SlideShare a Scribd company logo
TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 1 of 7
Industrial Instrumentation
Temperature Measurement
Sl. No.
1
Temperature Unit Conversion
Kelvin to Celsius: °𝑪 = [𝑲 − 𝟐𝟕𝟑. 𝟏𝟓]
Kelvin to Fahrenheit: °𝑭 = [(𝑲 − 𝟐𝟕𝟑. 𝟏𝟓) ∗
𝟗
𝟓
+ 𝟑𝟐]
Kelvin to Rankine: °𝑹 = [𝑲 ∗
𝟗
𝟓
]
Kelvin to Réaumur: °𝑹𝒆 = [(𝑲 − 𝟐𝟕𝟑. 𝟏𝟓) ∗
𝟒
𝟓
]
Celsius to Kelvin: 𝑲 = [°𝑪 + 𝟐𝟕𝟑. 𝟏𝟓]
Celsius to Fahrenheit: °𝑭 = [(℃ ∗
𝟗
𝟓
) + 𝟑𝟐]
Celsius to Rankine: °𝑹 = [(℃ ∗
𝟗
𝟓
) + 𝟒𝟗𝟏. 𝟔𝟕]
Celsius to Réaumur: °𝑹𝒆 = [(°𝑪 ∗
𝟒
𝟓
)]
Fahrenheit to Kelvin: 𝑲 = [(°𝑭 − 𝟑𝟐) ∗
𝟓
𝟗
+ 𝟐𝟕𝟑. 𝟏𝟓]
Fahrenheit to Celsius: : °𝑪 = [(℉ − 𝟑𝟐) ∗
𝟓
𝟗
]
Fahrenheit to Rankine: °𝑹 = [℉ + 𝟒𝟓𝟗. 𝟔𝟕]
Fahrenheit to Réaumur: °𝑹𝒆 = [(℉ − 𝟑𝟐) ∗
𝟒
𝟗
]
Rankine to Kelvin: 𝑲 = [°𝑹 ∗
𝟓
𝟗
]
Rankine to Celsius: °𝑪 = [(°𝑹 − 𝟒𝟗𝟏. 𝟔𝟕) ∗
𝟓
𝟗
]
Rankine to Fahrenheit: °𝑭 = [°𝑹 − 𝟒𝟓𝟗. 𝟔𝟕]
Rankine to Réaumur: °𝑹𝒆 = [(°𝑹 − 𝟒𝟗𝟏. 𝟔𝟕) ∗
𝟒
𝟗
]
Réaumur to Kelvin: 𝑲 = [(°𝑹𝒆 ∗
𝟓
𝟒
) + 𝟐𝟕𝟑. 𝟏𝟓]
Réaumur to Celsius: °𝑪 = [(°𝑹𝒆 ∗
𝟓
𝟒
)]
Réaumur to Fahrenheit: °𝑭 = [(°𝑹𝒆 ∗
𝟗
𝟒
) + 𝟑𝟐]
Réaumur to Rankine: °𝑹 = [(°𝑹𝒆 ∗
𝟒
𝟗
) + 𝟒𝟗𝟏. 𝟔𝟕]
2
Thermoelectric Laws:
Seebeck Effect:
𝑱 = 𝝈(−𝜵𝑽 + 𝑬𝒆𝒎𝒇)
𝐸𝑒𝑚𝑓 = 𝐸𝑀𝐹 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑, 𝐽 = 𝑙𝑜𝑐𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦,
𝑉 = 𝑙𝑜𝑐𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒, 𝜎 = 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦.
TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 2 of 7
𝑬𝒆𝒎𝒇 = −𝑺𝜵𝑻
𝐸𝑒𝑚𝑓 = 𝐸𝑀𝐹 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑, 𝛻𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
Peltier Effect:
𝑸 = (𝜫𝑨 − 𝜫𝑩)𝑰
𝑄 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝐻𝑒𝑎𝑡, 𝐼 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝐴 𝑡𝑜 𝐵,
𝛱𝐴 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝐴,
𝛱𝐵 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝐵,
Thomson Effect:
𝑸 = 𝑲𝑱𝜵𝑻
𝑲 = 𝑻
𝒅𝑺
𝒅𝑻
𝑄 = 𝐻𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒,
𝐾 = 𝑇ℎ𝑜𝑚𝑠𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝐽 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦,
𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,
𝛻𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡.
Thomson Relationship:
𝑲 =
𝒅𝜫
𝒅𝑻
− 𝑺
𝜫 = 𝑻𝑺
𝐾 = 𝑇ℎ𝑜𝑚𝑠𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,
𝛱 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,
𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,
𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.
Thermoelectric Effect:
𝑱 = 𝝈(−𝜵𝑽 − 𝑺𝜵𝑻)
𝐽 = 𝑙𝑜𝑐𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝜎 = 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
Equation for Accumulated Energy 𝒆̇ (temperature and charge changing with time)
𝒆̇ = 𝛁. (𝒌𝛁𝑻) + 𝛁. (𝑽 + 𝜫)𝑱 + 𝒒̇ 𝒆𝒙𝒕
𝑒̇ = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦,
𝐽 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝛱 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,
𝑘 = 𝑡ℎ𝑒𝑟𝑚𝑛𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦,
𝑞̇𝑒𝑥𝑡 = 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒 ℎ𝑒𝑎𝑡 𝑎𝑑𝑑𝑒𝑑,
𝑉 = 𝑙𝑜𝑐𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒.
3
Thermometer:
𝑻 = 𝑻𝒇 − (𝑻𝒇 − 𝑻𝒊)𝒆−𝒕 𝝉
⁄
𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡, 𝑡 = 𝑡𝑖𝑚𝑒, 𝜏 = 𝑇𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑇𝑓 = 𝐹𝑖𝑛𝑎𝑙 𝑇𝑒𝑚𝑒𝑝𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 3 of 7
Thermometer Transfer Function:
𝑻𝟎(𝒕) = 𝑻𝒊(𝒕) ∗
𝟏
𝝉𝒔 + 𝟏
=
𝑻𝒊(𝒕)
𝝉𝒋𝝎 + 𝟏
𝑴 = |
𝑻𝟎(𝒔)
𝑻𝒊(𝒔)
| = |
𝑻𝟎(𝒋𝝎)
𝑻𝒊(𝒋𝝎)
| =
𝟏
√(𝝉𝝎)𝟐 + 𝟏
𝑻𝒎𝒂𝒙 = 𝑴. ∆𝑻 + 𝑻𝒎𝒆𝒂𝒏
𝑷𝒉𝒂𝒔𝒆 𝑺𝒉𝒊𝒇𝒕 𝜽 = 𝐭𝐚𝐧−𝟏
𝝎∆𝑻
𝑻𝒊𝒎𝒆𝒍𝒂𝒈 =
𝟏
𝟑𝟔𝟎 ∗ 𝒇
∗ 𝜽
Volume-Temperature Function:
𝑽(𝑻) = 𝑨. 𝒉 = 𝑽(𝟏 + 𝜷𝑻)
𝐴 = 𝑏𝑢𝑙𝑏 𝑏𝑎𝑠𝑒 𝑎𝑟𝑒𝑎, ℎ = 𝑏𝑢𝑙𝑏 ℎ𝑒𝑖𝑔ℎ𝑡, 𝑉 = 𝑏𝑢𝑙𝑏 𝑣𝑜𝑙𝑢𝑚𝑒,
𝛽 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,
4
Bimetallic Strip:
Timoshenko Formula for Radius of Curvature of Bimetallic Strip (𝑹)
𝑹 =
𝒕 [𝟑. (𝟏 + 𝒎)𝟐
+ (𝟏 + 𝒎. 𝒏) (𝒎𝟐
+
𝟏
𝒎. 𝒏
)]
𝟔(𝜶𝟐 − 𝜶𝟏)(𝑻𝒉 − 𝑻𝑪)(𝟏 + 𝒎)𝟐
𝑅 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒, 𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑟𝑖𝑝 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠,
𝑡1 = 𝑆𝑡𝑟𝑖𝑝 1 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝑡2 = 𝑠𝑡𝑟𝑖𝑝 2 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠,
𝑚 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =
𝑡1
𝑡2
,
𝑛 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑌𝑜𝑢𝑛𝑔′
𝑠𝑀𝑜𝑑𝑢𝑙𝑢𝑠 =
𝐸1
𝐸2
,
𝐸1 = 𝑌𝑜𝑢𝑛𝑔′
𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 1,
𝐸2 = 𝑌𝑜𝑢𝑛𝑔′
𝑠𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 2,
𝛼1 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 1,
𝛼2 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 2,
𝑇ℎ = 𝐻𝑜𝑡 𝑡𝑒𝑚𝑒𝑝𝑟𝑎𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒,
𝑇𝐶 = 𝐶𝑜𝑙𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒.
Temperature Measurement – Bimetallic Strip:
𝑻𝒇 = 𝑻𝒊 +
𝟐𝒕
𝟑 ∗ 𝑹 ∗ (𝜶𝑨 − 𝜶𝑩)
𝑇𝑓 = 𝐹𝑖𝑛𝑎𝑙 𝑇𝑒𝑚𝑒𝑝𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
𝑅 = 𝑆𝑡𝑟𝑖𝑝 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑡 = 𝑠𝑡𝑟𝑖𝑝 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠,
𝛼𝐴 = 𝐸𝑥𝑝𝑎𝑛𝑠𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝐴,
TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 4 of 7
𝛼𝐵 = 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝐵,
𝑹 =
𝒕
𝟐𝜶(𝑻𝒇 − 𝑻𝒊)
𝛼 =
𝛼𝐴 + 𝛼𝐵
2
Angular Deflection of Strip (𝜽):
𝜃 = 𝑆𝑡𝑟𝑖𝑝 𝐿𝑒𝑛𝑔𝑡ℎ 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑅𝑎𝑑𝑖𝑢𝑠
⁄
Vertical Strip Displacement (𝒚):
𝒚 = 𝑹(𝟏 − 𝒄𝒐𝒔𝜽)
5
RTD:
𝑹𝑻 = 𝑹𝟎[𝟏 + 𝜶∆𝑻]
𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑺 =
𝒅𝑹
𝒅(∆𝑻)
=
𝒅
𝒅(∆𝑻)
𝑹𝟎[𝟏 + 𝜶∆𝑻] = 𝜶𝑹𝟎
𝜶 =
𝑹𝟏𝟎𝟎 − 𝑹𝟎
𝟏𝟎𝟎𝑹𝟎
𝛼 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑅100 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 100 °𝐶, 𝑅0 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 0 °𝐶
Callendar-Van Dusen Equation:
𝑹𝑻 = 𝑹𝟎[𝟏 + 𝑨𝑻 + 𝑩𝑻𝟐
+ 𝑪𝑻𝟑(𝑻 − 𝟏𝟎𝟎)] (−𝟐𝟎𝟎 °𝑪 < 𝑻 < 𝟎°𝑪)
𝑹𝑻 = 𝑹𝟎[𝟏 + 𝑨𝑻 + 𝑩𝑻𝟐] (𝟎 °𝑪 < 𝑻 < 𝟖𝟓𝟎°𝑪)
𝐴 = 3.9083 ∗ 10−3
°𝐶−1
;
𝐵 = −5.775 ∗ 10−7
°𝐶−2
,
𝐶 = −4.183 ∗ 10−12
°𝐶−4
𝑅0 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 0 °𝐶, 𝑅𝑇 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑇 °𝐶.
6
Thermistor
𝑹𝑻 = 𝑹𝟎𝒆𝒙𝒑 [𝜷 (
𝟏
𝑻
−
𝟏
𝑻𝟎
)]
𝑅𝑇 = 𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑅0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇0 𝐾
𝑹𝑻 = 𝑹𝑹𝒆𝒇𝒆
𝜷(
𝟏
𝑻
−
𝟏
𝑻𝑹𝒆𝒇
)
𝑅𝑇 = 𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝐾,
𝑅𝑅𝑒𝑓 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 0 𝐾,
𝛽 = 𝐵 − 𝑣𝑎𝑙𝑢𝑒 𝑠𝑝𝑒𝑐𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟,
TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 5 of 7
𝑇𝑅𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (0 𝐾), 𝑇 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.
𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑺 =
𝒅𝑹𝑻
𝒅𝑻
= 𝑹𝟎𝒆𝒙𝒑 [𝜷 (
𝟏
𝑻
−
𝟏
𝑻𝟎
) −
𝜷
𝑻𝟐
]
Steinhart-Hart Equation:
𝟏
𝑻
= 𝑨 + 𝑩 ∗ 𝒍𝒏(𝑹) + 𝑪(𝒍𝒏(𝑹))𝟑
𝐴, 𝐵, 𝐶 = 𝑆𝑡𝑒𝑖𝑛ℎ𝑎𝑟𝑡 − 𝐻𝑎𝑟𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑅 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑇 0°𝐶,
𝐴 = 0.001284, 𝐵 = 2.364 ∗ 10−4
, 𝐶 = 9.304 ∗ 10−8
7
Thermocouple
𝑬 = 𝒂(∆𝜽) + 𝒃(∆𝜽)𝟐
𝐸 = 𝑒𝑚𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑; ∆𝜃 = 𝑡𝑒𝑚𝑝. 𝑑𝑖𝑓𝑓. ; 𝑎, 𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠
𝑬 ≅ 𝒂∆𝜽 (𝒊𝒇 𝒂 ≫ 𝒃)
𝑬𝒆𝒎𝒇 = −𝑺𝜵𝑻
𝐸𝑒𝑚𝑓 = 𝐸𝑀𝐹 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑, 𝛻𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
8
Series Connected Thermocouple (Thermopile)
𝑬 = 𝑬𝟏 + 𝑬𝟐 … + 𝑬𝒏 = 𝒏𝑬𝟏 (𝒊𝒇 𝑬𝟏 = 𝑬𝟐 … = 𝑬𝒏)
𝐸 = 𝑒𝑚𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑; 𝑛 = 𝑛𝑜. 𝑜𝑓 𝑠𝑒𝑟𝑖𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠.
9
Langmuir Probe:
𝒄𝒔 = √𝑲𝑩(𝒁𝑻𝒆 + 𝜸𝒊𝑻𝒊) 𝒎𝒊
⁄
𝑐𝑠 = 𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑, 𝐾𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 1.38 ∗ 10−23
𝐽 𝐾
⁄
𝑍 = 𝑐ℎ𝑎𝑟𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑖𝑜𝑛𝑠, 𝑚𝑖 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑖𝑜𝑛𝑠,
𝑇𝑒 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑖 = 𝐼𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
𝛾𝑖 = 𝐼𝑜𝑛𝑠′
𝐴𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡.
10
High Temperature Measurement (Radiation Pyrometer)
Stefan-Boltzmann Law: Absolute Power (P) radiated into surface area (A)
𝑷 = 𝑨𝜺𝝈𝑻𝟒
= 𝑨𝜺𝝈(𝑻𝑹 − 𝑻𝑪)𝟒
𝒋∗
= 𝒒𝒃 = 𝝈𝑻𝟒
= 𝑨𝜺𝝈(𝑻𝑹 − 𝑻𝑪)𝟒
𝑾 𝒎𝟐
⁄
𝒋∗
= 𝑞𝑏 = 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,
𝑇 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒; 𝑇𝑅 = 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝐶 = 𝑆𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
𝜎 = 𝑆𝑡𝑒𝑓𝑎𝑛 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 56.703 ∗ 10−9
𝑊 𝑚2
𝐾4
⁄
𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 𝜀 =
𝑞
𝑞0
; 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1
TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 6 of 7
𝑞 = ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑔𝑟𝑎𝑦 𝑏𝑜𝑑𝑦; 𝑞0 = ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑑𝑦;
𝒒 = 𝜺𝝈𝑻𝟒
= 𝜺𝝈(𝑻𝑹 − 𝑻𝑪)𝟒
Thermometer Heat Equation Output:
𝑽(𝑻) = 𝒆𝑲𝑻𝑵; 𝑵 =
𝟏𝟒𝟑𝟖𝟖
𝑰 ∗ 𝑻
𝑉(𝑇) = 𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑒 = 𝐸𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦,
𝐾 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑁 = 𝑁 𝑓𝑎𝑐𝑡𝑜𝑟,
𝐼 = 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ.
11
Solid State Temperature Sensor:
𝑽𝑩𝑬 =
𝐾𝐵𝑻
𝒒
𝒍𝒏
𝑰𝒄
𝑰𝒆𝒔
𝑉𝐵𝐸 = 𝐵𝑎𝑠𝑒 𝐸𝑚𝑖𝑡𝑡𝑒𝑟 𝑉𝑜𝑙𝑡𝑎𝑔𝑒, 𝐼𝑐 = 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡,
𝐾𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 1.38 ∗ 10−23
𝐽 𝐾
⁄ ,
𝑞 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑐ℎ𝑎𝑟𝑔𝑒 = 1.6 ∗ 10−19
𝐶,
𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝐾).
12
Ultrasonic Thermometer:
𝒗𝟐
=
𝜸𝑹𝑻
𝑴𝒘
𝑣 = 𝑠𝑜𝑢𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝛾 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑖𝑜,
𝑅 = 𝐺𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒, 𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
𝑀𝑤 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡.
Level Measurement
1
Inferential Capacitive Method:
𝑪 =
𝟐𝝅𝜺𝒉
𝐥𝐨𝐠𝒆 (
𝒅𝟐
𝒅𝟏
)
𝑭𝒂𝒓𝒂𝒅
𝐶 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝐹), 𝜀 = 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟; ℎ = ℎ𝑒𝑖𝑔ℎ𝑡;
𝑑1 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑟𝑜𝑑; 𝑑2 = 𝑒𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟;
Capacitive Voltage Divider Method:
𝑬𝟎 =
𝑪𝟏
𝑪𝟏 + 𝑪𝟐
𝑬𝑨
Capacitive Tank: Capacitance between point A & B.
TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 7 of 7
𝑪 = 𝑪𝟏 + 𝑪𝟐 =
𝟐𝝅
𝒍𝒏[(𝒓 + 𝒂) 𝒓
⁄ ]
𝜺𝟎(𝑳 − 𝒙) +
𝟐𝝅
𝒍𝒏[(𝒓 + 𝒂) 𝒓
⁄ ]
𝜺𝟎𝜺𝒓𝒙
∴ 𝑪 = 𝑪𝟏 + 𝑪𝟐 =
𝟐𝝅
𝒍𝒏[(𝒓 + 𝒂) 𝒓
⁄ ]
[𝜺𝟎𝑳 + 𝜺𝟎𝒙(𝜺𝒓 − 𝟏)]
∴ 𝒙 = 𝑪
𝒍𝒏[𝟏 + (𝒂 𝒓
⁄ )]
𝟐𝝅𝜺𝟎(𝜺𝒓 − 𝟏)
−
𝑳
𝜺𝒓 − 𝟏
= 𝑲𝟏𝑪 + 𝑲𝟐
𝑥 = 𝑙𝑖𝑞𝑢𝑖𝑑 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛 𝑡𝑎𝑛𝑘, 𝐿 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑎𝑛𝑘,
𝜀0 = 𝑎𝑖𝑟 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 = 8.84 ∗ 10−12
𝐹 𝑚
⁄ ,
𝜀𝑟 = 𝑑𝑖𝑒𝑒𝑙𝑐𝑡𝑟𝑖𝑐 𝑚𝑒𝑑𝑖𝑢𝑚 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦,
𝑟 = 𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑟𝑎𝑑𝑖𝑢𝑠,
𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑎𝑛𝑘 𝑤𝑎𝑙𝑙 𝑎𝑛𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒,
𝐾1 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐾2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡,
2
Differential Pressure Level Indicator:
𝒍 =
𝑷𝟏 − 𝑷𝟐
𝝆𝒈
𝑙 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑙𝑒𝑣𝑒𝑙, 𝑃1 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 1, 𝑃2 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 2,
𝜌 = 𝑙𝑖𝑞𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑔 = 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,
3
Gamma Ray Level Indicator:
𝑰 = 𝑰𝟎𝒆𝒙𝒑(−𝝁𝝆𝒅)
𝐼 = 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑓𝑡𝑒𝑟 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙,
𝐼0 = 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,
𝜇 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,
𝜌 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦,
𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙,

More Related Content

Similar to Equations_3_Industrial Instrumentation - Temperature & Level Measurement Important Equations.pdf

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
iosrjce
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Tony Yen
 
Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...
Wasswaderrick3
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)PhysicsLover
 
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
Wasswaderrick3
 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
Wasswaderrick3
 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
Wasswaderrick3
 
18 me54 turbo machines module 03 question no 6a &amp; 6b
18 me54 turbo machines module 03 question no 6a &amp; 6b18 me54 turbo machines module 03 question no 6a &amp; 6b
18 me54 turbo machines module 03 question no 6a &amp; 6b
THANMAY JS
 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
Wasswaderrick3
 
LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE
LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE
LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE
Angel Darío González-Delgado
 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
Wasswaderrick3
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
SHREDHAPRASAD
 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)PhysicsLover
 
Advance heat transfer 2
Advance heat transfer 2Advance heat transfer 2
Advance heat transfer 2
JudeOliverMaquiran1
 
APPLIED THERMODYNAMICS 18ME42 Module 01 question no 1a &amp; 1b
APPLIED THERMODYNAMICS 18ME42 Module 01 question no 1a &amp; 1bAPPLIED THERMODYNAMICS 18ME42 Module 01 question no 1a &amp; 1b
APPLIED THERMODYNAMICS 18ME42 Module 01 question no 1a &amp; 1b
THANMAY JS
 
K to 12 math
K to 12 mathK to 12 math
K to 12 math
GrantWSmith
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
AIMST University
 
HEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfHEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdf
Wasswaderrick3
 
FUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfFUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdf
Wasswaderrick3
 

Similar to Equations_3_Industrial Instrumentation - Temperature & Level Measurement Important Equations.pdf (20)

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 
Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
 
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
 
18 me54 turbo machines module 03 question no 6a &amp; 6b
18 me54 turbo machines module 03 question no 6a &amp; 6b18 me54 turbo machines module 03 question no 6a &amp; 6b
18 me54 turbo machines module 03 question no 6a &amp; 6b
 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
 
LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE
LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE
LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE
 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)
 
Advance heat transfer 2
Advance heat transfer 2Advance heat transfer 2
Advance heat transfer 2
 
APPLIED THERMODYNAMICS 18ME42 Module 01 question no 1a &amp; 1b
APPLIED THERMODYNAMICS 18ME42 Module 01 question no 1a &amp; 1bAPPLIED THERMODYNAMICS 18ME42 Module 01 question no 1a &amp; 1b
APPLIED THERMODYNAMICS 18ME42 Module 01 question no 1a &amp; 1b
 
K to 12 math
K to 12 mathK to 12 math
K to 12 math
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
 
HEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfHEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdf
 
FUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfFUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdf
 

More from Burdwan University

2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf
Burdwan University
 
1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf
Burdwan University
 
Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...
Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...
Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...
Burdwan University
 
Temperature Unit Conversions.pdf
Temperature Unit Conversions.pdfTemperature Unit Conversions.pdf
Temperature Unit Conversions.pdf
Burdwan University
 
Pressure Unit Conversions.pdf
Pressure Unit Conversions.pdfPressure Unit Conversions.pdf
Pressure Unit Conversions.pdf
Burdwan University
 
Medical specializations
Medical specializationsMedical specializations
Medical specializations
Burdwan University
 
Electronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q MeterElectronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q Meter
Burdwan University
 
Electronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor MeterElectronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor Meter
Burdwan University
 
Electronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - MeggerElectronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - Megger
Burdwan University
 
pH and Conductivity Measurement
pH and Conductivity MeasurementpH and Conductivity Measurement
pH and Conductivity Measurement
Burdwan University
 
Relative Humidity Measurement
Relative Humidity MeasurementRelative Humidity Measurement
Relative Humidity Measurement
Burdwan University
 
Viscosity Measurement
Viscosity MeasurementViscosity Measurement
Viscosity Measurement
Burdwan University
 
Electronic Measurement Flow Measurement
Electronic Measurement Flow MeasurementElectronic Measurement Flow Measurement
Electronic Measurement Flow Measurement
Burdwan University
 
Electronic Measurement - Pressure Measurement
Electronic Measurement - Pressure MeasurementElectronic Measurement - Pressure Measurement
Electronic Measurement - Pressure Measurement
Burdwan University
 
Electronic Measurement - Level Measurement
Electronic Measurement - Level MeasurementElectronic Measurement - Level Measurement
Electronic Measurement - Level Measurement
Burdwan University
 
Electronic Measurement - Temperature Measurement
Electronic Measurement - Temperature MeasurementElectronic Measurement - Temperature Measurement
Electronic Measurement - Temperature Measurement
Burdwan University
 
5 Commonly Used Transducers
5 Commonly Used Transducers5 Commonly Used Transducers
5 Commonly Used Transducers
Burdwan University
 
Optical Instrumentation 12. Optical Fibre Losses
Optical Instrumentation   12. Optical Fibre LossesOptical Instrumentation   12. Optical Fibre Losses
Optical Instrumentation 12. Optical Fibre Losses
Burdwan University
 
Basics of Sensors & Transducers
Basics of Sensors & TransducersBasics of Sensors & Transducers
Basics of Sensors & Transducers
Burdwan University
 
Optical Instrumentation 3. Basics of Photometry
Optical Instrumentation   3. Basics of Photometry Optical Instrumentation   3. Basics of Photometry
Optical Instrumentation 3. Basics of Photometry
Burdwan University
 

More from Burdwan University (20)

2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf
 
1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf
 
Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...
Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...
Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations...
 
Temperature Unit Conversions.pdf
Temperature Unit Conversions.pdfTemperature Unit Conversions.pdf
Temperature Unit Conversions.pdf
 
Pressure Unit Conversions.pdf
Pressure Unit Conversions.pdfPressure Unit Conversions.pdf
Pressure Unit Conversions.pdf
 
Medical specializations
Medical specializationsMedical specializations
Medical specializations
 
Electronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q MeterElectronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q Meter
 
Electronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor MeterElectronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor Meter
 
Electronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - MeggerElectronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - Megger
 
pH and Conductivity Measurement
pH and Conductivity MeasurementpH and Conductivity Measurement
pH and Conductivity Measurement
 
Relative Humidity Measurement
Relative Humidity MeasurementRelative Humidity Measurement
Relative Humidity Measurement
 
Viscosity Measurement
Viscosity MeasurementViscosity Measurement
Viscosity Measurement
 
Electronic Measurement Flow Measurement
Electronic Measurement Flow MeasurementElectronic Measurement Flow Measurement
Electronic Measurement Flow Measurement
 
Electronic Measurement - Pressure Measurement
Electronic Measurement - Pressure MeasurementElectronic Measurement - Pressure Measurement
Electronic Measurement - Pressure Measurement
 
Electronic Measurement - Level Measurement
Electronic Measurement - Level MeasurementElectronic Measurement - Level Measurement
Electronic Measurement - Level Measurement
 
Electronic Measurement - Temperature Measurement
Electronic Measurement - Temperature MeasurementElectronic Measurement - Temperature Measurement
Electronic Measurement - Temperature Measurement
 
5 Commonly Used Transducers
5 Commonly Used Transducers5 Commonly Used Transducers
5 Commonly Used Transducers
 
Optical Instrumentation 12. Optical Fibre Losses
Optical Instrumentation   12. Optical Fibre LossesOptical Instrumentation   12. Optical Fibre Losses
Optical Instrumentation 12. Optical Fibre Losses
 
Basics of Sensors & Transducers
Basics of Sensors & TransducersBasics of Sensors & Transducers
Basics of Sensors & Transducers
 
Optical Instrumentation 3. Basics of Photometry
Optical Instrumentation   3. Basics of Photometry Optical Instrumentation   3. Basics of Photometry
Optical Instrumentation 3. Basics of Photometry
 

Recently uploaded

一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 

Recently uploaded (20)

一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 

Equations_3_Industrial Instrumentation - Temperature & Level Measurement Important Equations.pdf

  • 1. TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 1 of 7 Industrial Instrumentation Temperature Measurement Sl. No. 1 Temperature Unit Conversion Kelvin to Celsius: °𝑪 = [𝑲 − 𝟐𝟕𝟑. 𝟏𝟓] Kelvin to Fahrenheit: °𝑭 = [(𝑲 − 𝟐𝟕𝟑. 𝟏𝟓) ∗ 𝟗 𝟓 + 𝟑𝟐] Kelvin to Rankine: °𝑹 = [𝑲 ∗ 𝟗 𝟓 ] Kelvin to Réaumur: °𝑹𝒆 = [(𝑲 − 𝟐𝟕𝟑. 𝟏𝟓) ∗ 𝟒 𝟓 ] Celsius to Kelvin: 𝑲 = [°𝑪 + 𝟐𝟕𝟑. 𝟏𝟓] Celsius to Fahrenheit: °𝑭 = [(℃ ∗ 𝟗 𝟓 ) + 𝟑𝟐] Celsius to Rankine: °𝑹 = [(℃ ∗ 𝟗 𝟓 ) + 𝟒𝟗𝟏. 𝟔𝟕] Celsius to Réaumur: °𝑹𝒆 = [(°𝑪 ∗ 𝟒 𝟓 )] Fahrenheit to Kelvin: 𝑲 = [(°𝑭 − 𝟑𝟐) ∗ 𝟓 𝟗 + 𝟐𝟕𝟑. 𝟏𝟓] Fahrenheit to Celsius: : °𝑪 = [(℉ − 𝟑𝟐) ∗ 𝟓 𝟗 ] Fahrenheit to Rankine: °𝑹 = [℉ + 𝟒𝟓𝟗. 𝟔𝟕] Fahrenheit to Réaumur: °𝑹𝒆 = [(℉ − 𝟑𝟐) ∗ 𝟒 𝟗 ] Rankine to Kelvin: 𝑲 = [°𝑹 ∗ 𝟓 𝟗 ] Rankine to Celsius: °𝑪 = [(°𝑹 − 𝟒𝟗𝟏. 𝟔𝟕) ∗ 𝟓 𝟗 ] Rankine to Fahrenheit: °𝑭 = [°𝑹 − 𝟒𝟓𝟗. 𝟔𝟕] Rankine to Réaumur: °𝑹𝒆 = [(°𝑹 − 𝟒𝟗𝟏. 𝟔𝟕) ∗ 𝟒 𝟗 ] Réaumur to Kelvin: 𝑲 = [(°𝑹𝒆 ∗ 𝟓 𝟒 ) + 𝟐𝟕𝟑. 𝟏𝟓] Réaumur to Celsius: °𝑪 = [(°𝑹𝒆 ∗ 𝟓 𝟒 )] Réaumur to Fahrenheit: °𝑭 = [(°𝑹𝒆 ∗ 𝟗 𝟒 ) + 𝟑𝟐] Réaumur to Rankine: °𝑹 = [(°𝑹𝒆 ∗ 𝟒 𝟗 ) + 𝟒𝟗𝟏. 𝟔𝟕] 2 Thermoelectric Laws: Seebeck Effect: 𝑱 = 𝝈(−𝜵𝑽 + 𝑬𝒆𝒎𝒇) 𝐸𝑒𝑚𝑓 = 𝐸𝑀𝐹 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑, 𝐽 = 𝑙𝑜𝑐𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑉 = 𝑙𝑜𝑐𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒, 𝜎 = 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦.
  • 2. TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 2 of 7 𝑬𝒆𝒎𝒇 = −𝑺𝜵𝑻 𝐸𝑒𝑚𝑓 = 𝐸𝑀𝐹 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑, 𝛻𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 Peltier Effect: 𝑸 = (𝜫𝑨 − 𝜫𝑩)𝑰 𝑄 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝐻𝑒𝑎𝑡, 𝐼 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝐴 𝑡𝑜 𝐵, 𝛱𝐴 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝐴, 𝛱𝐵 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝐵, Thomson Effect: 𝑸 = 𝑲𝑱𝜵𝑻 𝑲 = 𝑻 𝒅𝑺 𝒅𝑻 𝑄 = 𝐻𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒, 𝐾 = 𝑇ℎ𝑜𝑚𝑠𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝐽 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝛻𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡. Thomson Relationship: 𝑲 = 𝒅𝜫 𝒅𝑻 − 𝑺 𝜫 = 𝑻𝑺 𝐾 = 𝑇ℎ𝑜𝑚𝑠𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝛱 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. Thermoelectric Effect: 𝑱 = 𝝈(−𝜵𝑽 − 𝑺𝜵𝑻) 𝐽 = 𝑙𝑜𝑐𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝜎 = 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 Equation for Accumulated Energy 𝒆̇ (temperature and charge changing with time) 𝒆̇ = 𝛁. (𝒌𝛁𝑻) + 𝛁. (𝑽 + 𝜫)𝑱 + 𝒒̇ 𝒆𝒙𝒕 𝑒̇ = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦, 𝐽 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝛱 = 𝑃𝑒𝑙𝑡𝑖𝑒𝑟 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑘 = 𝑡ℎ𝑒𝑟𝑚𝑛𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑞̇𝑒𝑥𝑡 = 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒 ℎ𝑒𝑎𝑡 𝑎𝑑𝑑𝑒𝑑, 𝑉 = 𝑙𝑜𝑐𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒. 3 Thermometer: 𝑻 = 𝑻𝒇 − (𝑻𝒇 − 𝑻𝒊)𝒆−𝒕 𝝉 ⁄ 𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡, 𝑡 = 𝑡𝑖𝑚𝑒, 𝜏 = 𝑇𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑇𝑓 = 𝐹𝑖𝑛𝑎𝑙 𝑇𝑒𝑚𝑒𝑝𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
  • 3. TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 3 of 7 Thermometer Transfer Function: 𝑻𝟎(𝒕) = 𝑻𝒊(𝒕) ∗ 𝟏 𝝉𝒔 + 𝟏 = 𝑻𝒊(𝒕) 𝝉𝒋𝝎 + 𝟏 𝑴 = | 𝑻𝟎(𝒔) 𝑻𝒊(𝒔) | = | 𝑻𝟎(𝒋𝝎) 𝑻𝒊(𝒋𝝎) | = 𝟏 √(𝝉𝝎)𝟐 + 𝟏 𝑻𝒎𝒂𝒙 = 𝑴. ∆𝑻 + 𝑻𝒎𝒆𝒂𝒏 𝑷𝒉𝒂𝒔𝒆 𝑺𝒉𝒊𝒇𝒕 𝜽 = 𝐭𝐚𝐧−𝟏 𝝎∆𝑻 𝑻𝒊𝒎𝒆𝒍𝒂𝒈 = 𝟏 𝟑𝟔𝟎 ∗ 𝒇 ∗ 𝜽 Volume-Temperature Function: 𝑽(𝑻) = 𝑨. 𝒉 = 𝑽(𝟏 + 𝜷𝑻) 𝐴 = 𝑏𝑢𝑙𝑏 𝑏𝑎𝑠𝑒 𝑎𝑟𝑒𝑎, ℎ = 𝑏𝑢𝑙𝑏 ℎ𝑒𝑖𝑔ℎ𝑡, 𝑉 = 𝑏𝑢𝑙𝑏 𝑣𝑜𝑙𝑢𝑚𝑒, 𝛽 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 4 Bimetallic Strip: Timoshenko Formula for Radius of Curvature of Bimetallic Strip (𝑹) 𝑹 = 𝒕 [𝟑. (𝟏 + 𝒎)𝟐 + (𝟏 + 𝒎. 𝒏) (𝒎𝟐 + 𝟏 𝒎. 𝒏 )] 𝟔(𝜶𝟐 − 𝜶𝟏)(𝑻𝒉 − 𝑻𝑪)(𝟏 + 𝒎)𝟐 𝑅 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒, 𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑟𝑖𝑝 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝑡1 = 𝑆𝑡𝑟𝑖𝑝 1 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝑡2 = 𝑠𝑡𝑟𝑖𝑝 2 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝑚 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝑡1 𝑡2 , 𝑛 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑌𝑜𝑢𝑛𝑔′ 𝑠𝑀𝑜𝑑𝑢𝑙𝑢𝑠 = 𝐸1 𝐸2 , 𝐸1 = 𝑌𝑜𝑢𝑛𝑔′ 𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 1, 𝐸2 = 𝑌𝑜𝑢𝑛𝑔′ 𝑠𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 2, 𝛼1 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 1, 𝛼2 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 2, 𝑇ℎ = 𝐻𝑜𝑡 𝑡𝑒𝑚𝑒𝑝𝑟𝑎𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒, 𝑇𝐶 = 𝐶𝑜𝑙𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒. Temperature Measurement – Bimetallic Strip: 𝑻𝒇 = 𝑻𝒊 + 𝟐𝒕 𝟑 ∗ 𝑹 ∗ (𝜶𝑨 − 𝜶𝑩) 𝑇𝑓 = 𝐹𝑖𝑛𝑎𝑙 𝑇𝑒𝑚𝑒𝑝𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑅 = 𝑆𝑡𝑟𝑖𝑝 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑡 = 𝑠𝑡𝑟𝑖𝑝 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝛼𝐴 = 𝐸𝑥𝑝𝑎𝑛𝑠𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝐴,
  • 4. TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 4 of 7 𝛼𝐵 = 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝐵, 𝑹 = 𝒕 𝟐𝜶(𝑻𝒇 − 𝑻𝒊) 𝛼 = 𝛼𝐴 + 𝛼𝐵 2 Angular Deflection of Strip (𝜽): 𝜃 = 𝑆𝑡𝑟𝑖𝑝 𝐿𝑒𝑛𝑔𝑡ℎ 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑅𝑎𝑑𝑖𝑢𝑠 ⁄ Vertical Strip Displacement (𝒚): 𝒚 = 𝑹(𝟏 − 𝒄𝒐𝒔𝜽) 5 RTD: 𝑹𝑻 = 𝑹𝟎[𝟏 + 𝜶∆𝑻] 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑺 = 𝒅𝑹 𝒅(∆𝑻) = 𝒅 𝒅(∆𝑻) 𝑹𝟎[𝟏 + 𝜶∆𝑻] = 𝜶𝑹𝟎 𝜶 = 𝑹𝟏𝟎𝟎 − 𝑹𝟎 𝟏𝟎𝟎𝑹𝟎 𝛼 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑅100 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 100 °𝐶, 𝑅0 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 0 °𝐶 Callendar-Van Dusen Equation: 𝑹𝑻 = 𝑹𝟎[𝟏 + 𝑨𝑻 + 𝑩𝑻𝟐 + 𝑪𝑻𝟑(𝑻 − 𝟏𝟎𝟎)] (−𝟐𝟎𝟎 °𝑪 < 𝑻 < 𝟎°𝑪) 𝑹𝑻 = 𝑹𝟎[𝟏 + 𝑨𝑻 + 𝑩𝑻𝟐] (𝟎 °𝑪 < 𝑻 < 𝟖𝟓𝟎°𝑪) 𝐴 = 3.9083 ∗ 10−3 °𝐶−1 ; 𝐵 = −5.775 ∗ 10−7 °𝐶−2 , 𝐶 = −4.183 ∗ 10−12 °𝐶−4 𝑅0 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 0 °𝐶, 𝑅𝑇 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑇 °𝐶. 6 Thermistor 𝑹𝑻 = 𝑹𝟎𝒆𝒙𝒑 [𝜷 ( 𝟏 𝑻 − 𝟏 𝑻𝟎 )] 𝑅𝑇 = 𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑅0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇0 𝐾 𝑹𝑻 = 𝑹𝑹𝒆𝒇𝒆 𝜷( 𝟏 𝑻 − 𝟏 𝑻𝑹𝒆𝒇 ) 𝑅𝑇 = 𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝐾, 𝑅𝑅𝑒𝑓 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 0 𝐾, 𝛽 = 𝐵 − 𝑣𝑎𝑙𝑢𝑒 𝑠𝑝𝑒𝑐𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟,
  • 5. TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 5 of 7 𝑇𝑅𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (0 𝐾), 𝑇 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑺 = 𝒅𝑹𝑻 𝒅𝑻 = 𝑹𝟎𝒆𝒙𝒑 [𝜷 ( 𝟏 𝑻 − 𝟏 𝑻𝟎 ) − 𝜷 𝑻𝟐 ] Steinhart-Hart Equation: 𝟏 𝑻 = 𝑨 + 𝑩 ∗ 𝒍𝒏(𝑹) + 𝑪(𝒍𝒏(𝑹))𝟑 𝐴, 𝐵, 𝐶 = 𝑆𝑡𝑒𝑖𝑛ℎ𝑎𝑟𝑡 − 𝐻𝑎𝑟𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑅 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑇 0°𝐶, 𝐴 = 0.001284, 𝐵 = 2.364 ∗ 10−4 , 𝐶 = 9.304 ∗ 10−8 7 Thermocouple 𝑬 = 𝒂(∆𝜽) + 𝒃(∆𝜽)𝟐 𝐸 = 𝑒𝑚𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑; ∆𝜃 = 𝑡𝑒𝑚𝑝. 𝑑𝑖𝑓𝑓. ; 𝑎, 𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑬 ≅ 𝒂∆𝜽 (𝒊𝒇 𝒂 ≫ 𝒃) 𝑬𝒆𝒎𝒇 = −𝑺𝜵𝑻 𝐸𝑒𝑚𝑓 = 𝐸𝑀𝐹 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑, 𝛻𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝑆 = 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 8 Series Connected Thermocouple (Thermopile) 𝑬 = 𝑬𝟏 + 𝑬𝟐 … + 𝑬𝒏 = 𝒏𝑬𝟏 (𝒊𝒇 𝑬𝟏 = 𝑬𝟐 … = 𝑬𝒏) 𝐸 = 𝑒𝑚𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑; 𝑛 = 𝑛𝑜. 𝑜𝑓 𝑠𝑒𝑟𝑖𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠. 9 Langmuir Probe: 𝒄𝒔 = √𝑲𝑩(𝒁𝑻𝒆 + 𝜸𝒊𝑻𝒊) 𝒎𝒊 ⁄ 𝑐𝑠 = 𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑, 𝐾𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 1.38 ∗ 10−23 𝐽 𝐾 ⁄ 𝑍 = 𝑐ℎ𝑎𝑟𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑖𝑜𝑛𝑠, 𝑚𝑖 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑖𝑜𝑛𝑠, 𝑇𝑒 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑖 = 𝐼𝑜𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝛾𝑖 = 𝐼𝑜𝑛𝑠′ 𝐴𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. 10 High Temperature Measurement (Radiation Pyrometer) Stefan-Boltzmann Law: Absolute Power (P) radiated into surface area (A) 𝑷 = 𝑨𝜺𝝈𝑻𝟒 = 𝑨𝜺𝝈(𝑻𝑹 − 𝑻𝑪)𝟒 𝒋∗ = 𝒒𝒃 = 𝝈𝑻𝟒 = 𝑨𝜺𝝈(𝑻𝑹 − 𝑻𝑪)𝟒 𝑾 𝒎𝟐 ⁄ 𝒋∗ = 𝑞𝑏 = 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒, 𝑇 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒; 𝑇𝑅 = 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝐶 = 𝑆𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝜎 = 𝑆𝑡𝑒𝑓𝑎𝑛 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 56.703 ∗ 10−9 𝑊 𝑚2 𝐾4 ⁄ 𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 𝜀 = 𝑞 𝑞0 ; 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1
  • 6. TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 6 of 7 𝑞 = ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑔𝑟𝑎𝑦 𝑏𝑜𝑑𝑦; 𝑞0 = ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑑𝑦; 𝒒 = 𝜺𝝈𝑻𝟒 = 𝜺𝝈(𝑻𝑹 − 𝑻𝑪)𝟒 Thermometer Heat Equation Output: 𝑽(𝑻) = 𝒆𝑲𝑻𝑵; 𝑵 = 𝟏𝟒𝟑𝟖𝟖 𝑰 ∗ 𝑻 𝑉(𝑇) = 𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑒 = 𝐸𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦, 𝐾 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑁 = 𝑁 𝑓𝑎𝑐𝑡𝑜𝑟, 𝐼 = 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ. 11 Solid State Temperature Sensor: 𝑽𝑩𝑬 = 𝐾𝐵𝑻 𝒒 𝒍𝒏 𝑰𝒄 𝑰𝒆𝒔 𝑉𝐵𝐸 = 𝐵𝑎𝑠𝑒 𝐸𝑚𝑖𝑡𝑡𝑒𝑟 𝑉𝑜𝑙𝑡𝑎𝑔𝑒, 𝐼𝑐 = 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡, 𝐾𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 1.38 ∗ 10−23 𝐽 𝐾 ⁄ , 𝑞 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑐ℎ𝑎𝑟𝑔𝑒 = 1.6 ∗ 10−19 𝐶, 𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝐾). 12 Ultrasonic Thermometer: 𝒗𝟐 = 𝜸𝑹𝑻 𝑴𝒘 𝑣 = 𝑠𝑜𝑢𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝛾 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑖𝑜, 𝑅 = 𝐺𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒, 𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑀𝑤 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡. Level Measurement 1 Inferential Capacitive Method: 𝑪 = 𝟐𝝅𝜺𝒉 𝐥𝐨𝐠𝒆 ( 𝒅𝟐 𝒅𝟏 ) 𝑭𝒂𝒓𝒂𝒅 𝐶 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝐹), 𝜀 = 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟; ℎ = ℎ𝑒𝑖𝑔ℎ𝑡; 𝑑1 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑟𝑜𝑑; 𝑑2 = 𝑒𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟; Capacitive Voltage Divider Method: 𝑬𝟎 = 𝑪𝟏 𝑪𝟏 + 𝑪𝟐 𝑬𝑨 Capacitive Tank: Capacitance between point A & B.
  • 7. TEMPERATURE & LEVEL MEASUREMENT – SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 7 of 7 𝑪 = 𝑪𝟏 + 𝑪𝟐 = 𝟐𝝅 𝒍𝒏[(𝒓 + 𝒂) 𝒓 ⁄ ] 𝜺𝟎(𝑳 − 𝒙) + 𝟐𝝅 𝒍𝒏[(𝒓 + 𝒂) 𝒓 ⁄ ] 𝜺𝟎𝜺𝒓𝒙 ∴ 𝑪 = 𝑪𝟏 + 𝑪𝟐 = 𝟐𝝅 𝒍𝒏[(𝒓 + 𝒂) 𝒓 ⁄ ] [𝜺𝟎𝑳 + 𝜺𝟎𝒙(𝜺𝒓 − 𝟏)] ∴ 𝒙 = 𝑪 𝒍𝒏[𝟏 + (𝒂 𝒓 ⁄ )] 𝟐𝝅𝜺𝟎(𝜺𝒓 − 𝟏) − 𝑳 𝜺𝒓 − 𝟏 = 𝑲𝟏𝑪 + 𝑲𝟐 𝑥 = 𝑙𝑖𝑞𝑢𝑖𝑑 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛 𝑡𝑎𝑛𝑘, 𝐿 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑎𝑛𝑘, 𝜀0 = 𝑎𝑖𝑟 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 = 8.84 ∗ 10−12 𝐹 𝑚 ⁄ , 𝜀𝑟 = 𝑑𝑖𝑒𝑒𝑙𝑐𝑡𝑟𝑖𝑐 𝑚𝑒𝑑𝑖𝑢𝑚 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦, 𝑟 = 𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑎𝑛𝑘 𝑤𝑎𝑙𝑙 𝑎𝑛𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒, 𝐾1 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐾2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 2 Differential Pressure Level Indicator: 𝒍 = 𝑷𝟏 − 𝑷𝟐 𝝆𝒈 𝑙 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑙𝑒𝑣𝑒𝑙, 𝑃1 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 1, 𝑃2 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 2, 𝜌 = 𝑙𝑖𝑞𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑔 = 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 3 Gamma Ray Level Indicator: 𝑰 = 𝑰𝟎𝒆𝒙𝒑(−𝝁𝝆𝒅) 𝐼 = 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑓𝑡𝑒𝑟 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐼0 = 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝜇 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝜌 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙,