Equation โ€ข F.dt= d(mv) known as impulse- momentum equation Force exerted on flowing fluid by a bend pipe โ€ข If ๐œŒ1 = ๐œŒ2 then net force acting on a fluid โ€ข ๐‘ƒ1๐ด1 โˆ’ ๐‘ƒ1๐ด1๐ถ๐‘œ๐‘ ๐œƒ โˆ’ ๐น ๐‘ฅ = Change in velocity in horizontal โˆ— mass of fluid โ€ข Fy = ฯQ(change in velocity vertically) โˆ’ P2A2Sinฮธ โ€ข Resultant force = โˆšFx ๐Ÿ + Fx ๐Ÿ Viscous flow โ€ข To be viscous flow Reynold number should be less than 2000 ๐‘…๐‘’ = ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘‰๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐œŒ๐‘‰๐ท ๐œ‡ <2000 Where, v=velocity of flow, ๐œ‡= viscosity of flow, D= Diameter of piper and ๐œŒ= Density of fluid โ€ข Flow of viscous fluid through circular pipe
  • 11. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 12 โžข Velocity u = 1 4ฮผ (โˆ’ โˆ‚P โˆ‚x ) [R2 โˆ’ r2] โžข Shear stress ๐œ = (โˆ’ โˆ‚P โˆ‚x ) r 2 โžข Ratio of maximum to average velocity Maximum Velocity Average Velocity = 2 โžข Drop of pressure in given length P1 โˆ’ P2 ฯg = hf = 32u ฬ…ฮผL ฯgD2 Also called Hagen Poiseuille Equation Here u ฬ…=average velocity, P1, P2 = Pressure at two different points in the pipe โ€ข Flow of viscous fluid between two parallel plates โžข Velocity u = 1 2ฮผ (โˆ’ โˆ‚P โˆ‚x ) [ty โˆ’ y2] โžข Shear Stress ๐œ = 1 2 (โˆ’ โˆ‚P โˆ‚x ) [t โˆ’ 2y] โžข Ratio of maximum to average velocity Maximum Velocity Average Velocity = 3 2 โžข Drop of pressure in given length P1โˆ’P2 ฯg = hf = 12u ฬ…ฮผL ฯgt2 Kinetic energy correction factor ฮฑ = K.E sec based on actual velocity K.E sec based on average velocity For laminar flow ฮฑ=2 and for turbulent flow ฮฑ=1.33 Momentum correction factor ฮฒ = Momentum sec based on actual velocity Momentum sec based on average velocity For laminar flow ฮฒ=1.33 and for turbulent flow ฮฒ=1.20 Loss of head due to friction in viscous flow hf = 4flV2 2Dg Where t is the thickness
  • 12. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 13 Where f= friction co-efficient For laminar flow ๐‘“ = 16 ๐‘…๐‘’ where Re is Reynoldโ€™s number For turbulent flow, coefficient of friction f = 0.079 Re 1 4 Chezyโ€™s Formula V = Cโˆšmi , C = Chezy Constant = โˆš ฯg f i = Loss of head per unit length of pipe= โ„Ž๐‘“ ๐ฟ (hydraulic slope tan ฮธ) m = Hydraulic mean depth Mean velocity of flow m = Area (A) Wetted Perimeter(P) Minor losses in pipe โ€ข Loss of head due to sudden enlargement he = (V1 โˆ’ V1)2 2g โ€ข Loss of head due to sudden contraction he = V2 2g ( 1 Cc โˆ’ 1) 2 or he = 0.5 V2 2g when Cc=0.65 โ€ข Loss of head due to entrance ๐’‰๐’†๐’๐’•๐’“๐’‚๐’๐’„๐’† = 0.5 V2 2g โ€ข Loss due to exit pipe = ๐‘ฝ๐Ÿ ๐Ÿ๐’ˆ โ€ข Loss due to obstruction = V2 2g ( A Cc(Aโˆ’a) โˆ’ 1) 2 โ€ข Losses due to bend = K ๐‘ฝ๐Ÿ ๐Ÿ๐’ˆ where k depends on bending of pipe Hydraulic gradient and Total Energy line โ€ข H.G.L=Pressure head+datum head โ€ข T.G.L= Pressure head+datum head+Kinetic Head
  • 13. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 14 Flow through pipes in series or compound pipes Major loss = Head loss due to friction in each pipe While, minor loss = Entrance loss + Expansion loss + Contraction loss + Exit loss Flow will remain constant Equivalent pipe in series pipe ๐ฟ ๐‘‘5 = ๐ฟ1 ๐‘‘1 5 + ๐ฟ2 ๐‘‘2 5 + ๐ฟ3 ๐‘‘3 5 Power Transmission through pipes โ€ข P = ฯgAV 1000 (H โˆ’ hf) hf = loss due to friction โ€ข Efficency of power transmission ๏จ = ๐‘ƒ๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘Ž๐‘๐‘™๐‘’ ๐‘Ž๐‘ก ๐‘œ๐‘ข๐‘ก๐‘™๐‘’๐‘ก ๐‘ƒ๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘ ๐‘ข๐‘๐‘๐‘™๐‘–๐‘’๐‘‘ = ๐ปโˆ’โ„Ž๐‘“ ๐ป โ€ข Condition for maximum transmission of power ๐ป = 3โ„Ž๐‘“ and ๏จ = 66% Dimensional analysis: Quantity Symbol Dimensio ns Mass m M Length l L Time t T Temperature T ฮธ Velocity u LT -1
  • 14. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 15 Acceleration a LT -2 Momentum/Impulse mv MLT -1 Force F MLT -2 Energy - Work W ML 2T -2 Power P ML 2T -3 Moment of Force M ML 2T -2 Angular momentum - ML 2T -1 Angle ฮท M 0L 0T 0 Angular Velocity ฯ‰ T -1 Angular acceleration ฮฑ T -2 Area A L 2 Volume V L 3 First Moment of Area Ar L 3 Second Moment of Area I L 4 Density ฯ ML -3 Specific heat- Constant Pressure C p L 2 T -2 ฮธ -1 Elastic Modulus E ML -1T -2 Flexural Rigidity EI ML 3T -2 Shear Modulus G ML -1T -2 Torsional rigidity GJ ML 3T -2 Stiffness k MT -2 Angular stiffness T/ฮท ML 2 T -2 Flexibiity 1/k M -1 T 2 Vorticity - T -1 Circulation - L 2 T -1 Viscosity ฮผ ML -1 T -1 Kinematic Viscosity ฯ„ L 2 T -1 Diffusivity - L 2 T -1 Friction coefficient f /ฮผ M 0 L 0 T 0 Restitution coefficient M 0 L 0 T 0 Specific heat- Constant volume C v L 2 T-2 ฮธ -1
  • 15. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 16 Dimensionless number โ€ข Reynoldโ€™s number (Re) ๐‘…๐‘’ = ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž๐‘™ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘‰๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐น๐‘œ๐‘Ÿ๐‘๐‘’ = ๐œŒ๐‘‰๐ท ๐œ‡ โ€ข Froudeโ€™s Number (Fe) Fe = โˆš Inertia Force Gravity Force = ๐‘‰ โˆš๐ฟ๐‘” โ€ข Eulerโ€™s Equation (Eu) ๐ธ๐‘ข = โˆš ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘‰ โˆš๐‘ƒ ๐œŒ โ„ โ€ข Weberโ€™s number (We) ๐‘Š๐‘’ = ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ๐‘†๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘‰ โˆš๐œŽ ๐œŒ๐ฟ โ„ โ€ข Mach number (M) ๐‘€ = ๐ผ๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐ธ๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘‰ ๐ถ Velocity distribution for turbulent flow in pipe v = vmax + 2.5Vโˆ— loge ( Y R ) Where Vโˆ— =โˆš ๐œ๐‘œ ๐œŒ Shear or friction velocity, Y=distance from pipe wall, ๐œŒ=Density Displacement Thickness (๐›…โˆ— ) ๐›…โˆ— = โˆซ {1 โˆ’ ๐‘ข ๐‘ˆ } ๐‘‘๐‘ฆ ๐›ฟ 0 U=Stream Velocity, u=Velocity of fluid at the element, ฮด= boundary layer thickness Momentum Thickness (ฮธ) ฮธ = โˆซ ๐‘ข ๐‘ˆ {1 โˆ’ ๐‘ข ๐‘ˆ } ๐‘‘๐‘ฆ ๐›ฟ 0 Energy Thickness (๐›…โˆ—โˆ— ) ๐›…โˆ—โˆ— = โˆซ ๐‘ข ๐‘ˆ {1 โˆ’ ๐‘ข2 ๐‘ˆ2 } ๐‘‘๐‘ฆ ๐›ฟ 0
  • 16. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 17 Drag force on a flat plate due to boundary layer ฯ„o ฯU2 = โˆ‚ฮธ โˆ‚x Know as Von Karman momentum integral equation Drag force on plate obtained by ๐น๐ท = โˆซ โˆ†๐น = โˆซ ๐œ๐‘œ ๐ฟ 0 ๐‘๐‘‘๐‘ฅ where, b if thickness of plate Local (๐‚๐ƒ โˆ— )and average (๐‚๐ƒ) co-efficient of drag CD โˆ— = ฯ„0 ฯU2 2 โ„ , CD = ฯ„0 ฯAU2 2 โ„ Boundary condition for the velocity profile โ€ข At y=0, u=0 โ€ข At y=๐›ฟ, u=U ๐œ•๐‘ข ๐œ•๐‘ฆ = 0
  • 17. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 18 Saparation of boundary layer Force exerted by jet on plate โ€ข Force exerted by jet = mass of fluid striking per sec * change in velocity = ฯa(V)*(V โ€“ 0) =ฯa(V)2 Force exerted by jet on inclined plate โ€ข Fn=ฯa(V)2 Sinฮธ โ€ข Force component in X-direction = Fn Sinฮธ โ€ข Force component in Y-direction = Fn Cosฮธ Force exerted by jet on curved plate โ€ข Fx=ฯaV(V+V cosฮธ) โ€ข Fy=ฯaV(0-V sinฮธ) Force exerted by jet on curved plate , moving with some velocity โ€ข Fx=ฯa(V-u)( (V-u)+ (V-u) cosฮธ) โ€ข Fy=ฯa(V-u)(0-(V-u) sinฮธ)
  • 18. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 19 Forced exerted by a jet on a hinged plate โ€ข Sinฮธ = ฯaV2 w Hydraulic Efficiency = ๐๐จ๐ฐ๐ž๐ซ ๐๐ž๐ฅ๐ข๐ฏ๐ž๐ซ๐ž๐ ๐ญ๐จ ๐ซ๐ฎ๐ง๐ง๐ž๐ซ ๐๐จ๐ฐ๐ž๐ซ ๐ฌ๐ฎ๐ฉ๐ฉ๐ฅ๐ข๐ž๐ ๐ญ๐จ ๐ข๐ง๐ฅ๐ž๐ญ = ๐‘.๐ ๐–.๐ Mechanical Efficiency = ๐๐จ๐ฐ๐ž๐ซ ๐š๐ญ ๐ญ๐ก๐ž ๐ฌ๐ก๐š๐Ÿ๐ญ ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ญ๐ฎ๐ซ๐›๐ข๐ง๐ž ๐๐จ๐ฐ๐ž๐ซ ๐๐ž๐ฅ๐ข๐ฏ๐ž๐ซ๐ž๐ ๐›๐ฒ ๐ฐ๐š๐ญ๐ž๐ซ ๐ญ๐จ ๐ญ๐ก๐ž ๐ซ๐ฎ๐ง๐ง๐ž๐ซ = ๐’.๐ ๐‘.๐ Volumetric Efficiency = ๐•๐จ๐ฅ๐ฎ๐ฆ๐ž ๐จ๐Ÿ ๐ฐ๐š๐ญ๐ž๐ซ ๐š๐œ๐ญ๐ฎ๐š๐ฅ๐ฅ๐ฒ ๐ฌ๐ญ๐ซ๐ข๐ค๐ข๐ง๐  ๐ญ๐ก๐ž ๐ซ๐ฎ๐ง๐ง๐ž๐ซ ๐•๐จ๐ฅ๐ฎ๐ฆ๐ž ๐จ๐Ÿ ๐ฐ๐š๐ญ๐ž๐ซ ๐ฌ๐ฎ๐ฉ๐ฉ๐ฅ๐ข๐ž๐ ๐ญ๐จ ๐ญ๐ก๐ž ๐ญ๐ฎ๐ซ๐›๐ข๐ง๐ž Overall Efficiency = ๐’๐ก๐š๐Ÿ๐ญ ๐๐จ๐ฐ๐ž๐ซ ๐–๐š๐ญ๐ž๐ซ ๐๐จ๐ฐ๐ž๐ซ = Hydraulic Efficiency * Mechanical Efficiency
  • 19. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 20 Work done by Pelton turbine โ€ข Work ๐‘Š = ๐œŒ๐‘Ž๐‘‰1[๐‘‰๐œ”1 โˆ’ ๐‘‰๐œ”2]๐‘ข where ๐‘‰๐œ”1, ๐‘‰๐œ”2are whirl velocity Hydraulic Efficiency โ€ข Hydraulic Efficiency = ๐Ÿ[๐•๐›š๐Ÿยฑ๐•๐›š๐Ÿ]๐ฎ ๐•๐Ÿ ๐Ÿ โ€ข When blade velocity= (inlet velocity of jet)/2 then, Maximum efficiency ๐Ÿ+๐‘ช๐’๐’”โˆ… ๐Ÿ Degree of reaction R = Change of pressure energy inside the runner Change in total energy Specific Speed โ€ข For turbine ๐‘๐‘  = ๐‘โˆš๐‘ƒ ๐ป 5 4 โ„ where P= power, H= head and N= number of rotation โ€ข Dimensionless Specific speed ๐‘๐‘  = ๐‘โˆš๐‘ƒ (๐‘”๐ป) 5 4 โ„ Turbine Specific Speed (S.I) Specific Speed (M.K.S) Pelton 8.5 to 30 10 to 35 Pelton with two jets 30 to 51 35 to 60 Francis 51 to 255 60 to 300 Kaplan and propeller 255 to 860 300 to 1000 For Pumps, ๐‘๐‘  = ๐‘โˆš๐‘„ ๐ป 3 4 โ„ where Q is discharge Unit quantities โ€ข Unit speed (Nu): N = NuโˆšH โ€ข Unit Power (Pu): P = Pu โˆ— H 3 2 โ„ โ€ข Unit discharge (Qu): Q = QuโˆšH Model laws of turbine โ€ข ๐‘„ ๐‘๐ท3 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก โ€ข ๐‘„ โˆš๐ป๐ท2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
  • 20. MECHANICAL ENGINEERING โ€“ FLUIDMECHANICS 21 โ€ข ๐ป ๐‘2๐ท2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก โ€ข ๐‘ƒ ๐‘3๐ท5 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก โ€ข ๐‘ƒ ๐ป 3 2 โ„ ๐ท2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก Net Positive suction Head in pump โ€ข NPSH= Pressure head + Static head - Vapor pressure head of your product โ€“ Friction head loss