SlideShare a Scribd company logo
Chapter 1- Static engineering systems
 1.1 Simply supported beams
  1.1.1   determination of shear force
  1.1.2   bending moment and stress due to bending
  1.1.3   radius of curvature in simply supported beams subjected to
          concentrated and uniformly distributed loads
  1.1.4   eccentric loading of columns
  1.1.5   stress distribution
  1.1.6   middle third rule


  1.2 Beams and columns
  1.2.1   elastic section modulus for beams
  1.2.2   standard section tables for rolled steel beams
  1.2.3   selection of standard sections (eg slenderness ratio for
          compression members, standard section and allowable
          stress tables for rolled steel columns, selection of standard
          sections)
                                                                          1
Stresses in beams


•   Stresses in the beam are functions of x and y
•   If we were to cut a beam at a point x, we would find a distribution of
    direct stresses σ(y) and shear stresses σxy(y)
•   Summing these individual moments over the area of the cross-section is
    the definition of the moment resultant M,


•   Summing the shear stresses on the cross-section is the definition of the
    shear resultant V,

•   The sum of all direct stresses acting on the cross-section is known as N,

                                                                         2
• Direct stress distribution in the beam due to bending



• Note that the bending stress in beam theory is linear
  through the beam thickness. The maximum bending
  stress occurs at the point furthest away from the neutral
  axis, y = c




                                                              3
Flexure formula




•                                  
    Stresses calculated from the flexure formula are called bending
    stresses or flexural stresses.
                                                 

•   The maximum tensile and compressive bending stresses occur at
    points (c1 and c2) furthest from the neutral surface




•   where S1 and S2 are called section moduli (units: in3, m3) of the cross-
    sectional area. Section moduli are commonly listed in design
                                                                           4
    handbooks
Euler’s Formula for Pin-Ended Beams

       v           v
  v
               v       v




           l
                           Putting



 l v




                                     5
6
7
8
Design of columns under centric loads

                          • Experimental data demonstrate
                              - for large Le/k σcr follows 
                                          le /r,
                (le/k)2         Euler’s formula and depends 
                                upon E but not σY.
                             - for small L/k σcr is 
                                         le e/r,
                               determined by the yield 
                               strength σY and not E.

                            - for intermediate Le/k σcr 
                                               le /r,
                              depends on both σY and E.  




                                                            9
• For Le/r > Cc
                                              l e/k
        Structural Steel
                                                      π 2E                σ
                                           σ cr =                  σ all = cr
American Inst. of Steel Construction                ( Le/kr ) 2           FS
                                                      l /
                                           FS = 1.92


                                              l e/k
                                        • For Le/r > Cc
                                                       ( Le /kr ) 2 
                                                           le /                    σ
                                           σ cr = σ Y 1 −      2 
                                                                            σ all = cr
                                                      
                                                           2Cc                  FS
                                                                            3
                                               5 3 Le/kr 1  Le/k 
                                                   l /       l /r
                                           FS = + e −  e 
                                               3 8 Cc    8  Cc 
                                                                 

                                 le/k   • At Le/k = Cc
                                             le /r
                                                                        2
                                                                   2 2π E
                                           σ cr = 1 σ Y           Cc =
                                                  2                    σY
                                                                                 10
Sample problem
                                       SOLUTION:
                                       • With the diameter unknown, the 
                                         slenderness ration can not be evaluated.  
                                         Must make an assumption on which 
                                         slenderness ratio regime to utilize.

                                       • Calculate required diameter for 
                                         assumed slenderness ratio regime.

                                       • Evaluate slenderness ratio and verify 
                                         initial assumption.  Repeat if 
Using the aluminum alloy2014-T6,         necessary.
determine the smallest diameter rod 
which can be used to support the centric 
load P = 60 kN if  a) L = 750 mm,  
b) L = 300 mm
                                                                              11
• For L = 750 mm, assume L/r > 55

                          • Determine cylinder radius:
                                     P 372 × 103 MPa
                              σ all = =
                                     A     ( L r)2
                              60 × 103 N       372 × 103 MPa
                                      2
                                           =                  2
                                                                  c = 18.44 mm
                                 πc              0.750 m 
                                                         
                                                 c/2 

                          • Check slenderness ratio assumption:
c = cylinder radius
                              L   L     750mm
r = radius of  gyration         =    =            = 81.3 > 55
                              r c / 2 (18.44 mm )
      I   πc 4 4 c          assumption was correct
 =      =     2
                =
      A    πc     2
                              d = 2c = 36.9 mm
                                                                                 12
• For L = 300 mm, assume L/r < 55

• Determine cylinder radius:
               P              L 
    σ all =     = 212 − 1.585  MPa
               A              r 
     60 × 103 N                 0.3 m      6
                  = 212 − 1.585        × 10 Pa
        πc 2                    c / 2 
     c = 12.00 mm

• Check slenderness ratio assumption:
     L   L     300 mm
       =    =            = 50 < 55
     r c / 2 (12.00 mm )

  assumption was correct
     d = 2c = 24.0 mm
                                                     13
Eccentric loading of columns
• Generally, columns are designed so
  that the axial load is inline with the
  column
• There are situations that the load will
  be off center and cause a bending in
  the column in addition to the
                                            Pin-Pin Column 
  compression. This type of loading is
  called eccentric load                     with Eccentric 
                                            Axial Load 
• When a column is load off center,
  bending can be sever problem and
  may be more important than the
  compression stress or buckling                     14
Analysis of eccentric loads
• At the cut surface, there will be both an internal
  moment, m, and the axial load P. This partial
  section of the column must still be equilibrium,
  and moments can be summed at the cut
  surface, giving,
     ΣM = 0
     m + P (e + v) = 0

• bending in a structure can be modeled as m =
  EI d2v/dx2, giving
      EI d2v/dx2 + Pv = -Pe

• This is a classical differential equation that can
  be solved using the general solution,
       v = C2 sin kx + C1 cos kx - e
  where k = (P/EI)0.5. The constants C1 and C2 can
  be determined using the boundary conditions          15
•   First, the deflection, v=0, at x = 0
          0 = C2 0 + C1 1 - e
       C1 = e
•   The second boundary condition specifies the deflection, v=0, at X = L
          0 = C2 sin kL + e cos kL - e
          C2=e tan (kL/2)




•   Maximum deflection
     – The maximum deflection occurs at the column center, x = L/2, since both
       ends are pinned.




                                                                             16
Maximum stress: secant formula
• Unlike basic column buckling, eccentric
  loaded columns bend and must
  withstand both bending stresses and
  axial compression stresses.
• The axial load P, will produce a
  compression stress P/A. Since the load
  P is not at the center, it will cause a
  bending stress My/I.


•    The maximum moment, Mmax, is at
    the mid-point of the column (x = L/2),
        Mmax = P (e + vmax)

                                             17
• Combining the above equations gives




• But I = Ar2. This gives the final form of the secant formula as



• The stress maximum, σmax, is generally the yield stress or
  allowable stress of the column material, which is known.
• The geometry of the column, length L, area A, radius of
  gyration r, and maximum distance from the neutral axis c
  are also known. The eccentricity, e, and material stiffness,
  E, are considered known.
                                                              18
19
Design of columns under an eccentric load
                     • An eccentric load P can be replaced by a 
                       centric load P and a couple M = Pe.

                     • Normal stresses can be found from 
                       superposing the stresses due to the 
                       centric load and couple,
                        σ = σ centric + σ bending
                                  P Mc
                        σ max =    +
                                  A I

                     • Allowable stress method:
                        P Mc
                         +   ≤ σ all
                        A I

                     • Interaction method:
                             P A               Mc I
                                        +                     ≤1
                        ( σ all ) centric ( σ all ) bending
                                                                   20
Example
          The uniform column consists of an 8-ft section 
          of structural tubing having the cross-section 
          shown.

          a) Using Euler’s formula and a factor of safety 
             of two, determine the allowable centric load 
             for the column and the corresponding 
             normal stress.
          b) Assuming that the allowable load, found in 
             part a, is applied at a point 0.75 in. from the 
             geometric axis of the column, determine the 
             horizontal deflection of the top of the 
             column and the maximum normal stress in 
             the column.



                                                       21
SOLUTION:
• Maximum allowable centric load:
- Effective length,
   Le = 2( 8 ft ) = 16 ft = 192 in.


- Critical load,

   Pcr =
           π 2 EI
               =
                       (              )(
                    π 2 29 × 106  psi 8.0 in 4   )
             2
            Le              (192 in ) 2
       = 62.1 kips

- Allowable load,
         P     62.1 kips          Pall = 31.1 kips
   Pall = cr =
         FS        2
      P      31.1 kips
   σ = all =                      σ = 8.79 ksi
       A     3.54 in 2                               22
• Eccentric load:
 - End deflection,
             π P  
     ym = e sec       
                 2 P  − 1
                   cr   
                         π  
        = ( 0.075 in ) sec  − 1
                        2 2 
     ym = 0.939 in.


 - Maximum normal stress,
           P  ec  π P 
    σm =     1 + 2 sec
                        2 P 
                               
           A r            cr  

          31.1 kips  ( 0.75 in )( 2 in )  π 
        =         2 
                     1+                  sec     
          3.54 in       (1.50 in ) 2        2 2 

    σ m = 22.0 ksi
                                              23
Example
Determine the maximum flexural stress produced by a resisting Moment Mr of
+5000ft.lb if the beam has cross section shown in the figure.




 Locate the neutral axis from the bottom end




                                                                             24
25
• Work out the rest of example here




                                      26

More Related Content

What's hot

Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuits
hardikpanchal424
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits
Sachin Mehta
 
R-L-C circuit
R-L-C circuitR-L-C circuit
R-L-C circuit
Shubham Sojitra
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
ynoraida
 
Resonance in parallel rlc circuit
Resonance in parallel rlc circuitResonance in parallel rlc circuit
Resonance in parallel rlc circuit
Shivam Gupta
 
Alternating Current -12 isc 2017 ( investigatory Project)
Alternating Current -12 isc 2017 ( investigatory Project) Alternating Current -12 isc 2017 ( investigatory Project)
Alternating Current -12 isc 2017 ( investigatory Project)
Student
 
Review of ac fundamentals
Review of ac fundamentalsReview of ac fundamentals
Review of ac fundamentals
Meenakumari R
 
Q-Factor In Series and Parallel AC Circuits
Q-Factor In Series and Parallel AC CircuitsQ-Factor In Series and Parallel AC Circuits
Q-Factor In Series and Parallel AC Circuits
Surbhi Yadav
 
A.c circuits
A.c circuitsA.c circuits
A.c circuits
RONAK SUTARIYA
 
Series parallel ac rlc networks
Series parallel ac rlc networksSeries parallel ac rlc networks
Series parallel ac rlc networks
University of Potsdam
 
Ac fundamentals
Ac fundamentalsAc fundamentals
Ac fundamentals
University of Potsdam
 
ac circuit
ac circuitac circuit
ac circuit
Yasir Hashmi
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage
2461998
 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuit
taranjeet10
 
Series parallel ac networks
Series parallel ac networksSeries parallel ac networks
Series parallel ac networks
University of Potsdam
 
Ac circuits
Ac circuitsAc circuits
Ac circuits
TUMELO RICHARD
 
Ch10 ln
Ch10 lnCh10 ln
Ch10 ln
Nadrah Ahmed
 
resonance circuits
 resonance circuits resonance circuits
resonance circuits
vishal gupta
 
Floyd chap 11 ac fundamentals
Floyd chap 11 ac fundamentalsFloyd chap 11 ac fundamentals
Floyd chap 11 ac fundamentals
University Of Gujrat
 

What's hot (19)

Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuits
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits
 
R-L-C circuit
R-L-C circuitR-L-C circuit
R-L-C circuit
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Resonance in parallel rlc circuit
Resonance in parallel rlc circuitResonance in parallel rlc circuit
Resonance in parallel rlc circuit
 
Alternating Current -12 isc 2017 ( investigatory Project)
Alternating Current -12 isc 2017 ( investigatory Project) Alternating Current -12 isc 2017 ( investigatory Project)
Alternating Current -12 isc 2017 ( investigatory Project)
 
Review of ac fundamentals
Review of ac fundamentalsReview of ac fundamentals
Review of ac fundamentals
 
Q-Factor In Series and Parallel AC Circuits
Q-Factor In Series and Parallel AC CircuitsQ-Factor In Series and Parallel AC Circuits
Q-Factor In Series and Parallel AC Circuits
 
A.c circuits
A.c circuitsA.c circuits
A.c circuits
 
Series parallel ac rlc networks
Series parallel ac rlc networksSeries parallel ac rlc networks
Series parallel ac rlc networks
 
Ac fundamentals
Ac fundamentalsAc fundamentals
Ac fundamentals
 
ac circuit
ac circuitac circuit
ac circuit
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage
 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuit
 
Series parallel ac networks
Series parallel ac networksSeries parallel ac networks
Series parallel ac networks
 
Ac circuits
Ac circuitsAc circuits
Ac circuits
 
Ch10 ln
Ch10 lnCh10 ln
Ch10 ln
 
resonance circuits
 resonance circuits resonance circuits
resonance circuits
 
Floyd chap 11 ac fundamentals
Floyd chap 11 ac fundamentalsFloyd chap 11 ac fundamentals
Floyd chap 11 ac fundamentals
 

Viewers also liked

Engineering science lesson 3
Engineering science lesson 3Engineering science lesson 3
Engineering science lesson 3
Shahid Aaqil
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
Shahid Aaqil
 
Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2
Shahid Aaqil
 
Edexcel HND Unit- Engineering Science (Nqf L4)
Edexcel HND Unit- Engineering Science (Nqf L4)Edexcel HND Unit- Engineering Science (Nqf L4)
Edexcel HND Unit- Engineering Science (Nqf L4)
Leicester College- Technology & Engineering Centre
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4
Shahid Aaqil
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
Shahid Aaqil
 
Engineering science lesson 6 1
Engineering science lesson 6 1Engineering science lesson 6 1
Engineering science lesson 6 1
Shahid Aaqil
 
Ch 2 Linear Motion
Ch 2 Linear MotionCh 2 Linear Motion
Ch 2 Linear Motion
hursmi
 
Characteristics Of The Materials
Characteristics Of The MaterialsCharacteristics Of The Materials
Characteristics Of The Materials
Antonio Jesús Romero
 
Engineering science lesson 7
Engineering science lesson 7Engineering science lesson 7
Engineering science lesson 7
Shahid Aaqil
 

Viewers also liked (10)

Engineering science lesson 3
Engineering science lesson 3Engineering science lesson 3
Engineering science lesson 3
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2
 
Edexcel HND Unit- Engineering Science (Nqf L4)
Edexcel HND Unit- Engineering Science (Nqf L4)Edexcel HND Unit- Engineering Science (Nqf L4)
Edexcel HND Unit- Engineering Science (Nqf L4)
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Engineering science lesson 6 1
Engineering science lesson 6 1Engineering science lesson 6 1
Engineering science lesson 6 1
 
Ch 2 Linear Motion
Ch 2 Linear MotionCh 2 Linear Motion
Ch 2 Linear Motion
 
Characteristics Of The Materials
Characteristics Of The MaterialsCharacteristics Of The Materials
Characteristics Of The Materials
 
Engineering science lesson 7
Engineering science lesson 7Engineering science lesson 7
Engineering science lesson 7
 

Similar to Engineering science lesson 5

ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
Chandrabhan Sharma
 
Aes
AesAes
Aes
cynon
 
SA-I_Column & Strut
SA-I_Column & StrutSA-I_Column & Strut
SA-I_Column & Strut
brijesh raychanda
 
12 ac bridges rev 3 080423
12 ac  bridges rev 3 08042312 ac  bridges rev 3 080423
12 ac bridges rev 3 080423
Iqxca AzmYani
 
Dynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohmDynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohm
warluck88
 
Dynamic model of pmsm (lq and la)
Dynamic model of pmsm  (lq and la)Dynamic model of pmsm  (lq and la)
Dynamic model of pmsm (lq and la)
warluck88
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
SRINIVASULU N V
 
Pvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked InPvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked In
vadimbern
 
column and strut
column and strutcolumn and strut
column and strut
kamariya keyur
 
#26 Key
#26 Key#26 Key
#26 Key
Lamar1411_SI
 
99995069.ppt
99995069.ppt99995069.ppt
99995069.ppt
AbitiEthiopia
 
Uniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsUniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beams
Yf Chong
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
yashdeep nimje
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
Priyanka Anni
 
Complex strains (2nd year)
Complex strains (2nd year)Complex strains (2nd year)
Complex strains (2nd year)
Alessandro Palmeri
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
PawanKumar391848
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumped
gauravkakran
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Colm Connaughton
 
Systems power point
Systems power pointSystems power point
Systems power point
Ronnie Christian
 
A comparison of VLSI interconnect models
A comparison of VLSI interconnect modelsA comparison of VLSI interconnect models
A comparison of VLSI interconnect models
happybhatia
 

Similar to Engineering science lesson 5 (20)

ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
 
Aes
AesAes
Aes
 
SA-I_Column & Strut
SA-I_Column & StrutSA-I_Column & Strut
SA-I_Column & Strut
 
12 ac bridges rev 3 080423
12 ac  bridges rev 3 08042312 ac  bridges rev 3 080423
12 ac bridges rev 3 080423
 
Dynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohmDynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohm
 
Dynamic model of pmsm (lq and la)
Dynamic model of pmsm  (lq and la)Dynamic model of pmsm  (lq and la)
Dynamic model of pmsm (lq and la)
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
 
Pvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked InPvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked In
 
column and strut
column and strutcolumn and strut
column and strut
 
#26 Key
#26 Key#26 Key
#26 Key
 
99995069.ppt
99995069.ppt99995069.ppt
99995069.ppt
 
Uniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsUniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beams
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Complex strains (2nd year)
Complex strains (2nd year)Complex strains (2nd year)
Complex strains (2nd year)
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumped
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
 
Systems power point
Systems power pointSystems power point
Systems power point
 
A comparison of VLSI interconnect models
A comparison of VLSI interconnect modelsA comparison of VLSI interconnect models
A comparison of VLSI interconnect models
 

More from Shahid Aaqil

Engineering science lesson 11
Engineering science lesson 11Engineering science lesson 11
Engineering science lesson 11
Shahid Aaqil
 
Engineering science lesson 10
Engineering science lesson 10Engineering science lesson 10
Engineering science lesson 10
Shahid Aaqil
 
Engineering science lesson 8 1
Engineering science lesson 8 1Engineering science lesson 8 1
Engineering science lesson 8 1
Shahid Aaqil
 
Engineering science lesson 8
Engineering science lesson 8Engineering science lesson 8
Engineering science lesson 8
Shahid Aaqil
 
Engineering science lesson 6 2
Engineering science lesson 6 2Engineering science lesson 6 2
Engineering science lesson 6 2
Shahid Aaqil
 
Engineering science presentation final
Engineering science presentation finalEngineering science presentation final
Engineering science presentation final
Shahid Aaqil
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4
Shahid Aaqil
 
Engineering science lesson 5
Engineering science lesson 5Engineering science lesson 5
Engineering science lesson 5
Shahid Aaqil
 

More from Shahid Aaqil (8)

Engineering science lesson 11
Engineering science lesson 11Engineering science lesson 11
Engineering science lesson 11
 
Engineering science lesson 10
Engineering science lesson 10Engineering science lesson 10
Engineering science lesson 10
 
Engineering science lesson 8 1
Engineering science lesson 8 1Engineering science lesson 8 1
Engineering science lesson 8 1
 
Engineering science lesson 8
Engineering science lesson 8Engineering science lesson 8
Engineering science lesson 8
 
Engineering science lesson 6 2
Engineering science lesson 6 2Engineering science lesson 6 2
Engineering science lesson 6 2
 
Engineering science presentation final
Engineering science presentation finalEngineering science presentation final
Engineering science presentation final
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4
 
Engineering science lesson 5
Engineering science lesson 5Engineering science lesson 5
Engineering science lesson 5
 

Recently uploaded

Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
Nguyen Thanh Tu Collection
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
HajraNaeem15
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
Celine George
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
imrankhan141184
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
Krassimira Luka
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
haiqairshad
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
MysoreMuleSoftMeetup
 
math operations ued in python and all used
math operations ued in python and all usedmath operations ued in python and all used
math operations ued in python and all used
ssuser13ffe4
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
B. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdfB. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdf
BoudhayanBhattachari
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience
Wahiba Chair Training & Consulting
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
MJDuyan
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Leena Ghag-Sakpal
 

Recently uploaded (20)

Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
 
math operations ued in python and all used
math operations ued in python and all usedmath operations ued in python and all used
math operations ued in python and all used
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
B. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdfB. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdf
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
Bed Making ( Introduction, Purpose, Types, Articles, Scientific principles, N...
 

Engineering science lesson 5

  • 1. Chapter 1- Static engineering systems 1.1 Simply supported beams 1.1.1 determination of shear force 1.1.2 bending moment and stress due to bending 1.1.3 radius of curvature in simply supported beams subjected to concentrated and uniformly distributed loads 1.1.4 eccentric loading of columns 1.1.5 stress distribution 1.1.6 middle third rule 1.2 Beams and columns 1.2.1 elastic section modulus for beams 1.2.2 standard section tables for rolled steel beams 1.2.3 selection of standard sections (eg slenderness ratio for compression members, standard section and allowable stress tables for rolled steel columns, selection of standard sections) 1
  • 2. Stresses in beams • Stresses in the beam are functions of x and y • If we were to cut a beam at a point x, we would find a distribution of direct stresses σ(y) and shear stresses σxy(y) • Summing these individual moments over the area of the cross-section is the definition of the moment resultant M, • Summing the shear stresses on the cross-section is the definition of the shear resultant V, • The sum of all direct stresses acting on the cross-section is known as N, 2
  • 3. • Direct stress distribution in the beam due to bending • Note that the bending stress in beam theory is linear through the beam thickness. The maximum bending stress occurs at the point furthest away from the neutral axis, y = c 3
  • 4. Flexure formula •   Stresses calculated from the flexure formula are called bending stresses or flexural stresses.               • The maximum tensile and compressive bending stresses occur at points (c1 and c2) furthest from the neutral surface • where S1 and S2 are called section moduli (units: in3, m3) of the cross- sectional area. Section moduli are commonly listed in design 4 handbooks
  • 5. Euler’s Formula for Pin-Ended Beams v v v v v l Putting l v 5
  • 6. 6
  • 7. 7
  • 8. 8
  • 9. Design of columns under centric loads • Experimental data demonstrate - for large Le/k σcr follows  le /r, (le/k)2 Euler’s formula and depends  upon E but not σY. - for small L/k σcr is  le e/r, determined by the yield  strength σY and not E. - for intermediate Le/k σcr  le /r, depends on both σY and E.   9
  • 10. • For Le/r > Cc l e/k Structural Steel π 2E σ σ cr = σ all = cr American Inst. of Steel Construction ( Le/kr ) 2 FS l / FS = 1.92 l e/k • For Le/r > Cc  ( Le /kr ) 2  le / σ σ cr = σ Y 1 − 2  σ all = cr   2Cc   FS 3 5 3 Le/kr 1  Le/k  l / l /r FS = + e −  e  3 8 Cc 8  Cc    le/k • At Le/k = Cc le /r 2 2 2π E σ cr = 1 σ Y Cc = 2 σY 10
  • 11. Sample problem SOLUTION: • With the diameter unknown, the  slenderness ration can not be evaluated.   Must make an assumption on which  slenderness ratio regime to utilize. • Calculate required diameter for  assumed slenderness ratio regime. • Evaluate slenderness ratio and verify  initial assumption.  Repeat if  Using the aluminum alloy2014-T6,  necessary. determine the smallest diameter rod  which can be used to support the centric  load P = 60 kN if  a) L = 750 mm,   b) L = 300 mm 11
  • 12. • For L = 750 mm, assume L/r > 55 • Determine cylinder radius: P 372 × 103 MPa σ all = = A ( L r)2 60 × 103 N 372 × 103 MPa 2 = 2 c = 18.44 mm πc  0.750 m     c/2  • Check slenderness ratio assumption: c = cylinder radius L L 750mm r = radius of  gyration = = = 81.3 > 55 r c / 2 (18.44 mm ) I πc 4 4 c assumption was correct = = 2 = A πc 2 d = 2c = 36.9 mm 12
  • 13. • For L = 300 mm, assume L/r < 55 • Determine cylinder radius: P   L  σ all = = 212 − 1.585  MPa A   r  60 × 103 N   0.3 m  6 = 212 − 1.585  × 10 Pa πc 2   c / 2  c = 12.00 mm • Check slenderness ratio assumption: L L 300 mm = = = 50 < 55 r c / 2 (12.00 mm ) assumption was correct d = 2c = 24.0 mm 13
  • 14. Eccentric loading of columns • Generally, columns are designed so that the axial load is inline with the column • There are situations that the load will be off center and cause a bending in the column in addition to the Pin-Pin Column  compression. This type of loading is called eccentric load with Eccentric  Axial Load  • When a column is load off center, bending can be sever problem and may be more important than the compression stress or buckling 14
  • 15. Analysis of eccentric loads • At the cut surface, there will be both an internal moment, m, and the axial load P. This partial section of the column must still be equilibrium, and moments can be summed at the cut surface, giving, ΣM = 0 m + P (e + v) = 0 • bending in a structure can be modeled as m = EI d2v/dx2, giving EI d2v/dx2 + Pv = -Pe • This is a classical differential equation that can be solved using the general solution, v = C2 sin kx + C1 cos kx - e where k = (P/EI)0.5. The constants C1 and C2 can be determined using the boundary conditions 15
  • 16. First, the deflection, v=0, at x = 0 0 = C2 0 + C1 1 - e C1 = e • The second boundary condition specifies the deflection, v=0, at X = L 0 = C2 sin kL + e cos kL - e C2=e tan (kL/2) • Maximum deflection – The maximum deflection occurs at the column center, x = L/2, since both ends are pinned. 16
  • 17. Maximum stress: secant formula • Unlike basic column buckling, eccentric loaded columns bend and must withstand both bending stresses and axial compression stresses. • The axial load P, will produce a compression stress P/A. Since the load P is not at the center, it will cause a bending stress My/I. • The maximum moment, Mmax, is at the mid-point of the column (x = L/2), Mmax = P (e + vmax) 17
  • 18. • Combining the above equations gives • But I = Ar2. This gives the final form of the secant formula as • The stress maximum, σmax, is generally the yield stress or allowable stress of the column material, which is known. • The geometry of the column, length L, area A, radius of gyration r, and maximum distance from the neutral axis c are also known. The eccentricity, e, and material stiffness, E, are considered known. 18
  • 19. 19
  • 20. Design of columns under an eccentric load • An eccentric load P can be replaced by a  centric load P and a couple M = Pe. • Normal stresses can be found from  superposing the stresses due to the  centric load and couple, σ = σ centric + σ bending P Mc σ max = + A I • Allowable stress method: P Mc + ≤ σ all A I • Interaction method: P A Mc I + ≤1 ( σ all ) centric ( σ all ) bending 20
  • 21. Example The uniform column consists of an 8-ft section  of structural tubing having the cross-section  shown. a) Using Euler’s formula and a factor of safety  of two, determine the allowable centric load  for the column and the corresponding  normal stress. b) Assuming that the allowable load, found in  part a, is applied at a point 0.75 in. from the  geometric axis of the column, determine the  horizontal deflection of the top of the  column and the maximum normal stress in  the column. 21
  • 22. SOLUTION: • Maximum allowable centric load: - Effective length, Le = 2( 8 ft ) = 16 ft = 192 in. - Critical load, Pcr = π 2 EI = ( )( π 2 29 × 106  psi 8.0 in 4 ) 2 Le (192 in ) 2 = 62.1 kips - Allowable load, P 62.1 kips Pall = 31.1 kips Pall = cr = FS 2 P 31.1 kips σ = all = σ = 8.79 ksi A 3.54 in 2 22
  • 23. • Eccentric load: - End deflection,  π P   ym = e sec   2 P  − 1   cr     π   = ( 0.075 in ) sec  − 1  2 2  ym = 0.939 in. - Maximum normal stress, P  ec  π P  σm = 1 + 2 sec  2 P   A r  cr   31.1 kips  ( 0.75 in )( 2 in )  π  = 2  1+ sec  3.54 in  (1.50 in ) 2  2 2  σ m = 22.0 ksi 23
  • 24. Example Determine the maximum flexural stress produced by a resisting Moment Mr of +5000ft.lb if the beam has cross section shown in the figure. Locate the neutral axis from the bottom end 24
  • 25. 25
  • 26. • Work out the rest of example here 26