1) Cramer's rule can be used to solve systems of linear equations. It expresses the solution in terms of the determinants of the coefficient matrix and matrices with one column replaced by the constants vector.
2) If the determinant of the coefficient matrix is non-zero, there is a unique solution. If it is zero, there may be no solution or infinitely many solutions.
3) Three examples demonstrate applying Cramer's rule to find the unique solution, that there is no solution, and that there are infinitely many solutions, respectively.