SlideShare a Scribd company logo
13. Confluent Hypergeometric Functions
                                LUCY
                                   JOAN
                                      SLATEB'
                                     Contents
                                                                                                Page
Mathematical Properties . . . . . . . . . . . . . . .                   .     .     .     .     504
   13.1. Definitions of Kummer and Whittaker Functions .                 .     .     .     .    504
   13.2. Integral Representations . . . . . . . . . . .                  .     .     .     .    505
   13.3. Connections With Bessel Functions . . . . . . .                  .     .     .     .   506
   13.4. Rkcurrence Relations and DifTerential Properties .              . . . .                506
   13.5. Asymptotic Expansions and Limiting Forms . . .                  . . . .                508
   13.6. Special Cases . . . . . . . . . . . . . . . .                  . . . .                 509
   13.7. Zeros and Turning Values . . . . . . . . . . .                 . . . .                 510
Numerical Methods . . . . . . . . . . . . . .                 . . . . . . . .                   511
   13.8. Use and Extension of the Tables . . . .             . . . . . . . .                    511
   13.9. Calculation of Zeros and Turning Points .           . . . . . . . .                    513
   13.10. Graphing M(a. b. z) . . . . . . . . . .            . . . . . . . .                    513
References . . . . . . . . . . . . . . . . . . . . . . . . . .                                  514
Table 13.1. Confluent Hypergeometric Function M(a. b. z) . . . . .                              516
    Z= . l(.1) l(1) 10. a= -1 (. 1)l. b= . 1 (.l)l, 8s
Table 13.2. Zeros of M(u. b. z) . . . . . . . . . . . . . . . . . .                             535
    ~=-1(.1)-.1,       b=.I(.l)I,    7D




      The tables were calculated by the author on the electronic calculator EDSACI in the
Mathematical Laboratory of Cambridge University. by kind permission of its director. Dr .
hl . V . Wilkes. The table of M(a. b. 2) was recomputed by Alfred E . Beam for uniformity
to eight significant figures.




      * University Mathematical Laboratory. Cambridge.   (Prepared under contract with the
N a t i O d Bureau O StaIldlUdS.)
                    f
13. Confluent Hypergeometric Functions
                                          Mathematical Properties
  13.1. Definitions of Kummer and Whittaker                  U(a, b, z) is a many-valued function. Its princi-
                    Functions                              pal branch is given by -rag
                                                                                    <r     z 5 r.
                    Kummer's Equation                                      Logarithmic Solution
                                                           13.1.6
                 ?+bz
                  ! ( -)       dw
                               --uw=o
13.1.1           dZ             dz

It has aregular singularity at z=O and an irregular
singularity at m .                                                                   (?I-l)!                -
   Independent solutions are                                                        +-                     z "M(a-n, 1-n,    2)"
                                                                                             (a)
                                                                                            I?




                   Kummer's Function                       for n=OJ 1, 2, . . ., where the last function is the
13.1.2                                                     sum to n terms. It is to be interpreted as zero
                                                           when n=O, and ~(a)=I"(a)/I?(a).
                                                           13.1.7    U(a, 1-n, z)=z"U(a+q., l+n, z)
where
                                                             As 9 z + m
      ( u ) ~ = u ( u + ~ ) ( u +.~.)(u+n-1), (u)~=I,
                                .
                                                           13.1.8         U(a, b, z)=z-"[l+O(l~J-')]
and                                                                         Analytic Continuation
13.1.3                                                     13.1.9
                                                           U(a, b, ze*")=-
                                                                               ?r
                                                                             sin ?rb
                                                                                       e-'
                                                                                                 '    M(b-a, b, Z)
                                                                                                      (1 +a- b) r (b)
                                                                                                     I?




                                                                                    -efrf(l-B) z1-b M(1-a,2--bJ             Z)
                                                                                               r (a)r (2- b)                     1
         Parameters
   (m, n positive integers)            M(a, b, 4           where either upper or lower signs are to be taken
b#-n       a#-m               a convergent series for      throughout.
                                all values of a, b and z
b#-n       a=-m               a polynomial of degree m     13.1.10
                                in2
b=-n       a#-m
b=-n       a=-m,              a simple pole at b=-n                                                             +e-hfbRU(u, z)
                                                                                                                          b,
 m>n
                                                                             Alternative Notations
b=-n a=-m,                undefined                        IFl(a;b; z) or @(a;b; z) for M(a, b, z)
  m5n                                                      z-"2Fo(a,+a-b; ;- l/z) or *(a; b; z) for V(a, b, z)
                                                                    1
U(a, b, z) is defined even when b+fn
  As 1 2 1 + m J                                                              Complete Solution

13.1.4                                                     13.1.11    p=AM(a, b, z)+BU(a, b,                          Z)


 M(a, b,   z)=m
             r (a)e'z"-b[l+O(lzl-l)]         (9z>O)
                                                           where A and B are arbitrary constants, b#-n.
                                                                                Eight Solutions
and
                                                                         b,
                                                           13.1.12 ~,=M(u,             Z)
13.1.5
                                                           13.1.13 ys=zl-bM(l+a-b, 2-b,                          Z)

                                                           13.1.14 y,=ezM(b--a, b,                   -2)
CONFLUENT HYPERGEOMETRIC FUNCTIONS                                505
13.1.15 y4=z1-bezM(1--a,2-b,               -2)               13.1.34


13.1.17 ~ s = ~ ' - ~ U ( l + a - b ,
                                  2-b,      Z)
                                                                           General Confluent Equation
13.1.18 y,=e'U(b--a, b,            -2)
                                                             13.1.35

13.1.19 y,=zl-bezU(l--a, 2-4                                 w"+[ 2A        bh'
                                                                  -+2j'+--h'-77          h" ]w'
                                          -2)
                                                                       z        h
                           WmIMkianS
                                                                                    h"            A(A-1)
  If W{m, n} =y,y~--y,,y&    and
           t=sgn ( J z ) = l if .fz>o,
                          =-1 if Y Z l O
13.1.20                                                         Sohtions:
W{1, 2}=W{3,4}=W{l,4}=-W{2, 3)                               13.1.36         Z-Ae-f(z)M(a,b, h(Z))
                         = (1 4 ) z - bez
13.1.21                                                      13.1.37         Z-Ae-f")U(a, b, h(Z))
    W{1, 3}=W{2,4}=W{5,
                     6}=W{7,8}=0                                       13.2. Integral Representations
13.1.22   W{1, 5)=-r(b)~-~e~/r(a)                                                9b>Wa>O
                                                             13.2.1
13.1.23 W{1, 7)= r(b)e"~*~-~e~/r(b--a)
13J.24
                       }
          W{2, 5) = -r(2 -b)z- "*/r(+a- 3)
13.1.25 W{2, 7 = -r(2 -b)z- bez/r(
13.1.26 W(5, 7}=e"f(b-a'-* e
                      z
                                   1
                                1 -a)


               Kummer Transformations                        13.2.2

13.1.27    M(a, b, z)=e'M(b--a, b,          -2)

13.1.28
                                                             13.2.3
~'-~M(l+a-b,
           2-4 z)=zl-*ezM(l-u, 2-b,                    -2)

13.1.29 U(a, b, 2)=z1-*U(l+a-6, 2 1 6 ,           Z)
                                                             13.2.4
13.1.30


                  Whittaker's Equation

13.1.31     %+I-,+-+       1   K   (t-r')],=,
                                     zz

  Solutions:
                                                             13.2.6
                 Whittaker's Functions

13.1.32 Mg,,(z)=e-+'z++,M(3+p-N,        1+2p, Z)
13.1.33
                                                             13.2.7
Wg.,(Z)=e-W+W(        3+p--K, 1 +2p, 2)
               (-r<arg     ZIT,~ - up=+b-i)
                                 N=+      ,
506                                             CONFLUENT HYPERGEOMETRIC FmycmoN8

                                                                             13.3.7
13.2.8    r (a)~ ( a ,Z)
                   b,

                   = eAzJAm e-z,(,-A)a-'(t+B)b-a-l~t
                                                            (A=l-B)
  Smlr integrals for ME,&) and W#,,,(z) can
   iia
be deduced with the help of ..13.1.32'and 13.1.33.
                Barnes-typeContour Integrals
13.2.9



for larg (-z)l<)r,   a, b#O, -1, -2, . . . . The
contour must separate the poles of I'(-s) from
those of r(a+s); c is finite.
                                                                                      =e&   3 C"z"(-~2)'"-"")~b--l+n(2~(--az))
                                                                                             m

                                                                                            n-
13.2.10
                                                                             where
r(a)r(i+a-b)z"u(a, b, Z)
          1      c+im                                                        Co=l, c,= -bh, c,=-)(2h-l)a+ib(b+l)hZ,
       --               r(-8)r(~+~)r(i+a-b+s)z-*ds
       -2d    L-t m                                                             (n+l)Cs+l= (1 -2h)n--bhJC,
                                                                                             [
                 3r                                                             +[(1 -2h)a -h(h -1) (b +n- 1)]Cn-1
for larg z1<2,        a#O, -1,            -2,      . . ., b - a f l ,   2,
                                                                                                 -h(h- l)aC,-2     (h real)
3, . . . . The contour must separate the poles of
r(--s) from those of r(a+s) and r(l+a-b+s).
      13.3. Connections With b e e l Functions                               where
               (see chapters 9 and 10)                                       c,=1, C,(a, b)=2a/b,
             Beace1 Functiom M LIrniti- caseo                                         Cn+da, b)=2aC,(a+l, b+l)/b-Cs-,(a,     b)
  If b and z are fixed,                                                        13.4. Recurrence Relations and Merentid
                                                                                               Properties
13.3.1    h { M ( ab, z/a)/r(b)}
                    ~          =2*-'1)-1(2m
          a+-                                                                13.4.1
13.3.2 lim {M(a,b,-z/a)/r(b)} =z4-'Jb-1(21/z)                                (b-a)M(a-1, b, z)+(2a-b+z)M(a, b, 2)
          a+-
13.3.3                                                                                                  -aM(a+l, b, z)=O
 b {r(l+a-b) U(a, b, z/a)}=2z4-'&-1(2a                                       13.4.2
 a+-
                                                                             b(b-l)M(a, b-1,     z)+b(l-b-z)M(a, b, 2)
13.3.4                                                                                               +z(b-a)M(a, b+l, z)=O
lim{l"(l+a-b)U(a, b, -z/a)}                                                  13.4.3
a+-
             = --xieTibz4-4bH$1(2~ (./z>O)                                   (l+a-b)M(a, b, 2)-aM(u+l, b, 2)
13.3.5                -,,.ie-rib&+bHC21
                      -                         b-1(2&)      O(
                                                             )z
                                                             <J                                  +(b-l)M(a, b-1,         z)=O
                                in Seriem
                      E S ~ I ~ O M                                          13.4.4
13.3.6                                                                        bM(a, b, 2)-bM(a-1,     b, 2)-zM(a, b + l , z)=O
M(a, b, z)=e**r(b-~-))(tz)"-~++
                                                                             13.4.5
                                                                             b(a+z)M(a, b, z)+z(a-b)Ai(a, b+l, 2)
                                                                                                       --abM(a+l, b, z)=O
{
                                         CONFLUENT HYPERGEOMETRIC FUNCTIONS                                            507
13.4.6                                                                  13.4.19
                                                                        (a+z)U(a, b, z)-zU(a, b+l, z)
(a-l+z)M(a, b, z)+(b-a)M(a-l,  b, 2)
                     +(1-b)M(a, b-1,                        z)=O                           +a@-a-l)U(a+l,           b, 2)=0
                                                                        13.4.20
13.4.7
                                                                        (a+z-l)U(a, b, 2)-U(a-1, b, z)
b(l-b+z)M(a,         b, z)+b(b-l)M(a-1,             b-1,     Pi                            +(l+a-b)U(a, b-1,           z)=O
                                     -azM(a+l, b + l , z)=O
                                                                        13.4.21   U'(U, b, z)=-aU(a+l, b+l,       Z)


                                                                        13.4.22


13.4.9
          d"
          - M(a, b,
          dz"               Z)   }    (a)"M(a+n, b+n,         2)
                                                                        13.4.23
13.4.10 aM(a+l, b, z)=aM(~, z)+zM'(a, b,
                          b,                                       Z)   a(l+a-b)U(a+l, b, z)=aU(a, b,     2)

                                                                                                            +zU'@, b,       2)
13.4.11
                                                                        13.4.24
(b-a)M(a-1,         b, z)=(b-a-z)M(a,          b, 2)                    (l+a-b)U(a, b-1,     z)=(l-b)U(a, b, 2)
                                              +zM'(a, b,           4                                      -zU'(a, b,        2)

13.4.12
                                                                        13.4.25   U(a, b + l J z)=U(U,b, z)-U'(U, b,   Z)
  (b-a)M(a, b + l , z)=bM(a, b, z)-bM'(a, b,                      2)
                                                                        13.4.26
13.4.13                                                                  U(a-1, b, z)=(a-b+z)U(a, b, z)-zU'(a, b,           2)

(b-l)M(a, 6-1, z)=(b-l)M(a, b,                 2)
                                                                        13.4.27
                                              +zM'(a,         bJ   z
                                                                   ,    U(u-1, b-1,    z)=(l--b+z)U(a, b,   2)

13.4.14                                                                                                        -zU'(a, b,    2)

(b-l)M(u-l,         6-1, z)=(b-1-z)M(a, b, 2)
                                      +zM'(aJ                 bJ   z,
13.4.15
U(a-1, b, z)+(b-2a-z)U(a, b, 2)
                  +a(l+a-b)U(a+l,                          b, z)=O
13.4.16
(b--a-l)U(fZ,       b-1,    z)+(l-b-z)U(a, b, 2)
                                     +zU(a, b+l, z)=O
13.4.11
   U(a, b, 2)-aU(a+l,            b, 2)-U(a, b-1,       z)=O

13.4.18
(b-a) U(a, b,      2)   + U(a- 1, b,    2)
                                         -zU(a, b + l , z)=O
508   C0"T   HYPEBGEOMETIUC FUNCI'IONS




                     13.5.11                                                  (b=O)

                     13.5.12




                       a
                     ~LS   4-m     for b bounded, z real.




                     where u ie defined in 13.5.13.




                     aa a+--       for b bounded, x rad.
                                         For large real a, b x
                                                            ,
                       If cdah' 6 = ~ / ( 2 b - 4 ~ )   80   that ~>2b-U>l,
13.5.19


13.5.20

              {      Z-2b-4~




U(a, b, z)=e+=+"-+T(+)  T-+&-*
                               CONFLUENT HYPERGEOMETRIC F"CM0NB

   If z= (2b-&)[l+t/(b--2a)~], so that


M(a, b, z)=e+=(b-2a)'-Or(b)[Ai(t) cos (UT)
                     +Bi(t) sin (UT) +O(I4b-a I-*)]


           i--tr(~)(bz--2az)-13f~-f+O(l~--al-i)}
   If cos*f?=z/(2b-4~) that 2b--4a>z>O,
                     so                               I
                                                          13.5.21




                                                          13.5.22
                                                          U(U,b, ~)=exp


                                            13.6. SpeCi.1 Casea
                                                                       [(b-24
                                                                             {
                                                          M(a, b, z)= r(b) exp (b-24 COS* e}
                                                                          [(b-2~) COSe]'-'[~($b-u) sin m]-+
                                                                    [sin (ad+sin (+-a)     (2e-sin 2e) +ir)


                                                                                    C O S ~ B ] [ ( ~ - ~ U ) COS

                                                                             [(3b-U) sin 2e)-*{sin[($&a)
                                                                          (20- sin 26)+ t TI + O(l 3b--al-') 1
                                                                                                                        509




                                                                                                                    el1-*




                                                             Relation                                Function



13.6.1                                                                                    BeeSel
13.6.2                                                                                    &See1

13.6.3                                                                                    Modified Bessel
13.6.4                                                                                    Spherical Besael
13.6.5                                                                                    Spherical Besael
13.6.6                                                                                    Spherical Besael
13.6.7                                                                                    Kelvin
13.6.8                                                                                    Coulomb Wave

13.6.9

13.6.10                                                                                   Incomplete Gamma

13.6.11                                                                                  Poisson-Charlier
13.6.12                                    e*                                            Exponential
13.6.13                                                                                  Trigonometric

13.6.14                                                                                  Hyperbolic

13.6.15
                                                                                         Weber
13.6.16
                                                                                            or
                                                                                         Parabolic Cylinder

13.6.17                                                                                  Hermite

13.6.18                                                                                  Hermite

13.6.19                                                                                  Error Integral

13.6.20                                                                         *
                                                                                         Toronto

  *See page   11.
510                                  CONFLUENT HYPEROEOMETBIC F"C"I0NS

                                                   13.6. Spedrl CuebGntinued


                                                                   Relation                           Function
                  a              b

13.6.B     V+t            2v+ 1           22                                                 Modified Bessel
13.6.22    V+t            2v+ 1           -2ir                                               Hankel
13.6.23    V+t            2v+ 1       2it                                                    Hankel
13.6.24    n+l            2n+2        2s                                                     Spherical Bessel
13.6.25    9              +           42'1'                                                  Airy
13.6.26    n+t            2n+1        6                                                      Kelvin
13.637     -n             a+1         2                                                      Lsguem
13.6.28    1--a           1--a        2                                                      Incomplete Gamma
13.6.29    1              1               -2                                                 Exponential Integral
13.6.30    1              1           2                                                      Exponential Integrgl

13.6.31    1              1               --In z                                             Logarithmic Integral

13.6.32    tm-n           l f m       2                                                      Cunningham
13.6.33    -t V           0           22                                                     Bateman
13.6.34    1              1           iz                                                     Sine and Cosine Integral
13.6.35    1              1               -iz                                                Sine and Cosine Integral




                      {
13.6.36    -t V           t           t*                                                     Weber
                                                                                              or
13.6.37    4-1.           t           42'                                                    Parabolic Cylinder
13.6.38    t-tn           t           a9                                                     Hermite
13.6.39    t              t           39                                                     Error Integral




          13.7. &roe and Turning Values                         For the derivative,
   If jD-l,, the r'th positive zero OfJ&l(z), then
           is                                                   13.7.4
a first approximation Xo to the r'th positive zero


                                                        }
of M(a, b, z) is

13.7.1 XO=~:-~,,
             1/(2b-4a)+0(1/(3b-u)2)

13.7.2                                                          If X is the first approximation to a turning value
                                                                   L
                                                                of M(u, b, z), that is, bo a zero of M'(u, b, z) then
                                                                a better approxiniation is
A closer approximation is given by

13.7.3 Xl=XO-M(a, 6,Xo)/M'(u,b, Xo)
CONFLUENT HYPERGEOMETRIC FU"I[ONS                                           51 1
  The self-adjoint equation 13.1.1 can ala0 be               is an increasing or decreasing function of z, that is,
written                                                      they form an increasing sequence for M(a, b, z)
                                                             if a>O, z -
                                                                      <$
                                                                      b       or if a<O, z>b-$, and a decreas-
13.7.6                                                       ing sequence if a>O and z>b-3 or if a       O and
                                                                                                         <
                                                             zb$
                                                              < -.
             The Sonine-Polya Theorem

  The maxima and minima of Iwl form an in-
                                                         I      The turning values of Il lie near the curves
                                                                                        w

creasing or decreasing sequence according as
                     -e-'e-&                             I
                                            Numerica1 Methods
     13.8. Use and Extension of the Tables                     In this way 13.4.1-13.4.7 can be used together
               Calculation of M(a, b, x)                     with 13.1.27 to extend Table 13.1 to the range
             Kummer's Transformation                              -10<a<10,      -10 j b <lo,     -10 <z<10.
   E x m p l e 1. Compute M(.3, .2, -.I) to 7s.              This extension of ten units in any direction is
Using 13.1.27 and Tables4.4 and 13.1 we have                 possible with the loss of about 1s. Al the re-
                                                                                                        l
a = & b=.2 so that                                           currence relations are stable except i) if a<O, O
                                                                                                             b
                                                                                                             <
         M(.3, .2, -.1) =e-.'M(-.l, .2, .l)                  and lal>lbl, z>O, or ii) b    a
                                                                                           <,  b<O, Ib--al>lbl,
                                                             z<O, when the oscillations may become large,
                         =.85784 90.                         especially if II also is large.
                                                                            z
Thus 13.127 can be used to extend Table 13.1 to                 Neither interpolation nor the use of recurrence
negative values of z Kummer's transformation
                      .                                      relations should be attempted in the strips
should also be used when a and b are large and               b=-nf.1 where the function is very large nu-
nearly equal, for z large or small.                          merically. In particular M(a, b, z) cannot be
  Example2. Compute M(17, 16, 1) to 7s.                      evaluated in the neighborhood of the points
Here a=17, b=16, and                                         a=-m, b=-n, m j n , as near these points
          M(17, 16, l)=elM(-l, 16, -1)                       small changes in a, b or z can produce very large
                                                             changes in the numerical value of M(a, b, z).
                      =2.71828 18X1.06250 00
                                                                Example 4. At the point (- 1, -1, z),M(u, b, z)
                      =2.88817 44.                           is undefined.
                R e c u r r m a Relations                                                    2
                                                             When a=-1, M(-1, b, z)=l-afor all 2.
  Example 3. Compute M(--1.3, 1.2, .l) to 7 .
                                           s
Using 13.4.1 and Table 13.1 we have a=-.3,                   Hence lim M(-1, b,z)=l +z. ButM(b,b,z)=e)
                                                                    b+-1
b=.2 so that                                                 for all z when a=b. .Hence lim M(b, 6, z)=&.
                                                                      ,
                                                                                                b+-1
M(-1.3, .2, .1)=2[.7 M(-.3, .2, .1) -.3 M(.7, .2, .l)]       In the first case b+- 1 along the line a=-1, and
               =.35821 23.                                   in the second case b+-1 along the line a=b.
By 13.4.5 when a=-1.3 and b= .2,                                                  Derivatives
M(-1.3,1.2, .1)=[.26 M(--3, .2, .l)                            Example 5. To evaluate M'(-.7, -.6, .5) to
                      -.24 M(--1.3, .2, .1)]/.15             7s. By 13.4.8, when a= -.7 and b= -.6, we have
                =A9241 08.                                                               -.7
                                                                    M'(-.7,    -.6, .5)=-    M(.3, .4, .5)
                                                                                         -.6
Similarly when a=-.3 and b= .2
                                                                                       =1.724128.
            M(-.3, 1.2, .1)=.97459 52.
                                                                              Asymptotic Formulas
Check, by 13.4.6,
                                                               For ~ 2 1 0 a and b small, M(a, b, z) should be
                                                                           ,
M(-1.3, 1.2, .1)=[.2 M(-.3, .2, .l)                          evaluated by 13.5.1 using converging factors
                      4-1.2 M(-.3, 1.2, .1)]/1.5             13.5.3 and 13.5.4 to improve the accuracy if
                 =A9241 08.                                  necessary.
512                               CONFLUENT HYPERGEOMETRIC FUNCTIONS

  Example 6. Calculate M(.9, .l, 10) to 7S,            Hence
using 13.5.1.                                              U(.1, .2, 1) =5.344799(.371765-.194486)
                                                                        = .94752.
                                                       Similarly
                                                                     U(-.9, .2, 1)=.91272.
                                                       Hence by 13.4.15
          =-.198(.869) +1237253(.99190 285)              U(l.1, 2, l)=[U(.l, .2, l)-U(-.9,         .2, 1)]/.09
                                         + O(1)                      = .38664.
          = 1227235.23- .17 +O(1)
          = 1227235+0(1)                                 Example 10. To compute U'(-.9, - . 8 , 1) to
                                                       5s. By 13.4.21
Check, from Table 13.1, M(.9, .l, 10)=1227235.
To evaluate M(a, b, z) with a large, z small and b                U'(-.9, -.8, 1)=.9U(.1, .2, 1)
small or large 13.5.13-14 should be used.                                        = (.9)(.94752)
  Example7. Compute M(-52.5, .l, 1) to 3s,                                       =.85276.
using 13.5.14.                                                            Asymptotic Formulae
M(-52.5, .l, 1) = r(.l)e-'(.05+52.5).25-.M               Example 11. To compute U(1, .l, 100) to 5s.
       .5642 COS [(.2-4( -52.5)) . I - .05r+ .254      By 13.5.2
              11 +0((.05+52.5)-a6)]= -16.34+0(.2)                      1       19 1929
                                                       U(1, .l, 100)=i&j{l-:+:
By direct application of a recurrence relation,                                100 100100
M(-52.5, .l, 1) has been calculated as -16.447.
To evaluate M(a, b, z) with z, a and/or b large,
13.5.17,19 or 21 should be tried.
  Example8. Compute M(-52.5, .1, 1) using                              =.01{1-.019+.000551-.000021
13.5.21 to 3s, COS e2
                   =4
                    .
                    '                                                                         +0(10-9)       1,
                                                                       =.00981 53.
M(-52.5, .l, 1)
                                                          Example 12. To evaluate V(.l, .2, .01). For
        -r(.l)e*oJ.l 1105.1 COS 8J1-.*.5641
        -         coa2e
                                                       z small, 13.5.612 should be used.
                       52.55-1 sin 28-1[& (-52.5~)
                                                                                r (1 -.2)
                      +sin (52.55(2e-~in 2e)+tr)             U(.l, .2, .Ol)=
                                                                               r (1.1 -.2) +O((.01)1- -7
                   + O((52.55)-')]= -16.47-t O(.02)
                                                                            =-+O(      (.01)-7
  A full range of asymptotic formulas to cover all                            U.9)
possible cases is not yet known.                                            =1.09 to 3S, by 13.5.10.
                Calculation of U(a, b, x)
                                                          To evaluate U(u, b, z) with a large, z small and
  For - 1 0 5 ~ 5 1 0 , - 1 0 5 ~ 5 1 0 , -105b510     b small or large 13.5.15 or 16 should be used.
this is possible by 13.1.3, using Table 13.1 and the      To evaluate V(a, b, z) with z, a and/or b large
recurrence relations 13.4.15-20.                       13.5.18, 20 or 22 should be tried. In all these
  Example 9. Compute U(l.1, .2, 1) to 5s.              cases the size of the remainder term is the guide to
Using Tables 13.1, 4.12 and 6.1 and 13.1.3, we         the number of significant figures obtainable.
have
                                                               Calculation of the Whittaker Functiona
U(.1, .2, 1)=
                                                         Example 13. Compute M.o.-.4(l) W.o,-.4(1)
                                                                                     and
                                                       to 5s. By formulas 13.1.32 and 13.1.33 and
                                                       Tables 13.1, 4.4
But M(.9, 1.8, 1)=.8[M(.9, . 8 ,l)-M(-.l,    .8, l)]         -44.0,   -.,(l) =e-,'M(.l, .2, 1)=1.10622,
                 = 1.72329, using 13.4.4.                     W.o.-.,(1) =e-.(U( .1, .2, 1) = .57469.
Thus the values of M..,(z) and W d z ) can              x;=x;
                                                              [l-     M‘(-3,.6,Xi)
always be found if the values of M(a, b, z) and                      -3M(-3, .6, Xi)1
U(a, b, z) are known.                                        =Xi [I-M(-2,1.6,   Xi)/.6M(-3, .6,Xi)]
13.9. Calculation of Zeros and Turning Points                =.9715)<1.0163=.9873 to 4s.
  Ex-Ple    14. a m p u b the smallest POsitive         This process can be repeated to give as many
zero of M(-4, . 6 , ~ > .This is outside the range of   significant figures as are required.
Table 13.2. Using 13.7.2 we have, as a first
approximation




If we repeat this calculation, we find that
                                                                         FIGURE13.1.
      X2=X1+.00002 99=.17852 99 to 7s.
                                                       Figure 13.1 shows the curves on which M(a, 6, z)
         Calculation of Marima and Minima            =O in the a, b plane when z=1. The function is
                                                    positive in the unshaded areas, and negative in the
   Examp1e15* Compute the va1ue Of z at which
                                                    shaded areas. The number in each square gives
M(-1.8’-*2’z) a turningvalue’ Using13*4*8
                has
                                                    the number of real positive zeros of &&, b, z) as a
and Table 13.2, we find that M’(-1.8, -.2,2)
                                                    function of z in that square. The vertical
=9M(-.8, . 8 , z)=O when x=.94291 59.
                                                    boundaries to the left are to be included in each
Also M”(-1.8, -.2, z)=9M’(-.8, .8, 2)’
                                                    square.
-9M(.2, 1.8, z) and M(.2, 1.8, .94291 59)>0.
                                                                 13.10. Graphing M(a, b, x)
Hence M(--1.8, -.2, z) has a maximum in z when
~=.94291  59.                                          Example 17. Sketch M(-4.5, 1, z). Firstly,
  Example 16. Compute the smallest positive         from Figure 13.1 we see that the function has
value of x for which M(-3, .6, z) has a turning     five real positive zeros. From 13.5.1, we find
value, Xi. This is outside the range of Table 13.2. that M+- m , M’+- m as x++ m and that
Using 13.4.8 we have                                M++m, M’++m as z+--.                 By 13.7.2 we
                                                    have 6s first approximationsto the zeros, .3,1.5,3.7,
      M’(-3, .6, ~)=-3M(-2, 1.6, ~)/.6.             6.9, 10.6, and by 13.7.2 and 13.4.8 we find as first
                                                    approximations to the turning values .9, 2.8, 5.8,
By 13.7.2 for M(-2, 1.6, z),                        9.9. From 13.7.7, we see that these must lie near
           X =(1.0!k)2/(11.2)= .9715.
             o                                      the curvea
                                                                 y = f eN(54-t (1 -dl l)%-+.
Thisisafirst approximationto XiforM(-3, .6,z).
Using 13.7.5 and 13.4.8 we find a second approxi-       From these facts we can form a rough graph of
mation                                                  the behavior of the function, Figure 13.2.
514                                    CONFLUENT HYPERGEOMETRIC F"Cl'I0NS




               FIQUF~E
                    13.2. M(-4.5,          1,   2.
                                                 )
(From F.   Gb2d?'ri, R~m$d;~y&~*&~o~l*
                                 Edblonl.




                                                                                   FIQUBE
                                                                                        13.4. M(a, .5,             2.
                                                                                                                    )
                                                                   (Ffom E. J8hnke cmd F. Emde Table8 of hmctlons Dover Publlcatknu,
                                                                              Inc, New York, fi.Y., 1945, with p m b l o n . )

                                                                                           References
                                                                                                 Tcxts
                                                                    [13.11 H. Buchholz, Die konfluente hypergeometrische
                                                                              Funktion (Springer-Verlag, Berlin, Germany,
                                                                              1953). On Whittaker functions, with a large
                                                                              bibliography.
                                                                    (13.21 A. Erdelyi et al., Higher transcendental functions,
                                                                              vol. 1, ch. 6 (McGraw-Hill Book Co., Inc., N e w
                                                                              York, N.Y., 1953). On Kummer functions.
                                                                    [13.3] H. Jeffreys and B. 5. Jeffreys, Methods of mathe-
                                                                              matical physics, ch. 23 (Cambridge Univ. P,  -
                                                                              Cambridge; England, 1950). On Kummer
                                                                              functions.
                                                                    [13.4] J. C. P. Miller, Note on the general solutions of the
                                                                              confluenthypergeometric equation, Math. Tablea
                                                                              Aids Comp. 9,97-99 (1957).
                FIQWE13.3. M(o, 1, z).                              113.61 L. J. Slater, On the evaluation of the confluent
                                                                              hypergeometric function, Proc. Cambridge
(prom E. Jahnke and F Emde Tables of function& Dover Publlatkxu.
            ha., New York, &.Y, lM6, with pemmbsbm.)                          Philoe. Soc. 49, 612-622 (1953).
CONFLUENT HYPERQEOMETBIC FUNCNONS                                                     515
 [13.6] L. J. Slater, The evaluation of the basic confluent   (13.121 J. R. Airey and H. A. Webb, The practical impor-
          hypergeometric function, Proc. Cambridge                       tance of the confluent hypergeometric function,
          Philos. Soc. 50, 404-413 (1954).                               Phil. Mag. 36, 129-141 (1918). M(a, b, z),
 [13.7] L. J. Slater, The real mros of the confluent hyper-              ~=-3(.5)4, b=1(1)7, z=1(1)6(2)10, 45.
          geometric function, Proc. Cambridge Philos.         (13.131 E. Jahnke and F. Emde, Tables of functions, ch. 10,
          Soc. 52, 626-635 (1956).                                       4th ed. (Dover Publications, Inc., New York,
 [13.8] C. A. Swanson and A. Erdhlyi, Asymptotic forms                   N.Y., 1945). Graphs of M(a, b, z) based on the
          of confluent hypergeometric functions, Memoir                  tables of [13.11].
          25, Amer. Math. S o c .(1957).                      [13.14] P. Nath, Confluent hypergeometric functions,
 [13.9] F. G. Tricomi, Funeioni ipergeometriche confluenti               Sankhya J. Indian Statist. Soc. 11, 153-166
          (Edizioni Cremonese, Rome, Italy, 1954). On                    (1951). M(u, b, z), a=1(1)40, b=3,2=.02(.02)
          Kummer functions.                                              .1(.1)1(1)10(10)50, 100, 200, 6D.
[13.10] E. T. Whittaker and G. N. Watson, A course of         [13.15] 8. Rushton and E. D. Lang, Tables of the confluent
          modern analysis, ch. 16, 4tb ed. (Cembridge                   hypergeometric function, Sankhye J, Indian Statist.
          Univ. Press, Cambridge, England, 1952). On                     So c. 369-411 (1954). M(a, b, Z) , a=.5(.5)40,
                                                                              13,
          Whittaker functions.                                           b= .5(.5)3.5, Z= .02 (.02).1 (.1) 1 (1) 10(10)50, 100,
                                                                         200, 7s.
                         T d h                                [13.16] L. J. Slater, Confluent hypergeometric functions
                                                                         (Cambridge Univ. Preas, Cambridge, England,
[13.11] J. R. Airey, The confluent hypergeometricfunction,               1960). M(u, b, z), ~ = - l ( . l ) l , b=.l(.l)l,
           British Association Reports, Oxford, 276-294                  ~=.l(.l)lO, 8s; M(u, b, l), ~=-11(.2)2,
           (1926), and Lee&, 220-244 (1927). M(a, b, z),                 b= -4(.2) 1, 85; and smallest positive values of
           ~=-4(.5)4, a=*, 1, 3, 2, 3, 4, ~=.1(.1)2(.2)3                 z for which Mfa, b, z)=O, a=-4(.1)-.l,
           (.5)8, 5D.                                                    b=.1(.1)2.5, 8s.

More Related Content

What's hot

Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementation
Jongsu "Liam" Kim
 
[Electricity and Magnetism] Electrodynamics
[Electricity and Magnetism] Electrodynamics[Electricity and Magnetism] Electrodynamics
[Electricity and Magnetism] Electrodynamics
Manmohan Dash
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
gregthom992
 
Dirac – Delta Function
Dirac – Delta FunctionDirac – Delta Function
Dirac – Delta Function
Mayur Sangole
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
harshid panchal
 
Questoes resolvidas exame unificado de fisica 2015 1
Questoes resolvidas exame unificado de fisica 2015 1Questoes resolvidas exame unificado de fisica 2015 1
Questoes resolvidas exame unificado de fisica 2015 1
17535069649
 
4.2 damped harmonic motion
4.2 damped harmonic motion4.2 damped harmonic motion
4.2 damped harmonic motion
JohnPaul Kennedy
 
Trapezoidal Method IN Numerical Analysis
Trapezoidal Method IN  Numerical AnalysisTrapezoidal Method IN  Numerical Analysis
Trapezoidal Method IN Numerical Analysis
Mostafijur Rahman
 
Complex Analysis - A First Course with Applications 3e by Dennis Zill and Pat...
Complex Analysis - A First Course with Applications 3e by Dennis Zill and Pat...Complex Analysis - A First Course with Applications 3e by Dennis Zill and Pat...
Complex Analysis - A First Course with Applications 3e by Dennis Zill and Pat...
Kimomuri
 
ELECTROMAGNETICS: Laplace’s and poisson’s equation
ELECTROMAGNETICS: Laplace’s and poisson’s equationELECTROMAGNETICS: Laplace’s and poisson’s equation
ELECTROMAGNETICS: Laplace’s and poisson’s equation
ShivangiSingh241
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qmAnda Tywabi
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
Jaydev Kishnani
 
Kvadratna funkcija - Nevena Alavuk
Kvadratna funkcija - Nevena AlavukKvadratna funkcija - Nevena Alavuk
Kvadratna funkcija - Nevena Alavukmilenajeretin
 
Topic 1 shm
Topic 1 shmTopic 1 shm
Topic 1 shm
Gabriel O'Brien
 
Linear vector space
Linear vector spaceLinear vector space
Linear vector space
Safiya Amer
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | Nullity
Vishvesh Jasani
 
Density operators
Density operatorsDensity operators
Density operatorswtyru1989
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
math266
 

What's hot (20)

Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementation
 
[Electricity and Magnetism] Electrodynamics
[Electricity and Magnetism] Electrodynamics[Electricity and Magnetism] Electrodynamics
[Electricity and Magnetism] Electrodynamics
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 
Dirac – Delta Function
Dirac – Delta FunctionDirac – Delta Function
Dirac – Delta Function
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
Questoes resolvidas exame unificado de fisica 2015 1
Questoes resolvidas exame unificado de fisica 2015 1Questoes resolvidas exame unificado de fisica 2015 1
Questoes resolvidas exame unificado de fisica 2015 1
 
4.2 damped harmonic motion
4.2 damped harmonic motion4.2 damped harmonic motion
4.2 damped harmonic motion
 
Trapezoidal Method IN Numerical Analysis
Trapezoidal Method IN  Numerical AnalysisTrapezoidal Method IN  Numerical Analysis
Trapezoidal Method IN Numerical Analysis
 
Complex Analysis - A First Course with Applications 3e by Dennis Zill and Pat...
Complex Analysis - A First Course with Applications 3e by Dennis Zill and Pat...Complex Analysis - A First Course with Applications 3e by Dennis Zill and Pat...
Complex Analysis - A First Course with Applications 3e by Dennis Zill and Pat...
 
ELECTROMAGNETICS: Laplace’s and poisson’s equation
ELECTROMAGNETICS: Laplace’s and poisson’s equationELECTROMAGNETICS: Laplace’s and poisson’s equation
ELECTROMAGNETICS: Laplace’s and poisson’s equation
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Kvadratna funkcija - Nevena Alavuk
Kvadratna funkcija - Nevena AlavukKvadratna funkcija - Nevena Alavuk
Kvadratna funkcija - Nevena Alavuk
 
Atom hidrogen
Atom hidrogenAtom hidrogen
Atom hidrogen
 
Topic 1 shm
Topic 1 shmTopic 1 shm
Topic 1 shm
 
Linear vector space
Linear vector spaceLinear vector space
Linear vector space
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | Nullity
 
Density operators
Density operatorsDensity operators
Density operators
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 

Similar to Confluent hypergeometricfunctions

Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh Parameterization
Gabriel Peyré
 
Bernoulli eulerriemannzeta
Bernoulli eulerriemannzetaBernoulli eulerriemannzeta
Bernoulli eulerriemannzeta
Chumphol Mahattanakul
 
Group 3 QUIZ PT E-tech_031604.pptx
Group 3 QUIZ PT E-tech_031604.pptxGroup 3 QUIZ PT E-tech_031604.pptx
Group 3 QUIZ PT E-tech_031604.pptx
JayaTindugan
 
Maths chapter wise Important questions
Maths chapter wise Important questionsMaths chapter wise Important questions
Maths chapter wise Important questions
Srikanth KS
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.pptOsama Tahir
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanicsSpringer
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2eSpringer
 
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdfproblems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf
ShivamSharma340355
 
Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij (Stepan Douplii)
 
Bessel functionsoffractionalorder1
Bessel functionsoffractionalorder1Bessel functionsoffractionalorder1
Bessel functionsoffractionalorder1
Chumphol Mahattanakul
 
Icuc1
Icuc1Icuc1
Icuc1epfl
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
Mohammed Waris Senan
 
Numerical Analysis Assignment Help
Numerical Analysis Assignment HelpNumerical Analysis Assignment Help
Numerical Analysis Assignment Help
Math Homework Solver
 
Root locus analysis
Root locus analysisRoot locus analysis
Root locus analysisTarun Gehlot
 
Inverses & One-to-One
Inverses & One-to-OneInverses & One-to-One
Inverses & One-to-Oneaabdel96
 
Pre-Cal 40S March 3, 2009
Pre-Cal 40S March 3, 2009Pre-Cal 40S March 3, 2009
Pre-Cal 40S March 3, 2009
Darren Kuropatwa
 
Lesson 9: Parametric Surfaces
Lesson 9: Parametric SurfacesLesson 9: Parametric Surfaces
Lesson 9: Parametric Surfaces
Matthew Leingang
 
Maximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings
Maximizing a Nonnegative, Monotone, Submodular Function Constrained to MatchingsMaximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings
Maximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchingssagark4
 

Similar to Confluent hypergeometricfunctions (20)

Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh Parameterization
 
Bernoulli eulerriemannzeta
Bernoulli eulerriemannzetaBernoulli eulerriemannzeta
Bernoulli eulerriemannzeta
 
Group 3 QUIZ PT E-tech_031604.pptx
Group 3 QUIZ PT E-tech_031604.pptxGroup 3 QUIZ PT E-tech_031604.pptx
Group 3 QUIZ PT E-tech_031604.pptx
 
Maths chapter wise Important questions
Maths chapter wise Important questionsMaths chapter wise Important questions
Maths chapter wise Important questions
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanics
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2e
 
Relations
RelationsRelations
Relations
 
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdfproblems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf
problems-and-exercises-in-integral-equations-krasnov-kiselev-makarenko.pdf
 
Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"
 
Bessel functionsoffractionalorder1
Bessel functionsoffractionalorder1Bessel functionsoffractionalorder1
Bessel functionsoffractionalorder1
 
Icuc1
Icuc1Icuc1
Icuc1
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
 
Functions (Theory)
Functions (Theory)Functions (Theory)
Functions (Theory)
 
Numerical Analysis Assignment Help
Numerical Analysis Assignment HelpNumerical Analysis Assignment Help
Numerical Analysis Assignment Help
 
Root locus analysis
Root locus analysisRoot locus analysis
Root locus analysis
 
Inverses & One-to-One
Inverses & One-to-OneInverses & One-to-One
Inverses & One-to-One
 
Pre-Cal 40S March 3, 2009
Pre-Cal 40S March 3, 2009Pre-Cal 40S March 3, 2009
Pre-Cal 40S March 3, 2009
 
Lesson 9: Parametric Surfaces
Lesson 9: Parametric SurfacesLesson 9: Parametric Surfaces
Lesson 9: Parametric Surfaces
 
Maximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings
Maximizing a Nonnegative, Monotone, Submodular Function Constrained to MatchingsMaximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings
Maximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings
 

More from Chumphol Mahattanakul

Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
Chumphol Mahattanakul
 
Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
Chumphol Mahattanakul
 
Ip aspects of valuation malaysia
Ip aspects of valuation malaysiaIp aspects of valuation malaysia
Ip aspects of valuation malaysia
Chumphol Mahattanakul
 
Ip valuation presentation
Ip valuation presentationIp valuation presentation
Ip valuation presentation
Chumphol Mahattanakul
 
A riddle of liquidity and interest rate public
A riddle of liquidity and interest rate publicA riddle of liquidity and interest rate public
A riddle of liquidity and interest rate publicChumphol Mahattanakul
 

More from Chumphol Mahattanakul (11)

Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
 
Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
 
Ip aspects of valuation malaysia
Ip aspects of valuation malaysiaIp aspects of valuation malaysia
Ip aspects of valuation malaysia
 
Textile syllabus tu rangsit
Textile syllabus tu rangsitTextile syllabus tu rangsit
Textile syllabus tu rangsit
 
Ip valuation presentation
Ip valuation presentationIp valuation presentation
Ip valuation presentation
 
A riddle of liquidity and interest rate public
A riddle of liquidity and interest rate publicA riddle of liquidity and interest rate public
A riddle of liquidity and interest rate public
 
Combinatorial analysis
Combinatorial analysisCombinatorial analysis
Combinatorial analysis
 
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
 
Cosmetics0290 09
Cosmetics0290 09Cosmetics0290 09
Cosmetics0290 09
 
M3
M3M3
M3
 
M3
M3M3
M3
 

Recently uploaded

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Aficamten in HCM (SEQUOIA HCM TRIAL 2024)
Aficamten in HCM (SEQUOIA HCM TRIAL 2024)Aficamten in HCM (SEQUOIA HCM TRIAL 2024)
Aficamten in HCM (SEQUOIA HCM TRIAL 2024)
Ashish Kohli
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Assignment_4_ArianaBusciglio Marvel(1).docx
Assignment_4_ArianaBusciglio Marvel(1).docxAssignment_4_ArianaBusciglio Marvel(1).docx
Assignment_4_ArianaBusciglio Marvel(1).docx
ArianaBusciglio
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
Delivering Micro-Credentials in Technical and Vocational Education and Training
Delivering Micro-Credentials in Technical and Vocational Education and TrainingDelivering Micro-Credentials in Technical and Vocational Education and Training
Delivering Micro-Credentials in Technical and Vocational Education and Training
AG2 Design
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
Bisnar Chase Personal Injury Attorneys
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 

Recently uploaded (20)

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Aficamten in HCM (SEQUOIA HCM TRIAL 2024)
Aficamten in HCM (SEQUOIA HCM TRIAL 2024)Aficamten in HCM (SEQUOIA HCM TRIAL 2024)
Aficamten in HCM (SEQUOIA HCM TRIAL 2024)
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Assignment_4_ArianaBusciglio Marvel(1).docx
Assignment_4_ArianaBusciglio Marvel(1).docxAssignment_4_ArianaBusciglio Marvel(1).docx
Assignment_4_ArianaBusciglio Marvel(1).docx
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
Delivering Micro-Credentials in Technical and Vocational Education and Training
Delivering Micro-Credentials in Technical and Vocational Education and TrainingDelivering Micro-Credentials in Technical and Vocational Education and Training
Delivering Micro-Credentials in Technical and Vocational Education and Training
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 

Confluent hypergeometricfunctions

  • 1. 13. Confluent Hypergeometric Functions LUCY JOAN SLATEB' Contents Page Mathematical Properties . . . . . . . . . . . . . . . . . . . 504 13.1. Definitions of Kummer and Whittaker Functions . . . . . 504 13.2. Integral Representations . . . . . . . . . . . . . . . 505 13.3. Connections With Bessel Functions . . . . . . . . . . . 506 13.4. Rkcurrence Relations and DifTerential Properties . . . . . 506 13.5. Asymptotic Expansions and Limiting Forms . . . . . . . 508 13.6. Special Cases . . . . . . . . . . . . . . . . . . . . 509 13.7. Zeros and Turning Values . . . . . . . . . . . . . . . 510 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . 511 13.8. Use and Extension of the Tables . . . . . . . . . . . . 511 13.9. Calculation of Zeros and Turning Points . . . . . . . . . 513 13.10. Graphing M(a. b. z) . . . . . . . . . . . . . . . . . . 513 References . . . . . . . . . . . . . . . . . . . . . . . . . . 514 Table 13.1. Confluent Hypergeometric Function M(a. b. z) . . . . . 516 Z= . l(.1) l(1) 10. a= -1 (. 1)l. b= . 1 (.l)l, 8s Table 13.2. Zeros of M(u. b. z) . . . . . . . . . . . . . . . . . . 535 ~=-1(.1)-.1, b=.I(.l)I, 7D The tables were calculated by the author on the electronic calculator EDSACI in the Mathematical Laboratory of Cambridge University. by kind permission of its director. Dr . hl . V . Wilkes. The table of M(a. b. 2) was recomputed by Alfred E . Beam for uniformity to eight significant figures. * University Mathematical Laboratory. Cambridge. (Prepared under contract with the N a t i O d Bureau O StaIldlUdS.) f
  • 2. 13. Confluent Hypergeometric Functions Mathematical Properties 13.1. Definitions of Kummer and Whittaker U(a, b, z) is a many-valued function. Its princi- Functions pal branch is given by -rag <r z 5 r. Kummer's Equation Logarithmic Solution 13.1.6 ?+bz ! ( -) dw --uw=o 13.1.1 dZ dz It has aregular singularity at z=O and an irregular singularity at m . (?I-l)! - Independent solutions are +- z "M(a-n, 1-n, 2)" (a) I? Kummer's Function for n=OJ 1, 2, . . ., where the last function is the 13.1.2 sum to n terms. It is to be interpreted as zero when n=O, and ~(a)=I"(a)/I?(a). 13.1.7 U(a, 1-n, z)=z"U(a+q., l+n, z) where As 9 z + m ( u ) ~ = u ( u + ~ ) ( u +.~.)(u+n-1), (u)~=I, . 13.1.8 U(a, b, z)=z-"[l+O(l~J-')] and Analytic Continuation 13.1.3 13.1.9 U(a, b, ze*")=- ?r sin ?rb e-' ' M(b-a, b, Z) (1 +a- b) r (b) I? -efrf(l-B) z1-b M(1-a,2--bJ Z) r (a)r (2- b) 1 Parameters (m, n positive integers) M(a, b, 4 where either upper or lower signs are to be taken b#-n a#-m a convergent series for throughout. all values of a, b and z b#-n a=-m a polynomial of degree m 13.1.10 in2 b=-n a#-m b=-n a=-m, a simple pole at b=-n +e-hfbRU(u, z) b, m>n Alternative Notations b=-n a=-m, undefined IFl(a;b; z) or @(a;b; z) for M(a, b, z) m5n z-"2Fo(a,+a-b; ;- l/z) or *(a; b; z) for V(a, b, z) 1 U(a, b, z) is defined even when b+fn As 1 2 1 + m J Complete Solution 13.1.4 13.1.11 p=AM(a, b, z)+BU(a, b, Z) M(a, b, z)=m r (a)e'z"-b[l+O(lzl-l)] (9z>O) where A and B are arbitrary constants, b#-n. Eight Solutions and b, 13.1.12 ~,=M(u, Z) 13.1.5 13.1.13 ys=zl-bM(l+a-b, 2-b, Z) 13.1.14 y,=ezM(b--a, b, -2)
  • 3. CONFLUENT HYPERGEOMETRIC FUNCTIONS 505 13.1.15 y4=z1-bezM(1--a,2-b, -2) 13.1.34 13.1.17 ~ s = ~ ' - ~ U ( l + a - b , 2-b, Z) General Confluent Equation 13.1.18 y,=e'U(b--a, b, -2) 13.1.35 13.1.19 y,=zl-bezU(l--a, 2-4 w"+[ 2A bh' -+2j'+--h'-77 h" ]w' -2) z h WmIMkianS h" A(A-1) If W{m, n} =y,y~--y,,y& and t=sgn ( J z ) = l if .fz>o, =-1 if Y Z l O 13.1.20 Sohtions: W{1, 2}=W{3,4}=W{l,4}=-W{2, 3) 13.1.36 Z-Ae-f(z)M(a,b, h(Z)) = (1 4 ) z - bez 13.1.21 13.1.37 Z-Ae-f")U(a, b, h(Z)) W{1, 3}=W{2,4}=W{5, 6}=W{7,8}=0 13.2. Integral Representations 13.1.22 W{1, 5)=-r(b)~-~e~/r(a) 9b>Wa>O 13.2.1 13.1.23 W{1, 7)= r(b)e"~*~-~e~/r(b--a) 13J.24 } W{2, 5) = -r(2 -b)z- "*/r(+a- 3) 13.1.25 W{2, 7 = -r(2 -b)z- bez/r( 13.1.26 W(5, 7}=e"f(b-a'-* e z 1 1 -a) Kummer Transformations 13.2.2 13.1.27 M(a, b, z)=e'M(b--a, b, -2) 13.1.28 13.2.3 ~'-~M(l+a-b, 2-4 z)=zl-*ezM(l-u, 2-b, -2) 13.1.29 U(a, b, 2)=z1-*U(l+a-6, 2 1 6 , Z) 13.2.4 13.1.30 Whittaker's Equation 13.1.31 %+I-,+-+ 1 K (t-r')],=, zz Solutions: 13.2.6 Whittaker's Functions 13.1.32 Mg,,(z)=e-+'z++,M(3+p-N, 1+2p, Z) 13.1.33 13.2.7 Wg.,(Z)=e-W+W( 3+p--K, 1 +2p, 2) (-r<arg ZIT,~ - up=+b-i) N=+ ,
  • 4. 506 CONFLUENT HYPERGEOMETRIC FmycmoN8 13.3.7 13.2.8 r (a)~ ( a ,Z) b, = eAzJAm e-z,(,-A)a-'(t+B)b-a-l~t (A=l-B) Smlr integrals for ME,&) and W#,,,(z) can iia be deduced with the help of ..13.1.32'and 13.1.33. Barnes-typeContour Integrals 13.2.9 for larg (-z)l<)r, a, b#O, -1, -2, . . . . The contour must separate the poles of I'(-s) from those of r(a+s); c is finite. =e& 3 C"z"(-~2)'"-"")~b--l+n(2~(--az)) m n- 13.2.10 where r(a)r(i+a-b)z"u(a, b, Z) 1 c+im Co=l, c,= -bh, c,=-)(2h-l)a+ib(b+l)hZ, -- r(-8)r(~+~)r(i+a-b+s)z-*ds -2d L-t m (n+l)Cs+l= (1 -2h)n--bhJC, [ 3r +[(1 -2h)a -h(h -1) (b +n- 1)]Cn-1 for larg z1<2, a#O, -1, -2, . . ., b - a f l , 2, -h(h- l)aC,-2 (h real) 3, . . . . The contour must separate the poles of r(--s) from those of r(a+s) and r(l+a-b+s). 13.3. Connections With b e e l Functions where (see chapters 9 and 10) c,=1, C,(a, b)=2a/b, Beace1 Functiom M LIrniti- caseo Cn+da, b)=2aC,(a+l, b+l)/b-Cs-,(a, b) If b and z are fixed, 13.4. Recurrence Relations and Merentid Properties 13.3.1 h { M ( ab, z/a)/r(b)} ~ =2*-'1)-1(2m a+- 13.4.1 13.3.2 lim {M(a,b,-z/a)/r(b)} =z4-'Jb-1(21/z) (b-a)M(a-1, b, z)+(2a-b+z)M(a, b, 2) a+- 13.3.3 -aM(a+l, b, z)=O b {r(l+a-b) U(a, b, z/a)}=2z4-'&-1(2a 13.4.2 a+- b(b-l)M(a, b-1, z)+b(l-b-z)M(a, b, 2) 13.3.4 +z(b-a)M(a, b+l, z)=O lim{l"(l+a-b)U(a, b, -z/a)} 13.4.3 a+- = --xieTibz4-4bH$1(2~ (./z>O) (l+a-b)M(a, b, 2)-aM(u+l, b, 2) 13.3.5 -,,.ie-rib&+bHC21 - b-1(2&) O( )z <J +(b-l)M(a, b-1, z)=O in Seriem E S ~ I ~ O M 13.4.4 13.3.6 bM(a, b, 2)-bM(a-1, b, 2)-zM(a, b + l , z)=O M(a, b, z)=e**r(b-~-))(tz)"-~++ 13.4.5 b(a+z)M(a, b, z)+z(a-b)Ai(a, b+l, 2) --abM(a+l, b, z)=O
  • 5. { CONFLUENT HYPERGEOMETRIC FUNCTIONS 507 13.4.6 13.4.19 (a+z)U(a, b, z)-zU(a, b+l, z) (a-l+z)M(a, b, z)+(b-a)M(a-l, b, 2) +(1-b)M(a, b-1, z)=O +a@-a-l)U(a+l, b, 2)=0 13.4.20 13.4.7 (a+z-l)U(a, b, 2)-U(a-1, b, z) b(l-b+z)M(a, b, z)+b(b-l)M(a-1, b-1, Pi +(l+a-b)U(a, b-1, z)=O -azM(a+l, b + l , z)=O 13.4.21 U'(U, b, z)=-aU(a+l, b+l, Z) 13.4.22 13.4.9 d" - M(a, b, dz" Z) } (a)"M(a+n, b+n, 2) 13.4.23 13.4.10 aM(a+l, b, z)=aM(~, z)+zM'(a, b, b, Z) a(l+a-b)U(a+l, b, z)=aU(a, b, 2) +zU'@, b, 2) 13.4.11 13.4.24 (b-a)M(a-1, b, z)=(b-a-z)M(a, b, 2) (l+a-b)U(a, b-1, z)=(l-b)U(a, b, 2) +zM'(a, b, 4 -zU'(a, b, 2) 13.4.12 13.4.25 U(a, b + l J z)=U(U,b, z)-U'(U, b, Z) (b-a)M(a, b + l , z)=bM(a, b, z)-bM'(a, b, 2) 13.4.26 13.4.13 U(a-1, b, z)=(a-b+z)U(a, b, z)-zU'(a, b, 2) (b-l)M(a, 6-1, z)=(b-l)M(a, b, 2) 13.4.27 +zM'(a, bJ z , U(u-1, b-1, z)=(l--b+z)U(a, b, 2) 13.4.14 -zU'(a, b, 2) (b-l)M(u-l, 6-1, z)=(b-1-z)M(a, b, 2) +zM'(aJ bJ z, 13.4.15 U(a-1, b, z)+(b-2a-z)U(a, b, 2) +a(l+a-b)U(a+l, b, z)=O 13.4.16 (b--a-l)U(fZ, b-1, z)+(l-b-z)U(a, b, 2) +zU(a, b+l, z)=O 13.4.11 U(a, b, 2)-aU(a+l, b, 2)-U(a, b-1, z)=O 13.4.18 (b-a) U(a, b, 2) + U(a- 1, b, 2) -zU(a, b + l , z)=O
  • 6. 508 C0"T HYPEBGEOMETIUC FUNCI'IONS 13.5.11 (b=O) 13.5.12 a ~LS 4-m for b bounded, z real. where u ie defined in 13.5.13. aa a+-- for b bounded, x rad. For large real a, b x , If cdah' 6 = ~ / ( 2 b - 4 ~ ) 80 that ~>2b-U>l,
  • 7. 13.5.19 13.5.20 { Z-2b-4~ U(a, b, z)=e+=+"-+T(+) T-+&-* CONFLUENT HYPERGEOMETRIC F"CM0NB If z= (2b-&)[l+t/(b--2a)~], so that M(a, b, z)=e+=(b-2a)'-Or(b)[Ai(t) cos (UT) +Bi(t) sin (UT) +O(I4b-a I-*)] i--tr(~)(bz--2az)-13f~-f+O(l~--al-i)} If cos*f?=z/(2b-4~) that 2b--4a>z>O, so I 13.5.21 13.5.22 U(U,b, ~)=exp 13.6. SpeCi.1 Casea [(b-24 { M(a, b, z)= r(b) exp (b-24 COS* e} [(b-2~) COSe]'-'[~($b-u) sin m]-+ [sin (ad+sin (+-a) (2e-sin 2e) +ir) C O S ~ B ] [ ( ~ - ~ U ) COS [(3b-U) sin 2e)-*{sin[($&a) (20- sin 26)+ t TI + O(l 3b--al-') 1 509 el1-* Relation Function 13.6.1 BeeSel 13.6.2 &See1 13.6.3 Modified Bessel 13.6.4 Spherical Besael 13.6.5 Spherical Besael 13.6.6 Spherical Besael 13.6.7 Kelvin 13.6.8 Coulomb Wave 13.6.9 13.6.10 Incomplete Gamma 13.6.11 Poisson-Charlier 13.6.12 e* Exponential 13.6.13 Trigonometric 13.6.14 Hyperbolic 13.6.15 Weber 13.6.16 or Parabolic Cylinder 13.6.17 Hermite 13.6.18 Hermite 13.6.19 Error Integral 13.6.20 * Toronto *See page 11.
  • 8. 510 CONFLUENT HYPEROEOMETBIC F"C"I0NS 13.6. Spedrl CuebGntinued Relation Function a b 13.6.B V+t 2v+ 1 22 Modified Bessel 13.6.22 V+t 2v+ 1 -2ir Hankel 13.6.23 V+t 2v+ 1 2it Hankel 13.6.24 n+l 2n+2 2s Spherical Bessel 13.6.25 9 + 42'1' Airy 13.6.26 n+t 2n+1 6 Kelvin 13.637 -n a+1 2 Lsguem 13.6.28 1--a 1--a 2 Incomplete Gamma 13.6.29 1 1 -2 Exponential Integral 13.6.30 1 1 2 Exponential Integrgl 13.6.31 1 1 --In z Logarithmic Integral 13.6.32 tm-n l f m 2 Cunningham 13.6.33 -t V 0 22 Bateman 13.6.34 1 1 iz Sine and Cosine Integral 13.6.35 1 1 -iz Sine and Cosine Integral { 13.6.36 -t V t t* Weber or 13.6.37 4-1. t 42' Parabolic Cylinder 13.6.38 t-tn t a9 Hermite 13.6.39 t t 39 Error Integral 13.7. &roe and Turning Values For the derivative, If jD-l,, the r'th positive zero OfJ&l(z), then is 13.7.4 a first approximation Xo to the r'th positive zero } of M(a, b, z) is 13.7.1 XO=~:-~,, 1/(2b-4a)+0(1/(3b-u)2) 13.7.2 If X is the first approximation to a turning value L of M(u, b, z), that is, bo a zero of M'(u, b, z) then a better approxiniation is A closer approximation is given by 13.7.3 Xl=XO-M(a, 6,Xo)/M'(u,b, Xo)
  • 9. CONFLUENT HYPERGEOMETRIC FU"I[ONS 51 1 The self-adjoint equation 13.1.1 can ala0 be is an increasing or decreasing function of z, that is, written they form an increasing sequence for M(a, b, z) if a>O, z - <$ b or if a<O, z>b-$, and a decreas- 13.7.6 ing sequence if a>O and z>b-3 or if a O and < zb$ < -. The Sonine-Polya Theorem The maxima and minima of Iwl form an in- I The turning values of Il lie near the curves w creasing or decreasing sequence according as -e-'e-& I Numerica1 Methods 13.8. Use and Extension of the Tables In this way 13.4.1-13.4.7 can be used together Calculation of M(a, b, x) with 13.1.27 to extend Table 13.1 to the range Kummer's Transformation -10<a<10, -10 j b <lo, -10 <z<10. E x m p l e 1. Compute M(.3, .2, -.I) to 7s. This extension of ten units in any direction is Using 13.1.27 and Tables4.4 and 13.1 we have possible with the loss of about 1s. Al the re- l a = & b=.2 so that currence relations are stable except i) if a<O, O b < M(.3, .2, -.1) =e-.'M(-.l, .2, .l) and lal>lbl, z>O, or ii) b a <, b<O, Ib--al>lbl, z<O, when the oscillations may become large, =.85784 90. especially if II also is large. z Thus 13.127 can be used to extend Table 13.1 to Neither interpolation nor the use of recurrence negative values of z Kummer's transformation . relations should be attempted in the strips should also be used when a and b are large and b=-nf.1 where the function is very large nu- nearly equal, for z large or small. merically. In particular M(a, b, z) cannot be Example2. Compute M(17, 16, 1) to 7s. evaluated in the neighborhood of the points Here a=17, b=16, and a=-m, b=-n, m j n , as near these points M(17, 16, l)=elM(-l, 16, -1) small changes in a, b or z can produce very large changes in the numerical value of M(a, b, z). =2.71828 18X1.06250 00 Example 4. At the point (- 1, -1, z),M(u, b, z) =2.88817 44. is undefined. R e c u r r m a Relations 2 When a=-1, M(-1, b, z)=l-afor all 2. Example 3. Compute M(--1.3, 1.2, .l) to 7 . s Using 13.4.1 and Table 13.1 we have a=-.3, Hence lim M(-1, b,z)=l +z. ButM(b,b,z)=e) b+-1 b=.2 so that for all z when a=b. .Hence lim M(b, 6, z)=&. , b+-1 M(-1.3, .2, .1)=2[.7 M(-.3, .2, .1) -.3 M(.7, .2, .l)] In the first case b+- 1 along the line a=-1, and =.35821 23. in the second case b+-1 along the line a=b. By 13.4.5 when a=-1.3 and b= .2, Derivatives M(-1.3,1.2, .1)=[.26 M(--3, .2, .l) Example 5. To evaluate M'(-.7, -.6, .5) to -.24 M(--1.3, .2, .1)]/.15 7s. By 13.4.8, when a= -.7 and b= -.6, we have =A9241 08. -.7 M'(-.7, -.6, .5)=- M(.3, .4, .5) -.6 Similarly when a=-.3 and b= .2 =1.724128. M(-.3, 1.2, .1)=.97459 52. Asymptotic Formulas Check, by 13.4.6, For ~ 2 1 0 a and b small, M(a, b, z) should be , M(-1.3, 1.2, .1)=[.2 M(-.3, .2, .l) evaluated by 13.5.1 using converging factors 4-1.2 M(-.3, 1.2, .1)]/1.5 13.5.3 and 13.5.4 to improve the accuracy if =A9241 08. necessary.
  • 10. 512 CONFLUENT HYPERGEOMETRIC FUNCTIONS Example 6. Calculate M(.9, .l, 10) to 7S, Hence using 13.5.1. U(.1, .2, 1) =5.344799(.371765-.194486) = .94752. Similarly U(-.9, .2, 1)=.91272. Hence by 13.4.15 =-.198(.869) +1237253(.99190 285) U(l.1, 2, l)=[U(.l, .2, l)-U(-.9, .2, 1)]/.09 + O(1) = .38664. = 1227235.23- .17 +O(1) = 1227235+0(1) Example 10. To compute U'(-.9, - . 8 , 1) to 5s. By 13.4.21 Check, from Table 13.1, M(.9, .l, 10)=1227235. To evaluate M(a, b, z) with a large, z small and b U'(-.9, -.8, 1)=.9U(.1, .2, 1) small or large 13.5.13-14 should be used. = (.9)(.94752) Example7. Compute M(-52.5, .l, 1) to 3s, =.85276. using 13.5.14. Asymptotic Formulae M(-52.5, .l, 1) = r(.l)e-'(.05+52.5).25-.M Example 11. To compute U(1, .l, 100) to 5s. .5642 COS [(.2-4( -52.5)) . I - .05r+ .254 By 13.5.2 11 +0((.05+52.5)-a6)]= -16.34+0(.2) 1 19 1929 U(1, .l, 100)=i&j{l-:+: By direct application of a recurrence relation, 100 100100 M(-52.5, .l, 1) has been calculated as -16.447. To evaluate M(a, b, z) with z, a and/or b large, 13.5.17,19 or 21 should be tried. Example8. Compute M(-52.5, .1, 1) using =.01{1-.019+.000551-.000021 13.5.21 to 3s, COS e2 =4 . ' +0(10-9) 1, =.00981 53. M(-52.5, .l, 1) Example 12. To evaluate V(.l, .2, .01). For -r(.l)e*oJ.l 1105.1 COS 8J1-.*.5641 - coa2e z small, 13.5.612 should be used. 52.55-1 sin 28-1[& (-52.5~) r (1 -.2) +sin (52.55(2e-~in 2e)+tr) U(.l, .2, .Ol)= r (1.1 -.2) +O((.01)1- -7 + O((52.55)-')]= -16.47-t O(.02) =-+O( (.01)-7 A full range of asymptotic formulas to cover all U.9) possible cases is not yet known. =1.09 to 3S, by 13.5.10. Calculation of U(a, b, x) To evaluate U(u, b, z) with a large, z small and For - 1 0 5 ~ 5 1 0 , - 1 0 5 ~ 5 1 0 , -105b510 b small or large 13.5.15 or 16 should be used. this is possible by 13.1.3, using Table 13.1 and the To evaluate V(a, b, z) with z, a and/or b large recurrence relations 13.4.15-20. 13.5.18, 20 or 22 should be tried. In all these Example 9. Compute U(l.1, .2, 1) to 5s. cases the size of the remainder term is the guide to Using Tables 13.1, 4.12 and 6.1 and 13.1.3, we the number of significant figures obtainable. have Calculation of the Whittaker Functiona U(.1, .2, 1)= Example 13. Compute M.o.-.4(l) W.o,-.4(1) and to 5s. By formulas 13.1.32 and 13.1.33 and Tables 13.1, 4.4 But M(.9, 1.8, 1)=.8[M(.9, . 8 ,l)-M(-.l, .8, l)] -44.0, -.,(l) =e-,'M(.l, .2, 1)=1.10622, = 1.72329, using 13.4.4. W.o.-.,(1) =e-.(U( .1, .2, 1) = .57469.
  • 11. Thus the values of M..,(z) and W d z ) can x;=x; [l- M‘(-3,.6,Xi) always be found if the values of M(a, b, z) and -3M(-3, .6, Xi)1 U(a, b, z) are known. =Xi [I-M(-2,1.6, Xi)/.6M(-3, .6,Xi)] 13.9. Calculation of Zeros and Turning Points =.9715)<1.0163=.9873 to 4s. Ex-Ple 14. a m p u b the smallest POsitive This process can be repeated to give as many zero of M(-4, . 6 , ~ > .This is outside the range of significant figures as are required. Table 13.2. Using 13.7.2 we have, as a first approximation If we repeat this calculation, we find that FIGURE13.1. X2=X1+.00002 99=.17852 99 to 7s. Figure 13.1 shows the curves on which M(a, 6, z) Calculation of Marima and Minima =O in the a, b plane when z=1. The function is positive in the unshaded areas, and negative in the Examp1e15* Compute the va1ue Of z at which shaded areas. The number in each square gives M(-1.8’-*2’z) a turningvalue’ Using13*4*8 has the number of real positive zeros of &&, b, z) as a and Table 13.2, we find that M’(-1.8, -.2,2) function of z in that square. The vertical =9M(-.8, . 8 , z)=O when x=.94291 59. boundaries to the left are to be included in each Also M”(-1.8, -.2, z)=9M’(-.8, .8, 2)’ square. -9M(.2, 1.8, z) and M(.2, 1.8, .94291 59)>0. 13.10. Graphing M(a, b, x) Hence M(--1.8, -.2, z) has a maximum in z when ~=.94291 59. Example 17. Sketch M(-4.5, 1, z). Firstly, Example 16. Compute the smallest positive from Figure 13.1 we see that the function has value of x for which M(-3, .6, z) has a turning five real positive zeros. From 13.5.1, we find value, Xi. This is outside the range of Table 13.2. that M+- m , M’+- m as x++ m and that Using 13.4.8 we have M++m, M’++m as z+--. By 13.7.2 we have 6s first approximationsto the zeros, .3,1.5,3.7, M’(-3, .6, ~)=-3M(-2, 1.6, ~)/.6. 6.9, 10.6, and by 13.7.2 and 13.4.8 we find as first approximations to the turning values .9, 2.8, 5.8, By 13.7.2 for M(-2, 1.6, z), 9.9. From 13.7.7, we see that these must lie near X =(1.0!k)2/(11.2)= .9715. o the curvea y = f eN(54-t (1 -dl l)%-+. Thisisafirst approximationto XiforM(-3, .6,z). Using 13.7.5 and 13.4.8 we find a second approxi- From these facts we can form a rough graph of mation the behavior of the function, Figure 13.2.
  • 12. 514 CONFLUENT HYPERGEOMETRIC F"Cl'I0NS FIQUF~E 13.2. M(-4.5, 1, 2. ) (From F. Gb2d?'ri, R~m$d;~y&~*&~o~l* Edblonl. FIQUBE 13.4. M(a, .5, 2. ) (Ffom E. J8hnke cmd F. Emde Table8 of hmctlons Dover Publlcatknu, Inc, New York, fi.Y., 1945, with p m b l o n . ) References Tcxts [13.11 H. Buchholz, Die konfluente hypergeometrische Funktion (Springer-Verlag, Berlin, Germany, 1953). On Whittaker functions, with a large bibliography. (13.21 A. Erdelyi et al., Higher transcendental functions, vol. 1, ch. 6 (McGraw-Hill Book Co., Inc., N e w York, N.Y., 1953). On Kummer functions. [13.3] H. Jeffreys and B. 5. Jeffreys, Methods of mathe- matical physics, ch. 23 (Cambridge Univ. P, - Cambridge; England, 1950). On Kummer functions. [13.4] J. C. P. Miller, Note on the general solutions of the confluenthypergeometric equation, Math. Tablea Aids Comp. 9,97-99 (1957). FIQWE13.3. M(o, 1, z). 113.61 L. J. Slater, On the evaluation of the confluent hypergeometric function, Proc. Cambridge (prom E. Jahnke and F Emde Tables of function& Dover Publlatkxu. ha., New York, &.Y, lM6, with pemmbsbm.) Philoe. Soc. 49, 612-622 (1953).
  • 13. CONFLUENT HYPERQEOMETBIC FUNCNONS 515 [13.6] L. J. Slater, The evaluation of the basic confluent (13.121 J. R. Airey and H. A. Webb, The practical impor- hypergeometric function, Proc. Cambridge tance of the confluent hypergeometric function, Philos. Soc. 50, 404-413 (1954). Phil. Mag. 36, 129-141 (1918). M(a, b, z), [13.7] L. J. Slater, The real mros of the confluent hyper- ~=-3(.5)4, b=1(1)7, z=1(1)6(2)10, 45. geometric function, Proc. Cambridge Philos. (13.131 E. Jahnke and F. Emde, Tables of functions, ch. 10, Soc. 52, 626-635 (1956). 4th ed. (Dover Publications, Inc., New York, [13.8] C. A. Swanson and A. Erdhlyi, Asymptotic forms N.Y., 1945). Graphs of M(a, b, z) based on the of confluent hypergeometric functions, Memoir tables of [13.11]. 25, Amer. Math. S o c .(1957). [13.14] P. Nath, Confluent hypergeometric functions, [13.9] F. G. Tricomi, Funeioni ipergeometriche confluenti Sankhya J. Indian Statist. Soc. 11, 153-166 (Edizioni Cremonese, Rome, Italy, 1954). On (1951). M(u, b, z), a=1(1)40, b=3,2=.02(.02) Kummer functions. .1(.1)1(1)10(10)50, 100, 200, 6D. [13.10] E. T. Whittaker and G. N. Watson, A course of [13.15] 8. Rushton and E. D. Lang, Tables of the confluent modern analysis, ch. 16, 4tb ed. (Cembridge hypergeometric function, Sankhye J, Indian Statist. Univ. Press, Cambridge, England, 1952). On So c. 369-411 (1954). M(a, b, Z) , a=.5(.5)40, 13, Whittaker functions. b= .5(.5)3.5, Z= .02 (.02).1 (.1) 1 (1) 10(10)50, 100, 200, 7s. T d h [13.16] L. J. Slater, Confluent hypergeometric functions (Cambridge Univ. Preas, Cambridge, England, [13.11] J. R. Airey, The confluent hypergeometricfunction, 1960). M(u, b, z), ~ = - l ( . l ) l , b=.l(.l)l, British Association Reports, Oxford, 276-294 ~=.l(.l)lO, 8s; M(u, b, l), ~=-11(.2)2, (1926), and Lee&, 220-244 (1927). M(a, b, z), b= -4(.2) 1, 85; and smallest positive values of ~=-4(.5)4, a=*, 1, 3, 2, 3, 4, ~=.1(.1)2(.2)3 z for which Mfa, b, z)=O, a=-4(.1)-.l, (.5)8, 5D. b=.1(.1)2.5, 8s.