SlideShare a Scribd company logo
Chapter 2 (Part 2):
Bayesian Decision Theory
Prof. Dr. Mostafa Gadal-Haqq
Faculty of Computer & Information Sciences
Computer Science Department
AIN SHAMS UNIVERSITY
CSC446 : Pattern Recognition
(Study DHS-Chapter 2: Sec 2.4-2.6)
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 1
2.4 Classifiers Using Discriminant Functions
• Classifier Representation
– A classifier can be represent in terms of
discriminant functions gi(x) ; i = 1, 2, …, c.
– The classifier assigns a feature vector x to class
i according to the value of g(x) .
– the discriminant functions gi(x) divide the feature
space into c decision regions Ri ; i = 1, 2,…, c .
x  Ri if gi(x) > gj(x) j  i
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 2
2.4 Classifiers Using Discriminant Functions
The classifier
can be
viewed as a
network.
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 3
2.4 Classifiers Using Discriminant Functions
• Properties of g(x)
– The choice of g(x) is not unique.
• If g(x) is scaled or shifted by a positive constant, we
will have the same decision:
g2(x) = k * g1(x), and g2(x) = g1(x) + k ; k is constant
– g(x) can be replaced by f(g(x)), where f(.) is a
monotonically increasing function:
g2(x) = f( g1( x ) )
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 4
• Examples of g(.):
– For minimum-error rate, we could choose g(.):
gi(x) = P(i | x)
gi(x) = P(x | i) P(i)
gi(x) =ln(gi(x)) = ln P(x | i) + ln P(i)
– For the general case with risks, we choose g(.):
gi(x) = - R(i | x)
2.4 Classifiers Using Discriminant Functions
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 5
• The two-category case
– A classifier is called a “dichotomizer” if it has
two discriminant functions g1 and g2.
– The decision rule becomes:
– we can put g(x)  g1(x) – g2(x), then
2.4 Classifiers Using Discriminant Functions
Decide 1 if g1(x) > g2(x); Otherwise decide 2
Decide 1 if g (x) > 0; Otherwise decide 2
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 6
• The computation of g(x) for a dichotomizer is:
)|()( 11 xPxg 
2.4 Classifiers Using Discriminant Functions
)(
)(
ln
)|(
)|(
ln
)|()|()(
2
1
2
1
21





P
P
xp
xp
xPxPxg


)|()( 22 xPxg 
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 7
2.4 Classifiers Using Discriminant Functions
Feature
space for
two
classes
with two
features
and
decision
boundary.
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 8
2.5 The Univariate Normal Density
• A density that is analytically tractable
• Continuous density
• A lot of processes are asymptotically
Gaussian
Where:
 = mean (or expected value) of x
2 = squared deviation or variance
,
2
1
exp
2
1
)(
2













 




x
xp



1)( dxxp
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 9
2.5 The Normal Density
• Multivariate Normal Density
– Multivariate normal density in d dimensions is:
where:
x = (x1, x2, …, xd)t = The multivariate random variable
 = (1, 2, …, d)t = the mean vector
 = d*d covariance matrix, || and -1 are it determinant
and inverse, respectively .






 
)x()x(
2
1
exp
)2(
1
)x( 1
2/12/


t
d
p
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 10
2.6 Discriminant Functions for the Normal Density
• The minimum-error-rate the discriminant functions:
gi(x) = ln p(x | i) + ln P(i)
• if the densities p(x|ωi) are multivariate normal, i.e.,
if p(x|ωi) ~ N(µi,Σi).
• In this case,
• Let us consider a number of special cases:
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 11
2.6 Discriminant Functions for the Normal Density
• Case 1: Σi = σ2I:
• when the features are statistically independent, and
when each feature has the same variance, σ2. In this
case:
Σi = σ2I, |Σi| = σ2d , and Σi
−1 = (1/σ2)I.
• The discriminant function is then:
• We ignored both |Σi| and the (d/2) ln 2π term, since they are
additive constants independent of i.
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 12
2.6 Discriminant Functions for the Normal Density
• where ||·|| is the Euclidean norm, that is,
||x − µi||2 = (x − µi)t (x − µi)
• Expansion ||x − µi
2|| yields
• Can be written as a linear discriminant functions:
• Where: and
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 13
2.6 Discriminant Functions for the Normal Density
• A classifier that uses linear discriminant functions
is called a linear machine.
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 14
2.6 Discriminant Functions for the Normal Density
• Reading:
– Case 2: Σi = Σ :
• the covariance matrices for all classes are
identical.
– Case 3: Σi = arbitrary:
• the general multivariate normal case, the
covariance matrices are different for each
category.
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 15
2.6 Discriminant Functions for the Normal Density
– Σi arbitrary:
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 16
2.6 Discriminant Functions for the Normal Density
• Numerical Example: (Two features, Two classes)







6
3
1







6
3
1








2
3
2







20
02/1
1







20
02
2







2/10
021
1







2/10
02/11
2
• using: P(w1)=P(w2)=0.5,
• The decision boundary g(x) = g1(x) - g2(x) =0
w1
w2
x2 - 3.514 + 1.125 x1 - 0.1875 x1
2=0
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 17
Home Work (1)
• Write a report on Section 2.9: Bayesian Decision
theory - Discrete features.
• 2.9.1: Independent binary features
• Example 3: Bayesian Decisions for 3D binary Data
• Problem Exercises:
– Derive the decision boundary equation in the
previous example (slide #17).
ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 18

More Related Content

What's hot

2.6 support vector machines and associative classifiers revised
2.6 support vector machines and associative classifiers revised2.6 support vector machines and associative classifiers revised
2.6 support vector machines and associative classifiers revisedKrish_ver2
 
CART: Not only Classification and Regression Trees
CART: Not only Classification and Regression TreesCART: Not only Classification and Regression Trees
CART: Not only Classification and Regression TreesMarc Garcia
 
Lecture9 - Bayesian-Decision-Theory
Lecture9 - Bayesian-Decision-TheoryLecture9 - Bayesian-Decision-Theory
Lecture9 - Bayesian-Decision-TheoryAlbert Orriols-Puig
 
Daa:Dynamic Programing
Daa:Dynamic ProgramingDaa:Dynamic Programing
Daa:Dynamic Programingrupali_2bonde
 
Predicate calculus
Predicate calculusPredicate calculus
Predicate calculusRajendran
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic ReasoningJunya Tanaka
 
Statistical Pattern recognition(1)
Statistical Pattern recognition(1)Statistical Pattern recognition(1)
Statistical Pattern recognition(1)Syed Atif Naseem
 
Learning set of rules
Learning set of rulesLearning set of rules
Learning set of rulesswapnac12
 
Machine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksMachine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksFrancesco Collova'
 
Genetic algorithms
Genetic algorithmsGenetic algorithms
Genetic algorithmsswapnac12
 
Forms of learning in ai
Forms of learning in aiForms of learning in ai
Forms of learning in aiRobert Antony
 
Decision trees in Machine Learning
Decision trees in Machine Learning Decision trees in Machine Learning
Decision trees in Machine Learning Mohammad Junaid Khan
 
Bayesian classification
Bayesian classification Bayesian classification
Bayesian classification Zul Kawsar
 
daa-unit-3-greedy method
daa-unit-3-greedy methoddaa-unit-3-greedy method
daa-unit-3-greedy methodhodcsencet
 
Decision tree, softmax regression and ensemble methods in machine learning
Decision tree, softmax regression and ensemble methods in machine learningDecision tree, softmax regression and ensemble methods in machine learning
Decision tree, softmax regression and ensemble methods in machine learningAbhishek Vijayvargia
 
2.5 backpropagation
2.5 backpropagation2.5 backpropagation
2.5 backpropagationKrish_ver2
 

What's hot (20)

Csc446: Pattern Recognition
Csc446: Pattern Recognition Csc446: Pattern Recognition
Csc446: Pattern Recognition
 
Csc446: Pattren Recognition (LN2)
Csc446: Pattren Recognition (LN2)Csc446: Pattren Recognition (LN2)
Csc446: Pattren Recognition (LN2)
 
2.6 support vector machines and associative classifiers revised
2.6 support vector machines and associative classifiers revised2.6 support vector machines and associative classifiers revised
2.6 support vector machines and associative classifiers revised
 
CART: Not only Classification and Regression Trees
CART: Not only Classification and Regression TreesCART: Not only Classification and Regression Trees
CART: Not only Classification and Regression Trees
 
Lecture9 - Bayesian-Decision-Theory
Lecture9 - Bayesian-Decision-TheoryLecture9 - Bayesian-Decision-Theory
Lecture9 - Bayesian-Decision-Theory
 
Daa:Dynamic Programing
Daa:Dynamic ProgramingDaa:Dynamic Programing
Daa:Dynamic Programing
 
Predicate calculus
Predicate calculusPredicate calculus
Predicate calculus
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic Reasoning
 
Statistical Pattern recognition(1)
Statistical Pattern recognition(1)Statistical Pattern recognition(1)
Statistical Pattern recognition(1)
 
Learning set of rules
Learning set of rulesLearning set of rules
Learning set of rules
 
Machine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksMachine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural Networks
 
Genetic algorithms
Genetic algorithmsGenetic algorithms
Genetic algorithms
 
Forms of learning in ai
Forms of learning in aiForms of learning in ai
Forms of learning in ai
 
L7 fuzzy relations
L7 fuzzy relationsL7 fuzzy relations
L7 fuzzy relations
 
Decision trees in Machine Learning
Decision trees in Machine Learning Decision trees in Machine Learning
Decision trees in Machine Learning
 
Bayesian classification
Bayesian classification Bayesian classification
Bayesian classification
 
daa-unit-3-greedy method
daa-unit-3-greedy methoddaa-unit-3-greedy method
daa-unit-3-greedy method
 
Decision tree, softmax regression and ensemble methods in machine learning
Decision tree, softmax regression and ensemble methods in machine learningDecision tree, softmax regression and ensemble methods in machine learning
Decision tree, softmax regression and ensemble methods in machine learning
 
2.5 backpropagation
2.5 backpropagation2.5 backpropagation
2.5 backpropagation
 
Min-Max algorithm
Min-Max algorithmMin-Max algorithm
Min-Max algorithm
 

Viewers also liked

Neural Networks: Model Building Through Linear Regression
Neural Networks: Model Building Through Linear RegressionNeural Networks: Model Building Through Linear Regression
Neural Networks: Model Building Through Linear RegressionMostafa G. M. Mostafa
 
Neural Networks: Rosenblatt's Perceptron
Neural Networks: Rosenblatt's PerceptronNeural Networks: Rosenblatt's Perceptron
Neural Networks: Rosenblatt's PerceptronMostafa G. M. Mostafa
 
Neural Networks: Support Vector machines
Neural Networks: Support Vector machinesNeural Networks: Support Vector machines
Neural Networks: Support Vector machinesMostafa G. M. Mostafa
 
Neural Networks: Least Mean Square (LSM) Algorithm
Neural Networks: Least Mean Square (LSM) AlgorithmNeural Networks: Least Mean Square (LSM) Algorithm
Neural Networks: Least Mean Square (LSM) AlgorithmMostafa G. M. Mostafa
 
Digital Image Processing: Image Restoration
Digital Image Processing: Image RestorationDigital Image Processing: Image Restoration
Digital Image Processing: Image RestorationMostafa G. M. Mostafa
 
Neural Networks: Self-Organizing Maps (SOM)
Neural Networks:  Self-Organizing Maps (SOM)Neural Networks:  Self-Organizing Maps (SOM)
Neural Networks: Self-Organizing Maps (SOM)Mostafa G. M. Mostafa
 
Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Mostafa G. M. Mostafa
 
Neural Networks: Principal Component Analysis (PCA)
Neural Networks: Principal Component Analysis (PCA)Neural Networks: Principal Component Analysis (PCA)
Neural Networks: Principal Component Analysis (PCA)Mostafa G. M. Mostafa
 
Neural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronNeural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronMostafa G. M. Mostafa
 
Digital Image Processing: Image Enhancement in the Spatial Domain
Digital Image Processing: Image Enhancement in the Spatial DomainDigital Image Processing: Image Enhancement in the Spatial Domain
Digital Image Processing: Image Enhancement in the Spatial DomainMostafa G. M. Mostafa
 
Neural stream
Neural streamNeural stream
Neural streamMk Kim
 
Digital Image Processing: Image Enhancement in the Frequency Domain
Digital Image Processing: Image Enhancement in the Frequency DomainDigital Image Processing: Image Enhancement in the Frequency Domain
Digital Image Processing: Image Enhancement in the Frequency DomainMostafa G. M. Mostafa
 
Digital Image Processing: Image Segmentation
Digital Image Processing: Image SegmentationDigital Image Processing: Image Segmentation
Digital Image Processing: Image SegmentationMostafa G. M. Mostafa
 
Normal distribution
Normal distributionNormal distribution
Normal distributionSteve Bishop
 

Viewers also liked (18)

Neural Networks: Model Building Through Linear Regression
Neural Networks: Model Building Through Linear RegressionNeural Networks: Model Building Through Linear Regression
Neural Networks: Model Building Through Linear Regression
 
Neural Networks: Introducton
Neural Networks: IntroductonNeural Networks: Introducton
Neural Networks: Introducton
 
CSC446: Pattern Recognition (LN8)
CSC446: Pattern Recognition (LN8)CSC446: Pattern Recognition (LN8)
CSC446: Pattern Recognition (LN8)
 
Neural Networks: Rosenblatt's Perceptron
Neural Networks: Rosenblatt's PerceptronNeural Networks: Rosenblatt's Perceptron
Neural Networks: Rosenblatt's Perceptron
 
Csc446: Pattren Recognition
Csc446: Pattren RecognitionCsc446: Pattren Recognition
Csc446: Pattren Recognition
 
Neural Networks: Support Vector machines
Neural Networks: Support Vector machinesNeural Networks: Support Vector machines
Neural Networks: Support Vector machines
 
Neural Networks: Least Mean Square (LSM) Algorithm
Neural Networks: Least Mean Square (LSM) AlgorithmNeural Networks: Least Mean Square (LSM) Algorithm
Neural Networks: Least Mean Square (LSM) Algorithm
 
Digital Image Processing: Image Restoration
Digital Image Processing: Image RestorationDigital Image Processing: Image Restoration
Digital Image Processing: Image Restoration
 
Neural Networks: Self-Organizing Maps (SOM)
Neural Networks:  Self-Organizing Maps (SOM)Neural Networks:  Self-Organizing Maps (SOM)
Neural Networks: Self-Organizing Maps (SOM)
 
Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)
 
Neural Networks: Principal Component Analysis (PCA)
Neural Networks: Principal Component Analysis (PCA)Neural Networks: Principal Component Analysis (PCA)
Neural Networks: Principal Component Analysis (PCA)
 
Neural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronNeural Networks: Multilayer Perceptron
Neural Networks: Multilayer Perceptron
 
Digital Image Processing: Image Enhancement in the Spatial Domain
Digital Image Processing: Image Enhancement in the Spatial DomainDigital Image Processing: Image Enhancement in the Spatial Domain
Digital Image Processing: Image Enhancement in the Spatial Domain
 
Neural stream
Neural streamNeural stream
Neural stream
 
Digital Image Processing: Image Enhancement in the Frequency Domain
Digital Image Processing: Image Enhancement in the Frequency DomainDigital Image Processing: Image Enhancement in the Frequency Domain
Digital Image Processing: Image Enhancement in the Frequency Domain
 
Digital Image Processing: Image Segmentation
Digital Image Processing: Image SegmentationDigital Image Processing: Image Segmentation
Digital Image Processing: Image Segmentation
 
The normal distribution
The normal distributionThe normal distribution
The normal distribution
 
Normal distribution
Normal distributionNormal distribution
Normal distribution
 

Similar to CSC446: Pattern Recognition (LN5)

Implementing Minimum Error Rate Classifier
Implementing Minimum Error Rate ClassifierImplementing Minimum Error Rate Classifier
Implementing Minimum Error Rate ClassifierDipesh Shome
 
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...Sebastian Raschka
 
Normal density and discreminant analysis
Normal density and discreminant analysisNormal density and discreminant analysis
Normal density and discreminant analysisVARUN KUMAR
 
Lecture 8: Decision Trees & k-Nearest Neighbors
Lecture 8: Decision Trees & k-Nearest NeighborsLecture 8: Decision Trees & k-Nearest Neighbors
Lecture 8: Decision Trees & k-Nearest NeighborsMarina Santini
 
Introduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesIntroduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesXavier Rafael Palou
 
2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decisionnozomuhamada
 
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...Victor Asanza
 
Asynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsAsynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsFabian Pedregosa
 
super-cheatsheet-artificial-intelligence.pdf
super-cheatsheet-artificial-intelligence.pdfsuper-cheatsheet-artificial-intelligence.pdf
super-cheatsheet-artificial-intelligence.pdfssuser089265
 
Free Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.comFree Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.comEdhole.com
 
A Study on Optimization using Stochastic Linear Programming
A Study on Optimization using Stochastic Linear ProgrammingA Study on Optimization using Stochastic Linear Programming
A Study on Optimization using Stochastic Linear ProgrammingIOSR Journals
 
Paper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipelinePaper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipelineChenYiHuang5
 
Machine learning for_finance
Machine learning for_financeMachine learning for_finance
Machine learning for_financeStefan Duprey
 
block-mdp-masters-defense.pdf
block-mdp-masters-defense.pdfblock-mdp-masters-defense.pdf
block-mdp-masters-defense.pdfJunghyun Lee
 

Similar to CSC446: Pattern Recognition (LN5) (20)

Implementing Minimum Error Rate Classifier
Implementing Minimum Error Rate ClassifierImplementing Minimum Error Rate Classifier
Implementing Minimum Error Rate Classifier
 
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
 
Bayes ML.ppt
Bayes ML.pptBayes ML.ppt
Bayes ML.ppt
 
Machine learning cheat sheet
Machine learning cheat sheetMachine learning cheat sheet
Machine learning cheat sheet
 
Normal density and discreminant analysis
Normal density and discreminant analysisNormal density and discreminant analysis
Normal density and discreminant analysis
 
Lecture 8: Decision Trees & k-Nearest Neighbors
Lecture 8: Decision Trees & k-Nearest NeighborsLecture 8: Decision Trees & k-Nearest Neighbors
Lecture 8: Decision Trees & k-Nearest Neighbors
 
Introduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesIntroduction to conventional machine learning techniques
Introduction to conventional machine learning techniques
 
2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision
 
SASA 2016
SASA 2016SASA 2016
SASA 2016
 
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
 
Asynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsAsynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and Algorithms
 
super-cheatsheet-artificial-intelligence.pdf
super-cheatsheet-artificial-intelligence.pdfsuper-cheatsheet-artificial-intelligence.pdf
super-cheatsheet-artificial-intelligence.pdf
 
Free Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.comFree Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.com
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
 
A Study on Optimization using Stochastic Linear Programming
A Study on Optimization using Stochastic Linear ProgrammingA Study on Optimization using Stochastic Linear Programming
A Study on Optimization using Stochastic Linear Programming
 
Paper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipelinePaper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipeline
 
Generalized Reinforcement Learning
Generalized Reinforcement LearningGeneralized Reinforcement Learning
Generalized Reinforcement Learning
 
Machine learning for_finance
Machine learning for_financeMachine learning for_finance
Machine learning for_finance
 
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
 
block-mdp-masters-defense.pdf
block-mdp-masters-defense.pdfblock-mdp-masters-defense.pdf
block-mdp-masters-defense.pdf
 

Recently uploaded

Business update Q1 2024 Lar España Real Estate SOCIMI
Business update Q1 2024 Lar España Real Estate SOCIMIBusiness update Q1 2024 Lar España Real Estate SOCIMI
Business update Q1 2024 Lar España Real Estate SOCIMIAlejandraGmez176757
 
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单ewymefz
 
一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单ewymefz
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单ewymefz
 
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...elinavihriala
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationBoston Institute of Analytics
 
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPsWebinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPsCEPTES Software Inc
 
Computer Presentation.pptx ecommerce advantage s
Computer Presentation.pptx ecommerce advantage sComputer Presentation.pptx ecommerce advantage s
Computer Presentation.pptx ecommerce advantage sMAQIB18
 
Using PDB Relocation to Move a Single PDB to Another Existing CDB
Using PDB Relocation to Move a Single PDB to Another Existing CDBUsing PDB Relocation to Move a Single PDB to Another Existing CDB
Using PDB Relocation to Move a Single PDB to Another Existing CDBAlireza Kamrani
 
一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单ocavb
 
一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单ewymefz
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhArpitMalhotra16
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxbenishzehra469
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单enxupq
 
Opendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单vcaxypu
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP
 
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单vcaxypu
 
Professional Data Engineer Certification Exam Guide  _  Learn  _  Google Clou...
Professional Data Engineer Certification Exam Guide  _  Learn  _  Google Clou...Professional Data Engineer Certification Exam Guide  _  Learn  _  Google Clou...
Professional Data Engineer Certification Exam Guide  _  Learn  _  Google Clou...Domenico Conte
 

Recently uploaded (20)

Business update Q1 2024 Lar España Real Estate SOCIMI
Business update Q1 2024 Lar España Real Estate SOCIMIBusiness update Q1 2024 Lar España Real Estate SOCIMI
Business update Q1 2024 Lar España Real Estate SOCIMI
 
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
 
一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
 
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
 
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPsWebinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
 
Computer Presentation.pptx ecommerce advantage s
Computer Presentation.pptx ecommerce advantage sComputer Presentation.pptx ecommerce advantage s
Computer Presentation.pptx ecommerce advantage s
 
Using PDB Relocation to Move a Single PDB to Another Existing CDB
Using PDB Relocation to Move a Single PDB to Another Existing CDBUsing PDB Relocation to Move a Single PDB to Another Existing CDB
Using PDB Relocation to Move a Single PDB to Another Existing CDB
 
一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单
 
一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
 
Opendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptx
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
 
Professional Data Engineer Certification Exam Guide  _  Learn  _  Google Clou...
Professional Data Engineer Certification Exam Guide  _  Learn  _  Google Clou...Professional Data Engineer Certification Exam Guide  _  Learn  _  Google Clou...
Professional Data Engineer Certification Exam Guide  _  Learn  _  Google Clou...
 

CSC446: Pattern Recognition (LN5)

  • 1. Chapter 2 (Part 2): Bayesian Decision Theory Prof. Dr. Mostafa Gadal-Haqq Faculty of Computer & Information Sciences Computer Science Department AIN SHAMS UNIVERSITY CSC446 : Pattern Recognition (Study DHS-Chapter 2: Sec 2.4-2.6) ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 1
  • 2. 2.4 Classifiers Using Discriminant Functions • Classifier Representation – A classifier can be represent in terms of discriminant functions gi(x) ; i = 1, 2, …, c. – The classifier assigns a feature vector x to class i according to the value of g(x) . – the discriminant functions gi(x) divide the feature space into c decision regions Ri ; i = 1, 2,…, c . x  Ri if gi(x) > gj(x) j  i ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 2
  • 3. 2.4 Classifiers Using Discriminant Functions The classifier can be viewed as a network. ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 3
  • 4. 2.4 Classifiers Using Discriminant Functions • Properties of g(x) – The choice of g(x) is not unique. • If g(x) is scaled or shifted by a positive constant, we will have the same decision: g2(x) = k * g1(x), and g2(x) = g1(x) + k ; k is constant – g(x) can be replaced by f(g(x)), where f(.) is a monotonically increasing function: g2(x) = f( g1( x ) ) ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 4
  • 5. • Examples of g(.): – For minimum-error rate, we could choose g(.): gi(x) = P(i | x) gi(x) = P(x | i) P(i) gi(x) =ln(gi(x)) = ln P(x | i) + ln P(i) – For the general case with risks, we choose g(.): gi(x) = - R(i | x) 2.4 Classifiers Using Discriminant Functions ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 5
  • 6. • The two-category case – A classifier is called a “dichotomizer” if it has two discriminant functions g1 and g2. – The decision rule becomes: – we can put g(x)  g1(x) – g2(x), then 2.4 Classifiers Using Discriminant Functions Decide 1 if g1(x) > g2(x); Otherwise decide 2 Decide 1 if g (x) > 0; Otherwise decide 2 ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 6
  • 7. • The computation of g(x) for a dichotomizer is: )|()( 11 xPxg  2.4 Classifiers Using Discriminant Functions )( )( ln )|( )|( ln )|()|()( 2 1 2 1 21      P P xp xp xPxPxg   )|()( 22 xPxg  ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 7
  • 8. 2.4 Classifiers Using Discriminant Functions Feature space for two classes with two features and decision boundary. ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 8
  • 9. 2.5 The Univariate Normal Density • A density that is analytically tractable • Continuous density • A lot of processes are asymptotically Gaussian Where:  = mean (or expected value) of x 2 = squared deviation or variance , 2 1 exp 2 1 )( 2                    x xp    1)( dxxp ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 9
  • 10. 2.5 The Normal Density • Multivariate Normal Density – Multivariate normal density in d dimensions is: where: x = (x1, x2, …, xd)t = The multivariate random variable  = (1, 2, …, d)t = the mean vector  = d*d covariance matrix, || and -1 are it determinant and inverse, respectively .         )x()x( 2 1 exp )2( 1 )x( 1 2/12/   t d p ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 10
  • 11. 2.6 Discriminant Functions for the Normal Density • The minimum-error-rate the discriminant functions: gi(x) = ln p(x | i) + ln P(i) • if the densities p(x|ωi) are multivariate normal, i.e., if p(x|ωi) ~ N(µi,Σi). • In this case, • Let us consider a number of special cases: ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 11
  • 12. 2.6 Discriminant Functions for the Normal Density • Case 1: Σi = σ2I: • when the features are statistically independent, and when each feature has the same variance, σ2. In this case: Σi = σ2I, |Σi| = σ2d , and Σi −1 = (1/σ2)I. • The discriminant function is then: • We ignored both |Σi| and the (d/2) ln 2π term, since they are additive constants independent of i. ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 12
  • 13. 2.6 Discriminant Functions for the Normal Density • where ||·|| is the Euclidean norm, that is, ||x − µi||2 = (x − µi)t (x − µi) • Expansion ||x − µi 2|| yields • Can be written as a linear discriminant functions: • Where: and ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 13
  • 14. 2.6 Discriminant Functions for the Normal Density • A classifier that uses linear discriminant functions is called a linear machine. ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 14
  • 15. 2.6 Discriminant Functions for the Normal Density • Reading: – Case 2: Σi = Σ : • the covariance matrices for all classes are identical. – Case 3: Σi = arbitrary: • the general multivariate normal case, the covariance matrices are different for each category. ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 15
  • 16. 2.6 Discriminant Functions for the Normal Density – Σi arbitrary: ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 16
  • 17. 2.6 Discriminant Functions for the Normal Density • Numerical Example: (Two features, Two classes)        6 3 1        6 3 1         2 3 2        20 02/1 1        20 02 2        2/10 021 1        2/10 02/11 2 • using: P(w1)=P(w2)=0.5, • The decision boundary g(x) = g1(x) - g2(x) =0 w1 w2 x2 - 3.514 + 1.125 x1 - 0.1875 x1 2=0 ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 17
  • 18. Home Work (1) • Write a report on Section 2.9: Bayesian Decision theory - Discrete features. • 2.9.1: Independent binary features • Example 3: Bayesian Decisions for 3D binary Data • Problem Exercises: – Derive the decision boundary equation in the previous example (slide #17). ASU-CSC446 : Pattern Recognition. Prof. Dr. Mostafa Gadal-Haqq slide - 18