CSC447: Digital Image
Processing
Chapter 4:
Prof. Dr. Mostafa Gadal-Haqq M. Mostafa
Computer Science Department
Faculty of Computer & Information Sciences
AIN SHAMS UNIVERSITY
Foundation
 Fourier Theorem:
Any function that
periodically repeat itself
can be represented by the
some of sines and/or
cosines of different
frequencies, each
multiplied by a different
coefficient.
)cossin()(
0
xbxaxf ii
n
i
ii   
2CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 1-D Fourier Transform:
 The Fourier transform, F(u), of a discrete 1-
D function, f(x); x = 0, 1, 2, …, M-1, is:
 Where u= 0, 1, 2, …, M-1
 1-D Inverse Fourier Transform:





1
0
/2
)(
1
)(
M
x
Muxj
exf
M
uF 




1
0
/2
)()(
M
u
Muxj
euFxf 
3CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 F(u) is called the frequency component of the Fourier
Transform, and its domain (the values of u) is called the
frequency domain, because u determines the frequency
of the components of the transform:
 Since F(u) is complex quantity It is convenient to
express it in polar form
 |F(u)| is called the magnitude, and (u) is the phase
 The Power Spectrum P(u) = |F(u)|2
)](/)([tan(u)and,)]()([|)(|where,
|)(|)(
1-2/122
)(
uRuIuIuRuF
euFuF uj




4CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 1-D Fourier Transform:
5CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 2-D Fourier Transform:
 The Fourier transform, F(u,v), of a discrete
2-D function (MxN), f(x,y) is:
 Where u= 0,1,2, …,M-1, and v = 0,1,2, …, N-1
 2-D Inverse Fourier Transform:







1
0
1
0
)//(2
),(
1
),(
M
x
N
y
NvyMuxj
eyxf
MN
vuF 
 






1
0
1
0
)//(2
),(),(
M
u
N
v
NvyMuxj
evuFyxf 
6CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 the Fourier spectrum , phase angle, andpower
spectrum , are defined as before:
),(),(|),(|
and)],,(/),([tanv)(u,
,)],(),([|),(|where,
|),(|),(
222
1-
2/122
),(
vuIvuRvuFP(u,v)
vuRvuI
vuIvuRvuF
evuFvuF vuj






7CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 2-D Fourier Transform:
8CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 2-D Fourier Transform:
9CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 2-D Fourier Transform:
10CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 2-D Fourier Transform:
11CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 Properties of the Fourier Transform:
12CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 Properties of the Fourier Transform:
13CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 Properties of the Fourier Transform:
14CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 Properties of the Fourier Transform:
15CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
The Discrete Fourier Transform (DFT)
 Properties of the Fourier Transform:
16CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Basic Operations
17CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 2-D Fourier Transform
18CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 2-D Fourier Transform:
19CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Notch filter
20CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Ideal Low-pass Filter (ILPF)
cutoff
frequency
21CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 How to find the cutoff frequency for a ILPF?
 Find the circle that enclose a certain amount of the
power spectrum of the image:
 Where P(u,v) is the Power spectrum at frequencies
(u,v) the. Then , a circle of radius r enclose a 
percentage of the power, where
22CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Distribution of the power spectrum:
23CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Filtering with power cutoff
24CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Butterworth Low-pass Filter
25CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Butterworth Low-pass Filter
26CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Gaussian Low-pass Filter
 Where D(u,v) id the distance from the origin
27CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Gaussian Low-pass Filter
28CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Gaussian Low-pass and High-pass filters:
29CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Gaussian Low-pass filters:
30CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Gaussian Low-pass filters:
31CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Ideal High-pass filters:
32CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Ideal High-pass filters:
33CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Ideal High-pass filters:
34CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Gaussian High-pass filters:
35CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 High-pass filters:
36CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 High-pass filters:
37CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Ideal Band-Pass Filter
38CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 The Laplacian filters:
39CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Gaussian High-pass filters:
40CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Homomorphic filters:
41CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Homomorphic filters:
42CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
Filtering in the Frequency Domain
 Homomorphic filters:
43CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
HW3
 4.9 and 4.12
44CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.

Digital Image Processing: Image Enhancement in the Frequency Domain

  • 1.
    CSC447: Digital Image Processing Chapter4: Prof. Dr. Mostafa Gadal-Haqq M. Mostafa Computer Science Department Faculty of Computer & Information Sciences AIN SHAMS UNIVERSITY
  • 2.
    Foundation  Fourier Theorem: Anyfunction that periodically repeat itself can be represented by the some of sines and/or cosines of different frequencies, each multiplied by a different coefficient. )cossin()( 0 xbxaxf ii n i ii    2CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 3.
    The Discrete FourierTransform (DFT)  1-D Fourier Transform:  The Fourier transform, F(u), of a discrete 1- D function, f(x); x = 0, 1, 2, …, M-1, is:  Where u= 0, 1, 2, …, M-1  1-D Inverse Fourier Transform:      1 0 /2 )( 1 )( M x Muxj exf M uF      1 0 /2 )()( M u Muxj euFxf  3CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 4.
    The Discrete FourierTransform (DFT)  F(u) is called the frequency component of the Fourier Transform, and its domain (the values of u) is called the frequency domain, because u determines the frequency of the components of the transform:  Since F(u) is complex quantity It is convenient to express it in polar form  |F(u)| is called the magnitude, and (u) is the phase  The Power Spectrum P(u) = |F(u)|2 )](/)([tan(u)and,)]()([|)(|where, |)(|)( 1-2/122 )( uRuIuIuRuF euFuF uj     4CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 5.
    The Discrete FourierTransform (DFT)  1-D Fourier Transform: 5CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 6.
    The Discrete FourierTransform (DFT)  2-D Fourier Transform:  The Fourier transform, F(u,v), of a discrete 2-D function (MxN), f(x,y) is:  Where u= 0,1,2, …,M-1, and v = 0,1,2, …, N-1  2-D Inverse Fourier Transform:        1 0 1 0 )//(2 ),( 1 ),( M x N y NvyMuxj eyxf MN vuF          1 0 1 0 )//(2 ),(),( M u N v NvyMuxj evuFyxf  6CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 7.
    The Discrete FourierTransform (DFT)  the Fourier spectrum , phase angle, andpower spectrum , are defined as before: ),(),(|),(| and)],,(/),([tanv)(u, ,)],(),([|),(|where, |),(|),( 222 1- 2/122 ),( vuIvuRvuFP(u,v) vuRvuI vuIvuRvuF evuFvuF vuj       7CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 8.
    The Discrete FourierTransform (DFT)  2-D Fourier Transform: 8CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 9.
    The Discrete FourierTransform (DFT)  2-D Fourier Transform: 9CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 10.
    The Discrete FourierTransform (DFT)  2-D Fourier Transform: 10CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 11.
    The Discrete FourierTransform (DFT)  2-D Fourier Transform: 11CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 12.
    The Discrete FourierTransform (DFT)  Properties of the Fourier Transform: 12CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 13.
    The Discrete FourierTransform (DFT)  Properties of the Fourier Transform: 13CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 14.
    The Discrete FourierTransform (DFT)  Properties of the Fourier Transform: 14CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 15.
    The Discrete FourierTransform (DFT)  Properties of the Fourier Transform: 15CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 16.
    The Discrete FourierTransform (DFT)  Properties of the Fourier Transform: 16CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 17.
    Filtering in theFrequency Domain  Basic Operations 17CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 18.
    Filtering in theFrequency Domain  2-D Fourier Transform 18CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 19.
    Filtering in theFrequency Domain  2-D Fourier Transform: 19CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 20.
    Filtering in theFrequency Domain  Notch filter 20CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 21.
    Filtering in theFrequency Domain  Ideal Low-pass Filter (ILPF) cutoff frequency 21CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 22.
    Filtering in theFrequency Domain  How to find the cutoff frequency for a ILPF?  Find the circle that enclose a certain amount of the power spectrum of the image:  Where P(u,v) is the Power spectrum at frequencies (u,v) the. Then , a circle of radius r enclose a  percentage of the power, where 22CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 23.
    Filtering in theFrequency Domain  Distribution of the power spectrum: 23CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 24.
    Filtering in theFrequency Domain  Filtering with power cutoff 24CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 25.
    Filtering in theFrequency Domain  Butterworth Low-pass Filter 25CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 26.
    Filtering in theFrequency Domain  Butterworth Low-pass Filter 26CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 27.
    Filtering in theFrequency Domain  Gaussian Low-pass Filter  Where D(u,v) id the distance from the origin 27CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 28.
    Filtering in theFrequency Domain  Gaussian Low-pass Filter 28CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 29.
    Filtering in theFrequency Domain  Gaussian Low-pass and High-pass filters: 29CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 30.
    Filtering in theFrequency Domain  Gaussian Low-pass filters: 30CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 31.
    Filtering in theFrequency Domain  Gaussian Low-pass filters: 31CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 32.
    Filtering in theFrequency Domain  Ideal High-pass filters: 32CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 33.
    Filtering in theFrequency Domain  Ideal High-pass filters: 33CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 34.
    Filtering in theFrequency Domain  Ideal High-pass filters: 34CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 35.
    Filtering in theFrequency Domain  Gaussian High-pass filters: 35CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 36.
    Filtering in theFrequency Domain  High-pass filters: 36CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 37.
    Filtering in theFrequency Domain  High-pass filters: 37CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 38.
    Filtering in theFrequency Domain  Ideal Band-Pass Filter 38CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 39.
    Filtering in theFrequency Domain  The Laplacian filters: 39CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 40.
    Filtering in theFrequency Domain  Gaussian High-pass filters: 40CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 41.
    Filtering in theFrequency Domain  Homomorphic filters: 41CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 42.
    Filtering in theFrequency Domain  Homomorphic filters: 42CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 43.
    Filtering in theFrequency Domain  Homomorphic filters: 43CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  • 44.
    HW3  4.9 and4.12 44CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.