SlideShare a Scribd company logo
436                                BEBBEL FUNCTIONS OF FRACTIONAL ORDEB

                                                                                              page
              Table 10.8. Modified Spherical Beasel Functions-ordera 0, 1 and 2
                (01255). . . . . . . . . . . . . . . . . . . . . . . . . . .                  469
                  &&In+*    (5),   4ZG-i
                                       (z>
                  n=O, 1, 2; ~=0(.1)5, 4-9D
              Table 10.9. Modified Spherical Beasel Functions--Orders 9            and 10
                (O<zl.p).         . . . . . . . . . . . . . . . . . . . . . . .   . . .        470
                   d 3 * l Z I n + i (2) xn+'J+GEKn+i     (2)
                  ~ = 9 10; ~=0(.1)5, 7-8s
                             ,
                   e-'I*     (4,(2/TWKn+i       (z)
                   n=9, 10; z=5(.1)10, 6           s
                  6 exp [-z+n(n+ 1)/(2z)IIn~(z)
                            exp [z-n(n+1)/(2z)l~n+i(z)
                   n=9, 10; z-'=.1(-.005)0,             7-8s
          .   Table 10.10. M~dified Spherical Beasel Functione-Various             Orders
                (OIn5100) . . . . . . . . . . . . . . . . . . . . . .             . . .       473
                  &Wn+l(z)          , 45%+i       (z)
                   n=0(1)20, 30, 40, 50, 100
                   z=1, 2, 5, 10, 50, 100, 10s
      .       Table 10.11. Airy Functions ( 0 5 2 1 -) . . . . . . . . . .         . . . .     475
                   Ai&), Ai'(z), Bi(z), Bi'(z)
                   z=O(.O1)1, 8D
                   Ai(-z), Ai'(-z), Bi(-z), Bi'(-z)
                   z=O(.O1)1(.l)lO, 8D
                        Auxiliary Functions for Large Positive Arguments
                   Ai(z)=&z-%-Y(-€);             Bi(z)=z-l/rdf([)
                   Ai'(z)=-42Y4e-(g(-€); Bi'(z)=z'/Wg(€)
                                             c'=
                       f(f I),g(f [) ; )=&I+/', 1.5(- .l).5(- .05)0, 6D
                        Auxiliary Functions for Large Negative A r p e n t a
                   Ai(+ =z-"*lfi(O COB       €+jd€)        sin €1
                   Bi(-z)=z-l~'ffa(€)            €-fi(€) sin €1
                   Ai'(-~)=z'/~[g~([) €-g2(€) cos €1
                                            sin
                   Bi'(-z)=z'/Ygal€) sin €+gl(€)COB €1
                  f1(€)J   f'(€1 9 9 (€) 9 (€1 ; €=
                                    1 9 2            j2""
                   p = . 0 5 (-.01)0, 6-7D
              Table 10.12. Integrals of Airy Functions (OIz110). . . . .          . . . .      478
                      Ai(t)dt, z=0(.1)7.5;
                                              SD':   Ai(--t)dt, z=O(.l)lO, 7D

                  s,'Bi(t)dt; 2=0(.1)2;      1  Bi(--t)d, z=0(.1)10, 7D
              Table 10.13. Zeros and Associated Valuea of Airy Functions and Their
                Derivatives (1 1 8 1lo) . . . . . . . . . . . . . . . . . . . .                478
                 Zeroa a,, a;, b,, b; of Ai@), Ai'@), Bi(z), Bi'(z) and valuea of Ai'@,),
                 &(a;),Bi'(b,), Bi(b;) e=l(l)lO, 8D
                     Complex Zmos and Associated Valuea af Bi(z) and Bi'(z)
                  (1 5 8 5 5 )
                 Modulus and Phaae of                      Bi'(@,), Bi(8:) 8=1(1)5, 3D
                  The author acknowledge8 the eseietance of Bertha H. Walter and Ruth Zucker in the
              preparation and checking of the tablea and graphs.
{
                     10. Bessel Functions of Fractional Order
                                               Mathematical Properties
          10.1. Spherical Beeeel Functions
                       Definitions
                   Werential Equation
10.1.1
$ " +2m'+[ 2-n(n+ 1) ]w=O
 0
                         (n=O,*l, f 2 , . . .)                            Reprementotiomby Elementary Functions
   Particular solutions are the Spherical Bessel                 10.1.8
functions of thefist kind
                                                                 j,(z)=z-'[P(n+*,        2)   sin   (z-+W)
              jm(z>= W d n + i ( z )                                                            +Q(n+h       4 COS (z-hll
the Spherical Bessel functions o the second kind
                               f                                 10.1.9
                                                                 yn(Z)=(-l)m+lz-'[P(n+),            Z) COS (Z+#TJT)
            Ya(z) =AGYn++(z)     ,
and the Spherical Bessel functions              of the    th&d                                  -Q(n+3,      Z)   sin ( z + h ) l
kind
         hP(z)=jn(z) +iya(z)=dGFHSt(z),
         hia)(z>=jm(z)-iyn(z) = ~ Z H ; ~ + ( Z > .
   The pairs jn(z), ya(z) and hil)(z), hf)(z) are
linearly independent solutions for every n. For
general properties s the remarks after 911
                    m                    ...
                                                                              -9(-l)&(n+$, 2k)(22)-*
                                                                                 0

            Ancending S e r i e a (&e 9.1.2.9.1.10)
10.1.2
                2s                       32'
'm(z)=l. 3 . 5 . . . (2n+1)       '-1!(2n+3)


1..
 013
                                                                              ="y 2k+1)(22)-"-'
                                                                               (-l)&(n+*,
                                                                                     0

           163.5.. . (2n-1)                    33                                                            (n=O, 1,2, . . .)
Y() -
 mz=            .p+  1                   l! (1-24

                            ' 2 V n (3z')'
                                    ) (3-2%)          - . . .}
                                           (n=O, 1,2, . . .)



                                                                                                               1680
                                                                                                              16120    I    30240




                                                                                                                      437
FIGUSID js(~),
                                                                10.3.  va(Z).             ~=10.

                                               Pohon's Integral and Gegenbauer's Generalization

                                               10.1.13 jn(z)==2'           s,- cos   (2 cos   e) sin2"+'8
                                                                                                        ds
                                               (See 9.1.20.)
                                               10.1.14

-.3-
                                                               =z1 ( - i ) n l   e'*coaep,,(cos   e) sine&
                   F I G U B ~ j&). n=0(1)3.
                            10.1.                                                         (n=O, 1,2, . . .)




   *See page II.
BESSEL FUNCTIONS OF FEtACTIONAL ORDER                                         439
Spherical Beaeel Functions of the !bond and T i d
                                             hr
                       Kind

10.1.15
 yn(2)=(-l)"+lj-n-1(2)           (n=O, f l , f 2 , . . .)
10.1.16
     hz)(z)=i-m-1z-1el'&         (n++,k)(-2izl-k
                             0

10.1.17
                            n                          *    (See 9.2.28.)
      hi2'(z)= i R + l z - l e - i (n++ k) (2iz)
                                   Z~
                            0
                                                            10.1.28    ( X Z M , =j:(2)
                                                                        + / ) f(2)
                                                                                2             +y: (2)=2-2
                                                            10.1.29
                                                                  (+X/Z>M,~,~(Z) +y;(z)
                                                                           =j;(z)                     =~-~+2-'

                                                            10.1.30




                                                                       0                       n-2k

                                                                                                      (n=O, 1,2, . . .)
                                                                              Analytic Continuation
                DHertmtiation Formulae
                                                            10.1.34            jn(zernri) ernnrfjn(z)
                                                                                       =

                                                            10.1.35         yn(zernrl) (-I)"'ernnrfyn(z)
                                                                                    =

                                                            10.1.36        h:)(~p.(~+l)~~
                                                                                     )= (-l)%;s)(z)

                                                            10.1.37        h:2)(ze(h+1)rt (-l)"h:Q(Z)
                                                                                      )=

                                                            10.1.38             h$ (zeMr*)
                                                                                         =hii) (z)
                                                                                       (Z=l, 2; m,n=O, 1,2, . . .)
                                                                               Generatiqg Functiom
                                                            10.1.39


10.1.26


 *SeePage n.
440                                 BESSEL FUNCTIONS O FRACTIONAL ORDER
                                                      F

                                                                              Fresnel Integrab
                                                       10.1.53




                                                           (See also 11.1.1, 11.1.2.)
                                                              Zeros and Their Asymptotic Expansions
                                                          The zeros of j,(z) and y() are the same as the
                                                                                  ,z
                                                       zeros of Jn+&) Y,+)(z) and the formulas for
                                                                         and
                                                      j.,, and y, given in 9.5 are applicable with
                                                                 .,
                                                       v=n+#. There are, however, no simple relations
                                                      connecting the zeros of the derivatives. Ac-
                                                      cordingly, we now give formulas for a;,,, b;,,, the
                                                      8-th positive zero of j: (2) , y (2), respectively;
                                                                                      ;
                                                       z=O is counted as the first zero of jA(z).

                                                      (Tables of a;,,,       b L , jn(4J,
                                                                                        YnK.,)     are given in
                                                      [10.311.)
                                                                           Elementary Relatiom

                                                      fn(z)      =jn(z)     d+Yn(z) sin
                                                                                   (t a real parameter, 0 St 5 1)
                                                      If   T,,   is a zero of &(z) then
          Some In6nite   Seriee   Involving j:(z)

10.1.50          2 (2n+l)j:(z)=l
                 0


10.1.51
            m
                                 sin
                (-1)R(2n+1)j:(~)=3--22
            0


10.1.52                                               10.1.57
BESSEL FUNCTIONS O FRACTIONAL ORDER,
                                                               F                                                      441
      McMahon's Expadons for n Fixed and a Large                          UniformAsymptotic Expansions of Zeros and
                                                                                 Aeeociated Values for n Large
10.1.58
                                                                     10.1.63
d . 8 ~ b:,8-8-((c(+7)      (8/3)-1
                    4
                   -- (7p2+154/~+95)(80))'~
                     3

                   -32 (85/~~+3535p~+356lp+6133)(8/3)-~
                     15
                   --
                    64     (6949p4+474908p3
                                          +330638p2
                     105
                   +9046780p-5075147) (8/3)-'-- . . .

@=~(s+3n-3)for                        /3=*(s+$n)
                                               for
                                                    p=(2n+1)2




                                         {
Asymptotic Expansions of Zeros and Associated Values
                   for n Large

10.1.59
a;.     -(n+3)+       .8086165(n+ 3)1/3-.236680(n+3)      -'I3

                  -.20736(n+$)-1+.0233(n+$)--"/3+ . . .
10.1.60
b:,     -(n+ 3) +     1.821098O(n+       3)' p
                                                                                          11+~~xi(n+t)-"3b:i(n+3)-~}
                                                                                             k=l
               +.802728(n+4) -m-.11740(n+4)
                                                                      h&), z(€) are defined as in 9.5.26, 9.3.38, 9.3.39.
                                        +.0249(n+$)-6/3+ . . .        a:, b s-th (negative) real zero of Ai'(z), Bi'(z)
                                                                          ;
10.1.61                                                               (see 10.4.95,   10.4.99.)
                                                                                  Complex Zeros of h!"(z), h!"'(z)
j,(a:, ') -.8458430(n+$)                1-
                                      4'" .566032(n+3) -2/3
                                                                       hil)(z) and hi')(z.em**), m any integer, have the
                +.38081(n+3)-4@-.2203(n+3)-a+ . . .}                 same zeros.
                                                                       hi1)(z) has nzeros, symmetrically distributed with
10.1.62                                                              respect to the imaginary axis and lying approxi-


                                                                 }
                                                                     mately on the finite arc joining z=-n and z=n
&(b:,     1)   4 1 8 3 9 2 1 (n+4)-"'"{ 1-1 .274769(n+4))-2/3        shown in Figure 9.6. If n is odd, one zero lies on
           +1.23038 (n+ 3) -4/3- 1.0070 (n+4)-2+ . . .               the imaginary axis.
                                                                       hi*)'(z)has n + 1 zeros lying approximately on the
      See [10.31] for corresponding expansions for                   same curve. If n is even, one zero le on the
                                                                                                               is
8=2,      3.                                                         imaginary axis.
BESSEL FUNCTIONS OF FRACTIONAL ORDER



-z           (-mi   (r)                                                                               (-I)'&   (z)
      0. 0    -. 4409724
              -. 4572444
                              -. 122500
                              -. 114201
                                                            -. 06806
                                                            -. 05986
                                                                                       . 000000
                                                                                       .027518
                                                                                                           . 00000
                                                                                                           .00575
                                                                                                                     .oooo
      0. 2                                                                                                           .0023
      0. 4    -. 4702250      -. 10'1243                    -. 05279                   .049069             .01118    .0043
      0. 6    -. 4802184      -. 101318                     -. 04674                   .065677             .01592    .0061
      0. 8    -. 4875705      -. 096159                     -. 04160                   .078255             .01983    .0075
      1. 0    -.   4926355    -. 091561                     -. 03725                   .OS7587             .02290    .0085

--3            hi (r)                                                             Hi (r)

      1. 0    -.   4926355    -. 09156                      -. 037                     .OS7587             .0229
      1. 2    -.   4131280    -. 05056                      -. 014                     .065507             .0121
      1. 4    -.   3551700    -. 03043                      -. 006                     .050524             .0070
      1. 6    -.   3108548    -. 01950                      -. 003                     .039890             .0042
      1. 8    -.   2757704    -. 01310                      -. 001                     .032085             .0027
      2. 0   -. 2472521       -.    00914                                              .026206             .0018
      2. 2   -. 2235898       -.    00658                                              .021682             .0012
      2. 4   -. 2036314       -.    00485                                              .018141             .OW8
      2. 6   -. 1865701       -.    00366                                              .015326             .0006
      2. 8   -. 1718217       -.    00280                                              .013061             .0004
      3. 0   -.    1589519    -. 00219                                                 .011217             .0003
      3. 2   -.    1476304    -. 00173                                                 .009701             .0002
      3. 4   -.    1376005    -. 00138                                                 .008443             .0002
      3. 6   -.    1286601    -. 00112                                                 .007391             . 0001
      3. 8   -.    1206469    -. 00091                                                 .006505             .om1
      4.0    -. 1134296       -. 00075                                                 .005753
      4.2    -. 1069004       -. 00062                                                 .005111
      4.4    -. 1009699       -. 00052                                                 .004560
      4.6    -. 0955634       -. 00044                                                 .004085
      4.8    -. 0906180       -. 00037                                                 .003672
      5. 0    -. 0860804      -. 00032                                                 .003313
      6. 2    -. 0819049      -. 00027                                                 .002998
      5. 4    -.0780523       -. 00023                                                 .002722
      5. 6    -. 0744888      -. 00020                                                 .002478
      5. 8    -. 0711850      -. 00018                                                 .002262
      6. 0    -. 0681152      -. 00015                                                 .002070
      6. 2   -. 0652570       -. 00013                                                 .001899
      6. 4   -.0625905        -. 00012                                                 .001746
      6. 6   -. 0600985       -. 00010                                                 .001609
      6. 8   -. 0577653       -. 00009                                                 .001486
      7. 0   -. 0555773       -. 00008                                                 .001375




                                   0. 40       -. 0645731             -. 00013             .001859
                                    .36        -. 0487592             --. 00005            .001056
                                    .32        -. 0352949             -. 00002             .OW551
                                    .28        -. 0242415             -. 00001             .000259
                                    .24        -. 0155683                                  .000106
                                    .20        -. 0091416                                  . oooo37
                                    . 16       -.   .   0047276
                                                        - -. -
                                                             .                             .000010
                                    . 12       -. 0020068                                  .000002
                                    .08        -. 0005965
                                    .04        -. 0000747
                                   .oo     I   -.0000000          I                I
BESSEL F " I 0 N S           OF FRAcTlONAL ORDER                                                443
   10.2. Modified Spherical Bessel Functions
                              Definitions
                        Differential Equation
10.2.1
                    1)
z2w" +2zw' - z2+n(n+ ]w=0
            [
                                            (n=O, f l , f 2 , . . .)
  Particular solutions are the Modifid Spherka?
Bessel fum!;.nS o the$rst kind,
                 f
10.2.2




      {
&$&++(z) = e-nri/*jn(zer*/a) (-r<arg                        z 5%.>
         = e3nrf/2jn(~e-3rt/a) (I)lr<arg                    z 27)
o the second kind,
f
10.2.3
-I-       ,++       (z)=ea(n+l)rt/    (2e
                                                 (-r<arg    2 5   31r)
                      -e-
                      -     (n+1)rt/%~(~~-3rt/a)

                                                   (h<arg z5r)
o the third kind,
 f
10.2.4                                                                                                                        (n=O, 1,2, . . .)
                                                                           (See 10.1.9.)
r n K + + ( Z =fr(-l)"+'dm[In+t(z) -I--)I-+(Z)l
              )
                                                                           10.2.12
The pairs
                    WzIn++(z),n Z I - n - + ( Z )
                            r                                                 &&zI,++(z)=g,(z) sinh z+g-n-l(z) cosh z
and                                                                                   go(2) =2-1, g1(z) = -2-2
                    dGmn++(Z) 9 rnZKn++(Z>
                                                                           gn-1(4 -gn+1(z) = (2n+1) z-'gn(z>
are linearly independent solutions for every n.                                                                     (n=O, f l , f 2 , . . .)
   Most properties of the Modified Spherical
Bessel functions can be derived from those of the                                   The Functions 1/&&2I*cn++,(Z),            n=O, 1, 2 .
Spherical Bessel functions by use of the above
relations.                                                                 10.2.13

                                                                                                   =z
                            Ascending %rim                                                         sinh
10.2.5                                                                              rnIl,2(Z>           2


                                                                                                                 sinh   2--   3 cosh z
                                                                                                                              Z2
                                                                           10.2.14
10.2.6                                                                                               cosh z
                        1 . 3 . 5 . . . (2n-1)                                 MZI-l/2(Z)          =-    Z
4GI-n-+(Z)=                   (-1)"2"+1
                                                                                                     sinh z cosh z
                                                                                         -3,2   (2) =-
                                                                                                     -           -
                      3za     +
                                                                               &
                                                                               +I
                                                                                                         Z         22
          '+1!(1-2n)           2!(1-%)(3-%)                                                              3
                                                  (n=O, 1,2, . . .)            --
                                                                               I-
                                                                               &
                                                                               &)
                                                                                &
                                                                                =
                                                                                                         22
                                                                                                              sinh z+
                f
                                                                             *See page 11.
444                                     BESSEL FUNCTIONS OF FRACTIONAL ORDER

Modified Spherical Besee1 Functions of the T i d Kind
                                            hr
10.2.15
&&zKn++(z)
         =3?rie"+1)~"2h~~)(ze*'f)
                          (-*<wg                             z 5.
                                                               31
                  --3,,.ie-
                  -             (n+1)ri/2h(2)(ze-+rt)
                                            I



                                                  O,,.<arg   2   54
                  =($?r/z)e-Z     5 (n++,k)(22)-~
                                   0

10.2.16
K,+*(z)=K-~-~(z)(n=O, 1 , 2 , . . .)
          The Functions m R n + + ( ~ ) , n = O ,2
                                              1,

10.2.17 &@&(z)=                (h/z)e-'
           &?2GI2(z) = ($n/z)e-Yl+z-')
          mK~,2(Z)=(3?r/Z)e-'(l+32-'+32-e)

                 Elementary Properties
                  Recurrence Relations

f&): r n L + * ( Z ) ,
                     (-l)"+'mKn++(Z)
                                         (n=O, f l , &2, . . .)
10.2.18 fn-l(z)    -fn+1(2) = (2n4-1)z-'fn(z)

                                  d
                         (z>=@n+1) fn(z>
10.2.19 nfn-l(z)+(n+l)fn+l                                   s
           n+l     d
10.2.20    7fn(z) +&fn(4               =fn-1(z)

(See 10.2.22.)
            n          d
10.2.21    --fn(z)
            Z
                     +-&fn(z) =fn+1(z)
(See 10.2.23.)
                 DifYerentiation Formulae

fn(2):   r n L + * ( Z ) , (-w+1m&++(4
                                        (n=O, k l , ~ 2 ,. . )

10.2.22    (; g J k + I=
                    'f.(z)             Zn-m+'f,-,(z)



10.2.23    (5 -g>l -y n
                     [z       (2) I =z -n-mfn+m        (2)
                                                                           10.5. -&&+*(z),
                                                                      FIQURE                 &K,.++(z).   z=10.
                                             (m=1,2,3,. . . )
BESSEL FUNCTION8 OF FRACTIONAL ORDER                                                4.45
                     Formulas of Rayleigh's Type                             Addition Theorems and Degenerate Forms

                                                                    T, p,   6, X arbitrary complex; R=,@+p2-2rp coa 6
                                                                    10.2.35
10.2.25


                                            (n=O,1,2, . . . )




             =l
              -       n (.-1)k+1   (2n-k) ! (2n-2k)!
                                                     (22)%-*"
                  2 3 0               k! [(n-k) I]*




                                                                                10.3. Riccati-Beasel Functions
                                                                                       DilTerential Equation

                          Generating Functiom                       10.3.1
16.2.30                                                                              9w"+ [z5 -n(n +l)]w=0
                                                                                   (n=O, f l , f 2 , . . .)
                                                                      Pairs of linearly independent solutions are
                                                                                            zjn(z),   q/n(z)
                                                      (2I t I <I)
                                                               Iz
10.2.31                                                                               &p' (z), zhp (2)
                                                                       All properties of these functions follow directly
                                                                    from those of the Spherical Besael functions.
                                                                              The Functiom zj,(z) zy&)         n=O, 1, 2
                  Derivativea With Reapect to Order
                                                                    10.3.2
10.2.32
                                                                    zy'o(z)=sin 2,        Zj,(z)=z-'sin 2-cos 2
                                                                                          zy'2(Z)=(3Z-2-1) S h 2-32'       COB 2

                                                                    10.3.3
10.2.33                                                             q/&)=-cos        2,      q/1(2)=-sin       2-2-1  cos 2
                                                                                     2&(2)=-32-'         Sin 2-(32-'-1) COB 2
                                                                                             WTOMkiIUM

                                                                    10.3.4            W{zy'n(z),zYn(z)}=l
                                                                    10.3.5    W{z@)(z), zhF)(~)}
                                                                                               =-2i
For El(z)and Ei(z), see 5.1.1, 5.1.2.                                                             (n=O, 1,2, . . .)
 *See page   n.
446                                  BESSEL FUNCTIONS OF FRACTIONAL ORDER

                 10.4. Airy Functions                             10.4.12 W{Ai(z), Ai ( ~ e - ~ * ~ / ~ ) }
                                                                                                    =&r-lerfl6

    Definitions and Elementary Properties                         10.4.13 W{Ai        ( ~ 6 ~ , ~ ~ (1 e - )
                                                                                                Ai ~ ~ ~       *~/~)}
                                                                                                                 =4ir-1
                  Differential Equation

10.4.1               w" -zw=o
  Pairs of linearly independent solutions are
              Ai (z), Bi (z),
              Ai (z), Ai ( 2 W 3 ),
              Ai (z), Ai ( ~ e - ~ ~ ~ / ~ ) .
                    Ascending Series
10.4.2 Ai (z) =clf(z) -c2g(z)
10.4.3    Bi (z) = & [cJ(z) +c~g(z)l
                      1     1-4    1.4.7
           f(z)=i+- z3+- z6+-            zO+. . .
                     3!      6
                             !       9!

                 =$ 3kk);(       G!
                      2        2.5        2.5.8
          g(z)=z+-4! z4+- 7 ! z7+- lo! zl0+ . . .
                                  23k+1

              =$      3k ( )
                         gk     (3k+l)!
      (a+$),=l

  3k(a+i)k=(3sl+1)(3a+4) . . . (&+3k-2)
                   (a arbitrary; k=l, 2, 3, . . .)
(See 6.1.22.)
10.4.4
el=& (O)=Bi (0)/8=3-~fi/r(2/3)
                         =.35502 80538 87817
10.4.5
c2=-Ai' (@)=Sif(0)/fi=3-ifl/r(1/3)
                         =.25881 94037 92807
             Relations Between Solutions
10.4.6- Bi (2)=erfnAi (a"'/"> Ai (ze-*"fl)
                          +e+@
10.4.7
  Ai (z)+e"fn Ai     (a2rtD)    +e-2*iD Ai (a-2rfn)=o
10.4.8
  Bi (2) +e*fn Bi    (=2r*/g>   +e--2rfn Bi   (=-*rim)   =O
                          (2)G
10.4.9 Ai (~e*~~'/~)=)e*'~/~[Ai Bi (z)]
                       Wl-OMkifUl9
10.4.10          W{Ai (z), Bi (z)}= T - ~                               .."

                                                              I
                                                                              ~




10.4.11    W{Ai (z), Ai ( ~ e ~ * ~ =+r-1e-rf/6
                                    /~)}                                          FIGURE
                                                                                       10.7. Bi (~zz),
                                                                                                     Bi'       (*4.
BESSEL FUNCTIONS O F FRACTIONAL ORDER                                                       447
                                                        10.4.30 I*2n({)=(@/2z)[f43 Ai'(z)+Bi'(z)]
                                                        10.4.31        K*2n({) ( ~ / z ) Ai' (z)
                                                                           =- T




                                                                                   {
                                                                         Integral Representations
                                                        10.4.32
                                                           (3a)-% Ai [f (3a)-lBz]=Lm (at3ffzt)dt
                                                                                    cos

                                                        10.4.33


                                                                       =l
                                                        (3a)-lB7r Bi [f (3a)-lnz]
                                                                                [exp (--at3ffzt)+sin (at3fzt)ldt

                                                                  The Integrals   l'   Ai ( f t)dt,   la  Bi ( f t ) d t

                                                                                       =#z3/2

                                                        10.4.34     l   Ai (t)dt=$      s,'    [1-113(t)-111&)b!i


                                                        10.4.35         Ai (-t)dt=-
                                                                                         :sd      [J-113(t)+J113(t)]dl




                                                            Ascending Series for       is    Ai ( f Qdt,   is   Bi ( f t)dt


Representations of Beosel Functions in Terms of Airy
                     Functions
                                                        10.4.38       l   Ai (t)dt=clF(z)-c2G(z)
                                                        (See 10.4.2.)

                                                        10.4.39    1    Ai (-t)dt=-clF(-z)+c2G(-z)

10.4.22 5*1/3({)=)m[& Ai (-z)FBi
90.4.23                         (-z)-i
              H:'l,3({)=e~d/6m[Ai
                                             (-2))

                                             Bi (-z)]
                                                        10.4.40     1   Bi (t)dt=@[clF(z)+c2G(z)l

                                                        (See 10.4.3.)
10.4.24 H2',,,({)=efd1"m[Ai(-z)+i Bi (-z)]              10.4.41
10.4.25 1*l/a({)=$mz[r& Ai (z)+Bi (z)]                  s,'Bi (- t)dt= -fi[clF(-             z) +c2G(- z) I
10.4.26     K*ln(l)         =rm
                          Ai (z)                                  1    1.4    1.4.7
                                                           F(z)=z+- z4+-7 z7+- 1O ,lo+ . . .
10.4.27 J,tzn({)=(J3/2z)[fJ3 (-z)+Bi'(-z)]
                          Ai'                                     4
                                                                  !      !       !
10.4.28
     Hi({)=e-2rf /3H(l)
     it            -21&)
                  =erf~'(J3/z)[Ai'
                                (-2)-i   Bi' (-41          G(z)=B z'+-2 z~+-z'+-z~'+ 5 . 8
                                                                 1         2.5    2.                                       .   .
                                                                           5!           8!             ll!
10.4.29                                                                                p + 2

     Hi~~({)=e2rf/3H~z~1a({)                                      =$     ":(
                                                                          k
                                                                          )  (3k+2)!
              (J3/z)[Ai' (- z) +i (- z)]
                                 Bi'                    The constanta cy,c2 are given in 10.4.4, 10.4.5.
 'See page   n.
448                                    BESSEL FUNCI’IONS OF FRACTIONAL ORDER

                Tbe Functions Gi(z), Hi+)                                       Difterential Equations for Gi (z), Hi (z)
10.4.42                                                               10.4.55                 w’-zw=-?r-l
Gi ( ~ ) = r - ~ ~ ~ s i n ( i t ~ + z t ) d t
                                                                              1          1
                                                                        w(0) =- Bi (0) =- Ai (0) = .20497 55424 78
                                                                              3         6
      =IBi (z)+
        3              s,’[Ai(z) Bi (t)-Ai            (t) Bi (z)]dt
                                                                                 (
                                                                                  1
                                                                       w’(O)=-Bi’ O ) = - l   Ai’(0)=.14942 94524 49
10.4.43                                                                     3               6
                                                                                                w(z)=Gi(z)
Gi’@)=:Bit (z)+J’[Ai’(z) (t)-Ai (t) Bi’(z)]dt
                       Bi
      3         0
                                                                      10.4.56 -                w’ -zw= r-1
                                                                                                 ’

10.4.44                                                                           2
                                                                        w(O)=- Bi
                                                                              3
                                                                                            (O)=A (0)=.40995 10849 56
                                                                                               6
                                                                                                 Ai
 Hi(z)=s-’fomerp(-i             P+zt) dt
                                                                            2          2
                                                                       w’(O)=-Bi’(O)=-- Ai’(0)=.29885 89048 98
          =-Bi (z)+
           3 s , ’
           “
                    [Ai (t) Bi (2)-Ai(z) Bi(t)]dt                            3         fl
                                                                                               w(z)=Hi   (z)
10.4.45
      2                                                               Differential Equation for Products of Airy Functions
Hi’(z)=3Bi’
          (z)+
                       s,’[Ai (t) Bi’(z)-Ai’(z) (t)]dt
                                              Bi
                                                                      10.4.57                w’ -4ZW’ -2w=o
                                                                                               “

10.4.%           Gi (z)+Hi (z)=Bi (z)                                 Linearly independent solutions are Ai2
                                              s’
                                                                                                                              (2))

        Representations of    1’ Ai( f t)&,      Bi( f t)&
                                                                      Ai (z) Bi (z), Bi2 (2).
                                                                            Wronskian for Products of Airy Functions
                   by Gi (kz), (*z)
                              Hi
10.4.47                                                               10.4.58 W{Ai2(2))Ai (z) Bi            (2)) Bi2 (z) ]=27r3
                      1
    b      i (t) d t =-+ T[ (z)Gi (z) -Ai (z)Gi’ (z)]
                           Ai’                                                    Asymptotic Expansions for Iz( Large
                      3
10.4.48
               =---     n[Ai’(2) Hi (2)-Ai (z) Hi’(z)]
                   3
10.4.49                                                                    +I          a=-- 6k+l ck
                                                                                      ) k
                                                                                            6k-1
                                                                                                          (k=1,2, 3, . . .)
                      1
b       i (-t)dt=----?r[Ai’     (-2)   Gi (-2)
                      3
                                       -Ai     (-2)     Gi’(-41
10.4.50
                =?+r[Ai’ (-2) Hi (-2)
                 3
                               -Ai (-z)Hi’ (- z) ]
10.4.51
1   Bi (t)dt=?r[Bi’ Gi (2)-Bi
                  (2)                         (2) Gi’(z)]
10.4.52        =-r[Bi’ (z) Hi (2)-Bi (z) Hi’(z)]
10.4.53
l*  Bi (-t)dt=--?r[Bi’        (-2)   Gi (-2)
                                     -Bi (-2) Gi’(-z)]
10.4.54           =*[Bi’ (-2) Hi (-2)
                               -Bi (-2) Hi’(-z)]
BESSEL F U " I O N S   OF FRACTIONAL ORDER                                              449
10.4.62                                                 10.4.70
Ai' (-Z)--T-+Z*                                         Ai' (--s)=N(z) cos +(s),Bi' (-r)=N(z) sin+(t)

                                                           N(z)=JIAi'o (--s)+Bi'2 (-s)],
                                                                       +(s)=arctan [Bi' (-t)/Ai'                     (-2)l

                                                            Differential Equations for Modulue and Phase

                                                          Primes denote differentiation with respect to x
                                                        10.4.71                      -r-l, W+'= *-Ix
                                                                                               -
                                                        10.4.72       jV2,M~i!+M2p=M'2                 + r-2M-2              *

                                                        10.4.73                    NN'=-xMM'
                                                        10.4.74
                                                                  tan (+-e)=Me'/M'= -(TA4M')-1,
                                                                         MNsin (+-e)=r-l
                                                        10.4.75               M"+xM-           r - 2 ~ - 3 = ~

                                                        10.4.76             (M2)"'+4s(M2)'-2&f2=0

                                                        10.4.77      e'2+   q(e"'/e') -f ( e " / e y = X
                                                        Asymptotic Expansione of Modulus and Phase for
                                                                             Large z

                                                        10.4.78 M2(z) 1 x-'"--7r
                                                                                        ao
                                                                                        0
                                                                                              ip-jg-23k
                                                                                              (-'Ik        (i)   I
                                                                                                                  (2~)-3k

                                                        10.4.79



                                                                  -- (ZZ)-D+
                                                                   82825
                                                                    128                      14336
                                                        10.4.80

10.4.68
                                                        10.4.81
Bi'   (~e*"l~)




                                                                    49527 1              2065 30429 (2s)-12+
                                                                  +- 640      (2s)          2048             . . .]

                                                        Asymptotic Forms o f p (f t) & p for Large z
                                                                                      , f t)&
                                                                                       ( i
                                       (la% 4<
                                             3
10.4.69
                  Modulus and Phase
                                                        10.4.82 I A i (t)dt-i-l 2 7r-1/2x-3/4
                                                                             3             exp                   (-:   212)


Ai (--5)=M(z) cosB(z), Bi (-s)=M(s) sin e(r)            10.4.83
   M(s)=d[Ai2 (--s)+Bi2 (-z)],
                  +)=arctan [Bi (-x)/Ai (-s)]
  'See page 11.
450                                     BESSEL FUNCTIONS OF FRACTIONAL ORDER

10.4.84     l                                      (:
                   Bi ( t ) d t - ~ - ~ / ~ zexp / ~
                                              -~        z3l2)




Asymptotic Forms of Gi (kz), (kz),Hi (kz), (kz)
                            Gi‘          Hi’
                     for Large z

10.4.86                  Gi (z)-x-lz-’

10.4.87     Gi (-z)     -7r-l?~-l/~    cos   (;   z3/2+3

                                                                                   -1080 56875 z-8
10.4.88               Gi’(z)
                              7
                             96
                               --
                                x-W2
                                                                                        69 67296
                                                                                             16 23755 96875 z-lo, . .     .)
                                                                                         +     3344 30208
                       sin
10.4.89 Gi’(--5)-1~-~/~2~/~                (f  ill+$)
                                                                 g(z)-z2/3(1-,     7   z-2+-  35 z-*-- 181223 z-6
                                     - l / (3z312)
                 Hi (z)- ~ - ‘ / ~ z exp ~                                                   288       207360
10.4.90
10.4.91                 Hi (-z)   -7r-Iz-’                                              186 83371 z-8
                                                                                    +   12 44160
10.4.92          Hi‘(x) -x-1/2x1/4
                                 exp         (W2)                                          -9 11458 84361
                                                                                               1911 02976
                                                                                                                    ..    .)
10.4.93

          Zeros and Their Asymptotic Expansions

   Ai (z), Ai’(z) have zeros on the negative real
                                                                                                +23 97875 z-6-
                                                                                                  6 63552
                                                                                                                    ...   )
axis only. Bi (z), Bi’(z) have zeros on the nega-
tive real axis and in the sector f<
                                  xl     arg z<7.
                                             1r
                                              $
a,, a:; b b: s-th (real) negative zero of Ai (z),
         ,
Ai’(2); Bi (z), Bi’(z), respectively. B,, /3:; 2 8 ,                                            -843 94709 z-6+
                                                                                                   265 42080
                                                                                                                    ..    .)
s-th complex zero of Bi (z), Bi’(z) in the sectors
&r<arg ,<
        bz      -+,x<arg   z<-fx,    respectively.              Formal and Asymptotic Solutions of Ordinary Differ-
                                                                 ential Equations of Second Order With Turning
10.4.94               a,= - j [ 3 ~ ( 4 ~ -1)/8]                 Points

10.4.95               a:= -g[3~(4~-3)/8]                          A n equation
10.4.96 Ai’(a,) = (- 1)8-!f1[3~(4s-l)/81                        10.4.106 W”+a(z, X)W’+b(z, X)W=O

10.4.97     Ai (a:)=(-1)a-1g1[3a(4s-3)/81
                                                                in which X is a real or complex parameter and,
                                                                for fixed X, a(z, X) is analytic in z and b(z, A) is
10.4.98               b, = -f[ 3~ (49-3)/8]                     continuous in z in some region of the z-plane, may
                                                                be reduced by the transformation
10.4.99               b:= - g [ 3 ~ ( 4 ~ -1)/8]
                                                                10.4.107 W(z)=w(z) exp ( - i s ’ a ( t , h)dt)
10.4.100 Bi’(b,) = (- 1)8-!f1[3~(4s-3)/8]
10.4.101 Bi (b:) = (- 1)’g1[3r(4s- 1)/8]                        to the equation

10.4.102 @,=erf/3f               (4s-l)+-
                                             3i
                                             4
                                                   In 2
                                                        1       10.4.108
                                                                w”+(o(z, X)w=O

10.4.103 @:=erf/3g                (4s-3)+-
                                             3i
                                             4
                                                   In 2
                                                        1            q(z,
                                                                                         1           I d
                                                                            X)=b(z, X)-- 4 uqz, A)-- 2 - a(z, ’1
                                                                                                       dz

 *See page 11.
BESSEL FUNCTIONS O FRACTIONAL ORDER
                                                          F                                                                  451
    If p(z, X) can be written in the form                               10.4.114
10.4.109             p(z, X)=X'p(z)+q(z, A)                                 yo@)=Ai (-P x ) [1 + O(X-91

where q(z, X) is bounded in a region R of the z-                               =Bi (- X2%)[ 1 + O(X-91
                                                                           yl(x)                                    (1x1+m   )
plane, then the zeros of p(z) in R are said to be                       For further representations and details, we refer
turning points of the equation 10.4.108.                                to (10.41.
               The Special Case w"+[A*z+q(z,    X)]w=O                     When z is complex (bounded or unbounded),
                                                                        conditions under which the formal series 10.4.110
  Let X=IX(eiU vary over a sectorial domain S:                          yields a uniform asymptotic expansion of a solu-
IXl>A,,(>O),o l S w S w 2 , and suppose that q(z, X) is                 tion are given in [10.121 if q(z, A) is independent
continuous in z for Ilr  z<    and X in S, and q(z, X)                  of X and IXI+m with fixed w, and in 110.141 if X
-2q.(z)~-. as
      0
                                in S.                                   lies in any region of the complex plane. Further
                                                                        references are [10.2; 10.9; 10.101.
                       Formal Series Solution                                  The General Case w"+[Agp(z)+q(z, A)]w=O
10.4.110
  w(z)=u(z)           5 p.(z)X-*+X-'u'(z)
                       0
                                                   OD

                                                        J.,(z)X-"         Let X=IXJefWwhere IXl2b(>O) and - - ? r l w ~ - ? r ;
                                                                        suppose that p(z) is analytic in a region R and has
                           u" +Pzu=O                                    a zero z=% in R, and that, for fixed A, q(z, A) is
                                                                        analytic in z for z in R. The transformation
   ~(z)=c0,             J.o(~)=~-f~l, co,e constants
                                         ,                              €=€(z),v=[p(z)/#"W(z), where [ is defined as
                                                                        the (unique) solution of the equation

                                                                        10.4.115

                                                                        yields the special case
                                               (n=O, 1,2, . . .)        10.4.116      -
                                                                                      +
                                                                                      dzv       [X2€+j(€, X)]v=O,       *
                                                                                      dE2
          uniform hpnptotic Expand0118Of %lUtiOns

    For z real, i.e. for the equation
10.4.111              9'' +[XSZ+ &, A) I
                                       Y
                                       '       0                        Exumple:
where x varies in a bounded interval aSxSb that                           Consider the equation
includes the origin and where, for each fixed X in S,                   10.4.117 y"+[Xz-((xz-~) s-~]Y=O
q(z, A) is continuous in x for a 5s5b, the following
asymptotic representations hold.                                        for which the points x=O,    are singular points
   (i) If X is real and positive, there are solutions                   and x=1 is a turning point. It has the functions
yo(x), yl(x)such that, uniformly in x on a_<xlO,                        ZVA(AZ),A ( ~ z ) particular solutions (see
                                                                                 ~Y        as
                                                                        9.1.49).
10.4.112                                                                  The equation 10.4.115 becomes
       yo(s)=Ai ( - P x ) [1 +O(h-')]                    (A+-       )
       y,(x)=Bi ( - P Z ) [ ~ + O ( ~ - ~ ) ]
                                                                        whence
and, uniformly in x on 0 5 z S b
10.4.113
yo@) =Ai (- W x )[1+ O(X-')] +Bi (- A%) O(X-l),
yl(z)=Bi (-X*flx)[l+O(X-l)]+Ai (-Xzfl~)o(X-~)
                                                             0-m)
                                                                        Thus
   (ii) If 52RXl0, A f O , there are solutions
YO(Z), y~(z)such that, uniformly in x on a<x<b,                         10.4.118         v(€)   =(Fy       Y(Z)

  'See page n.
BESSEL FUNCTIONS OF FRACTIONAL ORDER                                        453
  Example 2. Compute &(x) for x=24.6.                                   Modified Spherical Beseel Functiom
  Interpolation in Table 10.3 yields for x=24.6
          ~ - ~ ~ e Z ” * ~ (x) = (-28) 3.934616
                            j21
                                                                   To compute &~I,,++(x),      &&L+,(x),      n=O,
                                                                1, 2, . . . for values of x outside the range of
          ~ - ~ e Z ’ / ~ (2)= (-27)9.48683
                             j20
whence                                                          Table 10.8, use formulas 10.2.13, 10.2.14 together
                                                                with 10.2.4 and obtain values for the hyperbolic
   j21(24.6)=.05604 29, &0(24.6)=.03896 98.                     and exponential functions from Tables 4.4 and
  From the recurrence relation 10.1.19 there                    4.15. In those cases when J$&I,,++(~)            and
results                                                         MxI-,,-+(x) are nearly equal, i.e., when x is
   j19(24.6)= .00890 67660        [.00890 701                   sufficiently large, compute mxK,,+*(x) from
   j18(24.6)=-.02484 93173    [-.02485 901                      formula 10.2.15, for which the coefficients (n+ 3, k)
   j1,(24.6)= -.04628 17554   [- .04628 161                     are given in 10.1.9.
   j1,(24.6)= -.04099 87086   [- .04099 881
                                                                   Example 3. Compute J~*/xI,,~(x),     J~*~xK,~~(x)
   j16(24.6)=-.00871 65122    [-.(lo871 671                     for z=16.2.
For comparison, the correct values,are shown in                    From 10.2.13, &&166/2(x) = (3 +2)     sinh x/2-
brackets.                                                       3 cosh 212‘; from Table 4.4, cosh 16.2=(6)5.4267
   To compute j15(x)for x=24.6 by Miller’s de-                  59950 and this equals the value of sinh 16.2 to the
vice, take, for example, N=39 and assume                        same number of significant figures. Hence
FdO=O,  F,,=l. Using 10.1.19 with decreasing N,
i.e., FN-l=[(2N+l)/x]FN-FN+l,N=39, 38, . . .,                   1/$~/16.216/2(16.2)(.06243 402371
                                                                                 =
1, 0, generate the sequence F38,
                               F3,, . .  Fl, F,
                                              , .,’
                                                                                -.01143 118427)[(6)5.4267 599501
compute from Table 4.6, j0(24.6)=(sin 24.6)/24.6                                = 338814.4594- 62034.29298
- -.02064 620296, and obtain the factor of pro-                                 =276780.1664.
portionality                                                    To compute J4?r/16.2K6,,(16.2) use 10.2.17 and
        p=jo(24.6)/Fo= .OOOOO 03839 17642.                      obtain
The value pF16 equals j16(24.6) to 8 decimals.                  4 m 2 K 5 / 21( =re
                                                                              6.2)                    6
The final part of the computations is shown in
the following table, in which the correct values                              = (-7)2.8945 38069[.036932 604001
are given for comparison.
                                                                              = (- 8) 1.0690 28283.
                           I
     N                                          j~ (24.6)          To compute m , + 5 n ( , ) a
                                                                                       I,         + 8xfor
                                                                                                  3    I       ,
                                                                value of z within the range of Table 10.9, obtain
    15    -22704.71107     -. 00871   67391   -. 00871    674   from Table 10.9, & IQ ) .1&$12,D(x) for
                                                                                      &l &,
    14    +78178.88236     +. 03001   42522   t.  03001   425
    13   f114866.80811     +. 04409   93941   f. 04409    939   the desired value of x and use these as starting
    12    + 47894. 44353   +. 01838   75218   t.01838     752   values in the recurrence relation 10.2.18 for
    11    -66193.59317     -. 02541   28882   -. 02541    289
    10   -109782. 76234    -. 04214   75392   -.04214     754   decreasing n.
     9    -27523.39903     -. 01056   67185   -.01056     672      To compute mxK.++(z)for some integer n
     8    +88524.85252     +. 03398   62526   f. 03398    625
     7    i-88699. 11017   +. 03405   31532   f . 03405   315   outside the range of Table 10.9, obtain from
     6    -34440.02929     -. 01322   21348   -.01322     213   10.2.15 or from Table 10.8, m x K + ( x ) ,
     5   -106899. 12565    -. 04104   04602   -. 04104    046
     4    - 13360.39272    -. 00512   92905   -.00512     929   WxKal2(x) for the desired value of x and use
     3   +102011. 17704    +. 03916   38905   f. 03916    389
     2    +42387. 96341    +. 01627   34870   f.01627     349   these as starting values in the recurrence relation
     1    -93395. 73728    -. 03585   62712   -. 03585    627   10.2.18 for increasing n. If x lies within the
     0    -53777.68747     -. 02064   62030   -. 02064    620
                                                                range of Table 10.9 and n>10, the recurrence
                                                                may be started with 43?rlzK19,2(x),   -K21n(x)
   It may be observed that the normalization of the             obtained from Table 10.9.
sequence F , FN-l, . ., Focan also be obtained
           N        .                                              Example 4. Compute r n K l l D ( x ) for x=3.6.
from formula 10.1.50 by computing the sum                          Obtain from Table 10.8 for x=3.6
u=g 0
        (2k+l)F: and h d i n g p=l/&          This
yields, in the case of the example, p=l/&=
.OOOOO 03839 177.
454
The recurrence relation 10.2.18 yields successively

-J3~/3.6K5/2(3.6) -.01192 222
               =


                   ---.02461 718
                   -




-dm6K,/2(3.6) = -.02461 718


                    --.12072 034
                    -

  &r/3.6KlI/2(3.6) .04942 4480
                 =


                    =.35122 533.
                                 --
                                3.6


  d m K r D ( 3 . 6 )= .01523 3952


                   = .04942.4480
                                  +c6 718)
                                   5
                                           (.01523 3952)




                                     (.02461




                                 -- (.04942 4480)
                                     3.6



                                  +c6 034)
                                   9
                                     (.12072


  As a check, the recurrencecan be carried out until
n=9 and the value of J m K l , n ( 3 . 6 ) so obtained
can be compared with the corresponding value
from Table 10.9.
   To compute =I,,+&) when both n and z
                                                           ~’(x),




                                                                   {
                                BESSEL FUNCTIONS OF FRACTIONAL ORDER

                                                                  respectively, the following formulas may be
                                                           used, in which d, d’



                                                                      3!
                                                                          u4
                                                                          4!




                                                                          V’
                                                                          2!




                                                                         2! 31-
                                                                                 denote approximations to e, c’
                                                           and u=y (d)/y (d), v= y ’(d’)/d’’y(d’).
                                                                          ’


                                                             c=d-~-2d -+2 --24d2
                                                                      u3



                                                                        +88d $-(88+720@)

                                                                      +5856d28!

                                                                                    03
                                                                                    3!
                                                                                         -
                                                                                         U6
                                                                                         5!




                                                                        -(105+76d‘3+24d’6)$
                                                                                              $
                                                                             u“-(16640d+40320d4)~+. . .

                                                             c’=d’ 1-~---(3+2d’~)--(15+10d’~)-



                                                                           -(945+756dt3+272dt6)$- . . .}

                                                                     l-d -+- 3
                                                           Y’(C)=Y’(~) u’ u 3d2q?+14d-b
                                                                                 I 4


                                                                   -(14+45@)g+471da fi
                                                                             uQ      u7
                                                                                        U
                                                                                        5!


                                                                                 -(1432d+l575d4)g+. . .




                                                                           -(15d/3+14d’3$
                                                                                               US
                                                                                                        -v4
                                                                                                        4!




                                                                                 {
are outside the range o Table 10.9, use the device
                       f
described in t9.201.
                   Airy Functions
                                                                          -(105d’3+101d’”+45d’4)~-. .}
                                                                                                .

  To compute Ai(z), Bi(x) for values of x beyond             Example 6. Compute the zero of y(z)=Ai(x)
1, use auxiliary functions from Table 10.11.               -Bi(z) near d= -.4.
  Example 5. Compute Ai(z) for 2=4.5.                        From Table 10.11,
  Firet, for x=4.5,
    [=#$”‘=6.363961029, c1=.15713 48403.                                          -
                                                             g(-.4)=.02420 467, y‘( .4)= -.71276 627

Hence, from Table 10.11, f(-E) = .55848 24 and             whence u=y(-.4)/y’(-.4)= -.03395 8776. From
thus                                                       the above formulas
Ai (4.5)                                                      ~=-.4+.03395 8776-.OOOOO 5221
      =$(4.5)-u4(.5584824) exp (-6.36396 1029)                                 +.ooooo 01 11 +.ooooo 0001
      =$(.68658 905)(.55848 24)(.00172 25302)                  - .36604 6333.
                                                                 _
                                                           Y’(c) (- .71276 627) 1 + .00023 0640
                                                               =
      = .00033 02503.                                            -.OOOOO 6527 -.OOOOO 0027 +.OOOOO0002)
  To compute the zeros c, c’of a solution y(z) of              = (- .71276 627)(1.00022 4088)
the equation y”-xy=O and of its derivative                     --.71292 599.
                                                               -
BESSEL FUNCTIONS OF FRACTIONAL ORDER                                                 455
                                                      References
                           Texts                                                            Tables
 [10.1] H . Bateman and R. C. Archibald, A guide to tables       [10.17] H. K. Crowder and G. C. Francis, Tables of
          of Bessel functions, Math. Tables Aids Comp. 1,                   spherical Bessel functions and ordinary Bessel
           205-308 (1944), in particular, pp. 229-240.                      functions of order half and odd integer of the
 [10.2] T. M. Cherry, Uniform asymptotic formulae for                       first and second kind, Ballistic Research Labora-
           functions with transition points, Trans. Amer.                   tory Memorandum Report No. 1027, Aberdeen
           Math. Soc. 68, 224-257 (1950).                                   Proving Ground, Md. (1956).
 [10.3] A. ErdBlyi et al., Higher transcendental functions,      [10.18] A. T. Doodson, Bessel functions of half integral
           vol. 1, 2 (McGraw-Hill Book Co., Inc., New                       order [Riccati-Bessel functions], British Assoc.
           York, N.Y., 1953).                                               Adv. Sci. Report, 87-102 (1914).
 [10.4] A. ErdBlyi, Asymptotic expansions, California            [10.19] A. T. Doodson, Riccati-Bessel functions, British
           Institute of Technology, Dept. of Math.,                         Assoc. Adv. Sci. Report, 97-107 (1916).
           Technical Report No. 3, Pasadena, Calif. (1955).      [10.20] A. T. Doodson, Riccati-Bessel functions, British
  [10.5] A. ErdBlyi, Asymptotic solutions of differential                    Assoc. Adv. Sci. Report, 263-270 (1922).
           equations with transition points or singularities,     [10.21] Harvard University, Tables of the modified Hankel
           J. Mathematical Physics 1, 16-26 (1960).                          functions of order one-third and of their deriva-
  [10.6] H. Jeffreys, On certain approximate solutions of                    tives (Harvard Univ. Press, Cambridge, Mass.,
           linear differential equations of the second order,                1945).
            h c . London Math. SOC. 428-436 (1925).
                                       23,                        [10.22] E. Jahnke and F. Emde, Tables of functions, 4th
  [10.7] H. Jeffreys, The effect on Love waves of hetero-                    ed. (Dover Publications, Inc., New York, N.Y.,
           geneity in the lower layer, Monthly Nat. Roy.                     1945).
           Astr. Soc., Geophys. Suppl. 2, 101-111 (1928).
                                                                 [10.23] C. W. Jones, A short table for the Bessel functions
  [10.8] H. Jeffreys, On the use of asymptotic approxima-
           tions of Green's type when the coefficient has                    Zn++(z), (2/r)Kn+4(2) (Cambridge Univ. Press,
                                                                             Cambridge, England, 1952).
           zeros, Proc. Cambridge Philos. Soc. 52, 61-66
            (1956).                                              [10.24] J. C. P. Miller, The Airy integral, British h o c .
  [10.9] R. E. Langer, On the asymptotic solutions of                        Adv. Sci. Mathematical Tables, Part-vol. B
           differential equations with an application to the                 (Cambridge Univ. Press, Cambridge, England,
            Bessel functions of large complex order, Trans.                  1946).
            Amer. Math. Soc. 34, 447-480 (1932).                  t10.251 National Bureau of Standards, Tables of spherical
[10.10] R. E. Langer, The asymptotic solutions of ordinary                   Bessel functions, vols. I, I1 (Columbia Univ.
            linear differential equations of the second order,               Press, New York, N.Y., 1947).
            with special reference to a turning point, Trans.     [10.261 National .Bureau of Standards, Tables of Bessel
            Amer. Math. Soc. 67, 461-490 (1949).                             functions of fractional order, vols. I, I1 (Co-
[10.11] W. Magnus and F. Oberhettinger, Formeln und                          lumbia Univ. Press, New York, N.Y., 1948-49).
            Siitze fur die speaiellen Funktionen der mathe-       [10.27] National Bureau of Standards, Integrals of Airy
            matischen Physik, 2d ed. (Springer-Verlag,                       functions, Applied Math. Series 52 (U.S. Gov-
            Berlin, Germany, 1948).                                          ernment Printing Office, Washington, D.C.,
[10.12] F. W. J. Olver, The asymptotic solution of linear                     1958).
           differential equations of the second order for         [10.28] J. Proudman, A. T. Doodson and G. Kennedy,
            large values of a parameter, Philos. Trans. Roy.                  Numerical results of the theory of the diffraction
            Soc. London [A] 247, 307-327 (1954-55).                          of a plane electromagnetic wave by a conducting
[10.13] F. W. J. Olver, The asymptotic expansion of Bessel                   sphere, Philos. Trans. Roy. Soc. London [A]
            functions of large order, Philos. Trans. Roy.                    217, 279-314 (1916-18), in particular pp. 284-
            Soc. London [A] 247, 328-368 (1954).                             288.
[10.14] F. W. J. Olver, Uniform asymptotic expansions of          [10.29] M. Rothman, The problem of an infinite plate
            solutions of linear secondarder differential                      under an inclined loading, with tables of the
            equations for farge values of a parameter, Philos.               integrals of Ai (kz),Bi (+z), Quart. J. Mech.
            Trans. Roy. Soc. London [A] 250,479-517 (1958).                   Appl. Math. 7, 1-7 (1954).
[10.15] W. R. Wasow, Turning point problems for systems           [10.30] M. Rothman, Tables of the integrals and difEer-
            of linear differential equations. Part I : The
                                                                             ential coefficients of Gi (+z), Hi (--z), Quart. J.
           formal theory; Part 11: The analytic theory.
                                                                              Mech. Appl. Math. 7, 379-384 (1954).
            Comm. Pure Appl. Math. 14, 657-673 (1961);
            15, 173-187 (1962).                                    [10.31] Royal Society Mathematical Tables, vol. 7,
[10.16] G. N. Watson, A treatise on the theory of Bessel                      Bessel functions, Part 111. Zeros and associated
           functions, 2d ed. (Cambridge Univ. Press,                          values (Cambridge Univ. Press, Cambridge,
             Cambridge, England, 1958).                                       England, 1960).
456                                BESSEL FUNCl'IONS OF FRACTIONAL ORDER

[10.32] R. S. Scorer, Numerical evaluation of integrals of   [10.33] A. D. Smirnov, Tables of Airy functions (and
          the form                                                     special confluent hypergeometric functions).
                                                                       Translated from the Russian by D. G. Fry
                                                                        (Pergamon Press, New York, N.Y., 1960).
                                                             [10.34] I. M. Vinogadov and N. G. Cetaev, Tables of
                                                                       Besael functions of imaginary argument (Izdat.
         and the tabulation of the function                             Akad. Nauk SSSR., Moscow, U.S.S.R., 1950).
                                                             (10.351 P. M. Woodward, A. M. Woodward, R. Hensman,
                Gi   (2)= (l/r)Jmsin   (uz+ l/3u8)du,                  H. H. Davies and N. Gamble, Four-figure tables
                                                                       of the Airy functions in the complex plane,
         Quart.J. Mech. Appl. Math. 3, 107-112 (1960).                 Phil. Mag. (7) 37, 236-261 (1946).

More Related Content

What's hot

DDS-20m
DDS-20mDDS-20m
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
Yodhathai Reesrikom
 
เซต
เซตเซต
เซต
krupatcharin
 
Ese563
Ese563 Ese563
Ese563
Azlin lolin
 
近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
Kosei ABE
 
Location of Zeros of Polynomials
Location of Zeros of PolynomialsLocation of Zeros of Polynomials
Location of Zeros of Polynomials
ijceronline
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
klorofila
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
Ken'ichi Matsui
 
free Video lecture
free Video lecturefree Video lecture
free Video lecture
Edhole.com
 
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
Ken'ichi Matsui
 
Emo-Exploitation
Emo-ExploitationEmo-Exploitation
Emo-Exploitation
w0nd
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
Edhole.com
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Amro Elfeki
 
Lecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyLecture 3: Stochastic Hydrology
Lecture 3: Stochastic Hydrology
Amro Elfeki
 
Calculo de integrais_indefinidos_com_aplicacao_das_proprie
Calculo de integrais_indefinidos_com_aplicacao_das_proprieCalculo de integrais_indefinidos_com_aplicacao_das_proprie
Calculo de integrais_indefinidos_com_aplicacao_das_proprie
Rigo Rodrigues
 
El text.life science6.matsubayashi191120
El text.life science6.matsubayashi191120El text.life science6.matsubayashi191120
El text.life science6.matsubayashi191120
RCCSRENKEI
 
Gamma function
Gamma functionGamma function
Gamma function
Solo Hermelin
 
Pc12 sol c04_4-4
Pc12 sol c04_4-4Pc12 sol c04_4-4
Pc12 sol c04_4-4
Garden City
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
Ans Ali
 

What's hot (20)

DDS-20m
DDS-20mDDS-20m
DDS-20m
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
เซต
เซตเซต
เซต
 
Ese563
Ese563 Ese563
Ese563
 
近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
 
Location of Zeros of Polynomials
Location of Zeros of PolynomialsLocation of Zeros of Polynomials
Location of Zeros of Polynomials
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
 
free Video lecture
free Video lecturefree Video lecture
free Video lecture
 
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
 
Emo-Exploitation
Emo-ExploitationEmo-Exploitation
Emo-Exploitation
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
Lecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyLecture 3: Stochastic Hydrology
Lecture 3: Stochastic Hydrology
 
Calculo de integrais_indefinidos_com_aplicacao_das_proprie
Calculo de integrais_indefinidos_com_aplicacao_das_proprieCalculo de integrais_indefinidos_com_aplicacao_das_proprie
Calculo de integrais_indefinidos_com_aplicacao_das_proprie
 
El text.life science6.matsubayashi191120
El text.life science6.matsubayashi191120El text.life science6.matsubayashi191120
El text.life science6.matsubayashi191120
 
Gamma function
Gamma functionGamma function
Gamma function
 
Pc12 sol c04_4-4
Pc12 sol c04_4-4Pc12 sol c04_4-4
Pc12 sol c04_4-4
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 

Similar to Bessel functionsoffractionalorder1

Bessel functionsofintegerorder1
Bessel functionsofintegerorder1Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Chumphol Mahattanakul
 
Calculus III
Calculus IIICalculus III
Calculus III
Laurel Ayuyao
 
bode_plot By DEV
 bode_plot By DEV bode_plot By DEV
bode_plot By DEV
Devchandra Thakur
 
Lesson 9: Parametric Surfaces
Lesson 9: Parametric SurfacesLesson 9: Parametric Surfaces
Lesson 9: Parametric Surfaces
Matthew Leingang
 
Фізичні методи дослідження_лекції.pdf
Фізичні методи дослідження_лекції.pdfФізичні методи дослідження_лекції.pdf
Фізичні методи дослідження_лекції.pdf
kvmess0
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
yustar1026
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
Pamela Paz
 
Laplace table
Laplace tableLaplace table
Laplace table
Alelign Hailu
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
Karnav Rana
 
Laplace table
Laplace tableLaplace table
Laplace table
Thapar University
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
PatrickMumba7
 
Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
Sahiris Seg
 
Ejercicios varios de algebra widmar aguilar
Ejercicios varios de  algebra   widmar aguilarEjercicios varios de  algebra   widmar aguilar
Ejercicios varios de algebra widmar aguilar
Widmar Aguilar Gonzalez
 
1st and 2and Semester Chemistry Stream (2014-December) Question Papers
1st and 2and Semester Chemistry Stream (2014-December) Question Papers1st and 2and Semester Chemistry Stream (2014-December) Question Papers
1st and 2and Semester Chemistry Stream (2014-December) Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Chap 4 complex numbers focus exam ace
Chap 4 complex numbers focus exam aceChap 4 complex numbers focus exam ace
Chap 4 complex numbers focus exam ace
SMK Tengku Intan Zaharah
 
Introduction problems
Introduction problemsIntroduction problems
Introduction problems
PatrickMumba7
 
C Code and the Art of Obfuscation
C Code and the Art of ObfuscationC Code and the Art of Obfuscation
C Code and the Art of Obfuscation
guest9006ab
 
On The Homogeneous Biquadratic Equation with 5 Unknowns
On The Homogeneous Biquadratic Equation with 5 UnknownsOn The Homogeneous Biquadratic Equation with 5 Unknowns
On The Homogeneous Biquadratic Equation with 5 Unknowns
IJSRD
 
20190225 DIY伝送装置
20190225 DIY伝送装置20190225 DIY伝送装置
20190225 DIY伝送装置
Kato Ryosuke
 
79ecb3d9 65f4-4161-b97d-63711df5d6c5
79ecb3d9 65f4-4161-b97d-63711df5d6c579ecb3d9 65f4-4161-b97d-63711df5d6c5
79ecb3d9 65f4-4161-b97d-63711df5d6c5
spoider
 

Similar to Bessel functionsoffractionalorder1 (20)

Bessel functionsofintegerorder1
Bessel functionsofintegerorder1Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
 
Calculus III
Calculus IIICalculus III
Calculus III
 
bode_plot By DEV
 bode_plot By DEV bode_plot By DEV
bode_plot By DEV
 
Lesson 9: Parametric Surfaces
Lesson 9: Parametric SurfacesLesson 9: Parametric Surfaces
Lesson 9: Parametric Surfaces
 
Фізичні методи дослідження_лекції.pdf
Фізичні методи дослідження_лекції.pdfФізичні методи дослідження_лекції.pdf
Фізичні методи дослідження_лекції.pdf
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
 
Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
 
Ejercicios varios de algebra widmar aguilar
Ejercicios varios de  algebra   widmar aguilarEjercicios varios de  algebra   widmar aguilar
Ejercicios varios de algebra widmar aguilar
 
1st and 2and Semester Chemistry Stream (2014-December) Question Papers
1st and 2and Semester Chemistry Stream (2014-December) Question Papers1st and 2and Semester Chemistry Stream (2014-December) Question Papers
1st and 2and Semester Chemistry Stream (2014-December) Question Papers
 
Chap 4 complex numbers focus exam ace
Chap 4 complex numbers focus exam aceChap 4 complex numbers focus exam ace
Chap 4 complex numbers focus exam ace
 
Introduction problems
Introduction problemsIntroduction problems
Introduction problems
 
C Code and the Art of Obfuscation
C Code and the Art of ObfuscationC Code and the Art of Obfuscation
C Code and the Art of Obfuscation
 
On The Homogeneous Biquadratic Equation with 5 Unknowns
On The Homogeneous Biquadratic Equation with 5 UnknownsOn The Homogeneous Biquadratic Equation with 5 Unknowns
On The Homogeneous Biquadratic Equation with 5 Unknowns
 
20190225 DIY伝送装置
20190225 DIY伝送装置20190225 DIY伝送装置
20190225 DIY伝送装置
 
79ecb3d9 65f4-4161-b97d-63711df5d6c5
79ecb3d9 65f4-4161-b97d-63711df5d6c579ecb3d9 65f4-4161-b97d-63711df5d6c5
79ecb3d9 65f4-4161-b97d-63711df5d6c5
 

More from Chumphol Mahattanakul

Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
Chumphol Mahattanakul
 
Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
Chumphol Mahattanakul
 
Ip aspects of valuation malaysia
Ip aspects of valuation malaysiaIp aspects of valuation malaysia
Ip aspects of valuation malaysia
Chumphol Mahattanakul
 
Ip valuation presentation
Ip valuation presentationIp valuation presentation
Ip valuation presentation
Chumphol Mahattanakul
 
A riddle of liquidity and interest rate public
A riddle of liquidity and interest rate publicA riddle of liquidity and interest rate public
A riddle of liquidity and interest rate public
Chumphol Mahattanakul
 
Confluent hypergeometricfunctions
Confluent hypergeometricfunctionsConfluent hypergeometricfunctions
Confluent hypergeometricfunctions
Chumphol Mahattanakul
 
Combinatorial analysis
Combinatorial analysisCombinatorial analysis
Combinatorial analysis
Chumphol Mahattanakul
 
Bernoulli eulerriemannzeta
Bernoulli eulerriemannzetaBernoulli eulerriemannzeta
Bernoulli eulerriemannzeta
Chumphol Mahattanakul
 
Cosmetics0290 09
Cosmetics0290 09Cosmetics0290 09
Cosmetics0290 09
Chumphol Mahattanakul
 

More from Chumphol Mahattanakul (12)

Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
 
Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
 
Ip aspects of valuation malaysia
Ip aspects of valuation malaysiaIp aspects of valuation malaysia
Ip aspects of valuation malaysia
 
Textile syllabus tu rangsit
Textile syllabus tu rangsitTextile syllabus tu rangsit
Textile syllabus tu rangsit
 
Ip valuation presentation
Ip valuation presentationIp valuation presentation
Ip valuation presentation
 
A riddle of liquidity and interest rate public
A riddle of liquidity and interest rate publicA riddle of liquidity and interest rate public
A riddle of liquidity and interest rate public
 
Confluent hypergeometricfunctions
Confluent hypergeometricfunctionsConfluent hypergeometricfunctions
Confluent hypergeometricfunctions
 
Combinatorial analysis
Combinatorial analysisCombinatorial analysis
Combinatorial analysis
 
Bernoulli eulerriemannzeta
Bernoulli eulerriemannzetaBernoulli eulerriemannzeta
Bernoulli eulerriemannzeta
 
Cosmetics0290 09
Cosmetics0290 09Cosmetics0290 09
Cosmetics0290 09
 
M3
M3M3
M3
 
M3
M3M3
M3
 

Recently uploaded

Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
IreneSebastianRueco1
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
Bisnar Chase Personal Injury Attorneys
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 

Recently uploaded (20)

Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 

Bessel functionsoffractionalorder1

  • 1.
  • 2. 436 BEBBEL FUNCTIONS OF FRACTIONAL ORDEB page Table 10.8. Modified Spherical Beasel Functions-ordera 0, 1 and 2 (01255). . . . . . . . . . . . . . . . . . . . . . . . . . . 469 &&In+* (5), 4ZG-i (z> n=O, 1, 2; ~=0(.1)5, 4-9D Table 10.9. Modified Spherical Beasel Functions--Orders 9 and 10 (O<zl.p). . . . . . . . . . . . . . . . . . . . . . . . . . . 470 d 3 * l Z I n + i (2) xn+'J+GEKn+i (2) ~ = 9 10; ~=0(.1)5, 7-8s , e-'I* (4,(2/TWKn+i (z) n=9, 10; z=5(.1)10, 6 s 6 exp [-z+n(n+ 1)/(2z)IIn~(z) exp [z-n(n+1)/(2z)l~n+i(z) n=9, 10; z-'=.1(-.005)0, 7-8s . Table 10.10. M~dified Spherical Beasel Functione-Various Orders (OIn5100) . . . . . . . . . . . . . . . . . . . . . . . . . 473 &Wn+l(z) , 45%+i (z) n=0(1)20, 30, 40, 50, 100 z=1, 2, 5, 10, 50, 100, 10s . Table 10.11. Airy Functions ( 0 5 2 1 -) . . . . . . . . . . . . . . 475 Ai&), Ai'(z), Bi(z), Bi'(z) z=O(.O1)1, 8D Ai(-z), Ai'(-z), Bi(-z), Bi'(-z) z=O(.O1)1(.l)lO, 8D Auxiliary Functions for Large Positive Arguments Ai(z)=&z-%-Y(-€); Bi(z)=z-l/rdf([) Ai'(z)=-42Y4e-(g(-€); Bi'(z)=z'/Wg(€) c'= f(f I),g(f [) ; )=&I+/', 1.5(- .l).5(- .05)0, 6D Auxiliary Functions for Large Negative A r p e n t a Ai(+ =z-"*lfi(O COB €+jd€) sin €1 Bi(-z)=z-l~'ffa(€) €-fi(€) sin €1 Ai'(-~)=z'/~[g~([) €-g2(€) cos €1 sin Bi'(-z)=z'/Ygal€) sin €+gl(€)COB €1 f1(€)J f'(€1 9 9 (€) 9 (€1 ; €= 1 9 2 j2"" p = . 0 5 (-.01)0, 6-7D Table 10.12. Integrals of Airy Functions (OIz110). . . . . . . . . 478 Ai(t)dt, z=0(.1)7.5; SD': Ai(--t)dt, z=O(.l)lO, 7D s,'Bi(t)dt; 2=0(.1)2; 1 Bi(--t)d, z=0(.1)10, 7D Table 10.13. Zeros and Associated Valuea of Airy Functions and Their Derivatives (1 1 8 1lo) . . . . . . . . . . . . . . . . . . . . 478 Zeroa a,, a;, b,, b; of Ai@), Ai'@), Bi(z), Bi'(z) and valuea of Ai'@,), &(a;),Bi'(b,), Bi(b;) e=l(l)lO, 8D Complex Zmos and Associated Valuea af Bi(z) and Bi'(z) (1 5 8 5 5 ) Modulus and Phaae of Bi'(@,), Bi(8:) 8=1(1)5, 3D The author acknowledge8 the eseietance of Bertha H. Walter and Ruth Zucker in the preparation and checking of the tablea and graphs.
  • 3. { 10. Bessel Functions of Fractional Order Mathematical Properties 10.1. Spherical Beeeel Functions Definitions Werential Equation 10.1.1 $ " +2m'+[ 2-n(n+ 1) ]w=O 0 (n=O,*l, f 2 , . . .) Reprementotiomby Elementary Functions Particular solutions are the Spherical Bessel 10.1.8 functions of thefist kind j,(z)=z-'[P(n+*, 2) sin (z-+W) jm(z>= W d n + i ( z ) +Q(n+h 4 COS (z-hll the Spherical Bessel functions o the second kind f 10.1.9 yn(Z)=(-l)m+lz-'[P(n+), Z) COS (Z+#TJT) Ya(z) =AGYn++(z) , and the Spherical Bessel functions of the th&d -Q(n+3, Z) sin ( z + h ) l kind hP(z)=jn(z) +iya(z)=dGFHSt(z), hia)(z>=jm(z)-iyn(z) = ~ Z H ; ~ + ( Z > . The pairs jn(z), ya(z) and hil)(z), hf)(z) are linearly independent solutions for every n. For general properties s the remarks after 911 m ... -9(-l)&(n+$, 2k)(22)-* 0 Ancending S e r i e a (&e 9.1.2.9.1.10) 10.1.2 2s 32' 'm(z)=l. 3 . 5 . . . (2n+1) '-1!(2n+3) 1.. 013 ="y 2k+1)(22)-"-' (-l)&(n+*, 0 163.5.. . (2n-1) 33 (n=O, 1,2, . . .) Y() - mz= .p+ 1 l! (1-24 ' 2 V n (3z')' ) (3-2%) - . . .} (n=O, 1,2, . . .) 1680 16120 I 30240 437
  • 4. FIGUSID js(~), 10.3. va(Z). ~=10. Pohon's Integral and Gegenbauer's Generalization 10.1.13 jn(z)==2' s,- cos (2 cos e) sin2"+'8 ds (See 9.1.20.) 10.1.14 -.3- =z1 ( - i ) n l e'*coaep,,(cos e) sine& F I G U B ~ j&). n=0(1)3. 10.1. (n=O, 1,2, . . .) *See page II.
  • 5. BESSEL FUNCTIONS OF FEtACTIONAL ORDER 439 Spherical Beaeel Functions of the !bond and T i d hr Kind 10.1.15 yn(2)=(-l)"+lj-n-1(2) (n=O, f l , f 2 , . . .) 10.1.16 hz)(z)=i-m-1z-1el'& (n++,k)(-2izl-k 0 10.1.17 n * (See 9.2.28.) hi2'(z)= i R + l z - l e - i (n++ k) (2iz) Z~ 0 10.1.28 ( X Z M , =j:(2) + / ) f(2) 2 +y: (2)=2-2 10.1.29 (+X/Z>M,~,~(Z) +y;(z) =j;(z) =~-~+2-' 10.1.30 0 n-2k (n=O, 1,2, . . .) Analytic Continuation DHertmtiation Formulae 10.1.34 jn(zernri) ernnrfjn(z) = 10.1.35 yn(zernrl) (-I)"'ernnrfyn(z) = 10.1.36 h:)(~p.(~+l)~~ )= (-l)%;s)(z) 10.1.37 h:2)(ze(h+1)rt (-l)"h:Q(Z) )= 10.1.38 h$ (zeMr*) =hii) (z) (Z=l, 2; m,n=O, 1,2, . . .) Generatiqg Functiom 10.1.39 10.1.26 *SeePage n.
  • 6. 440 BESSEL FUNCTIONS O FRACTIONAL ORDER F Fresnel Integrab 10.1.53 (See also 11.1.1, 11.1.2.) Zeros and Their Asymptotic Expansions The zeros of j,(z) and y() are the same as the ,z zeros of Jn+&) Y,+)(z) and the formulas for and j.,, and y, given in 9.5 are applicable with ., v=n+#. There are, however, no simple relations connecting the zeros of the derivatives. Ac- cordingly, we now give formulas for a;,,, b;,,, the 8-th positive zero of j: (2) , y (2), respectively; ; z=O is counted as the first zero of jA(z). (Tables of a;,,, b L , jn(4J, YnK.,) are given in [10.311.) Elementary Relatiom fn(z) =jn(z) d+Yn(z) sin (t a real parameter, 0 St 5 1) If T,, is a zero of &(z) then Some In6nite Seriee Involving j:(z) 10.1.50 2 (2n+l)j:(z)=l 0 10.1.51 m sin (-1)R(2n+1)j:(~)=3--22 0 10.1.52 10.1.57
  • 7. BESSEL FUNCTIONS O FRACTIONAL ORDER, F 441 McMahon's Expadons for n Fixed and a Large UniformAsymptotic Expansions of Zeros and Aeeociated Values for n Large 10.1.58 10.1.63 d . 8 ~ b:,8-8-((c(+7) (8/3)-1 4 -- (7p2+154/~+95)(80))'~ 3 -32 (85/~~+3535p~+356lp+6133)(8/3)-~ 15 -- 64 (6949p4+474908p3 +330638p2 105 +9046780p-5075147) (8/3)-'-- . . . @=~(s+3n-3)for /3=*(s+$n) for p=(2n+1)2 { Asymptotic Expansions of Zeros and Associated Values for n Large 10.1.59 a;. -(n+3)+ .8086165(n+ 3)1/3-.236680(n+3) -'I3 -.20736(n+$)-1+.0233(n+$)--"/3+ . . . 10.1.60 b:, -(n+ 3) + 1.821098O(n+ 3)' p 11+~~xi(n+t)-"3b:i(n+3)-~} k=l +.802728(n+4) -m-.11740(n+4) h&), z(€) are defined as in 9.5.26, 9.3.38, 9.3.39. +.0249(n+$)-6/3+ . . . a:, b s-th (negative) real zero of Ai'(z), Bi'(z) ; 10.1.61 (see 10.4.95, 10.4.99.) Complex Zeros of h!"(z), h!"'(z) j,(a:, ') -.8458430(n+$) 1- 4'" .566032(n+3) -2/3 hil)(z) and hi')(z.em**), m any integer, have the +.38081(n+3)-4@-.2203(n+3)-a+ . . .} same zeros. hi1)(z) has nzeros, symmetrically distributed with 10.1.62 respect to the imaginary axis and lying approxi- } mately on the finite arc joining z=-n and z=n &(b:, 1) 4 1 8 3 9 2 1 (n+4)-"'"{ 1-1 .274769(n+4))-2/3 shown in Figure 9.6. If n is odd, one zero lies on +1.23038 (n+ 3) -4/3- 1.0070 (n+4)-2+ . . . the imaginary axis. hi*)'(z)has n + 1 zeros lying approximately on the See [10.31] for corresponding expansions for same curve. If n is even, one zero le on the is 8=2, 3. imaginary axis.
  • 8. BESSEL FUNCTIONS OF FRACTIONAL ORDER -z (-mi (r) (-I)'& (z) 0. 0 -. 4409724 -. 4572444 -. 122500 -. 114201 -. 06806 -. 05986 . 000000 .027518 . 00000 .00575 .oooo 0. 2 .0023 0. 4 -. 4702250 -. 10'1243 -. 05279 .049069 .01118 .0043 0. 6 -. 4802184 -. 101318 -. 04674 .065677 .01592 .0061 0. 8 -. 4875705 -. 096159 -. 04160 .078255 .01983 .0075 1. 0 -. 4926355 -. 091561 -. 03725 .OS7587 .02290 .0085 --3 hi (r) Hi (r) 1. 0 -. 4926355 -. 09156 -. 037 .OS7587 .0229 1. 2 -. 4131280 -. 05056 -. 014 .065507 .0121 1. 4 -. 3551700 -. 03043 -. 006 .050524 .0070 1. 6 -. 3108548 -. 01950 -. 003 .039890 .0042 1. 8 -. 2757704 -. 01310 -. 001 .032085 .0027 2. 0 -. 2472521 -. 00914 .026206 .0018 2. 2 -. 2235898 -. 00658 .021682 .0012 2. 4 -. 2036314 -. 00485 .018141 .OW8 2. 6 -. 1865701 -. 00366 .015326 .0006 2. 8 -. 1718217 -. 00280 .013061 .0004 3. 0 -. 1589519 -. 00219 .011217 .0003 3. 2 -. 1476304 -. 00173 .009701 .0002 3. 4 -. 1376005 -. 00138 .008443 .0002 3. 6 -. 1286601 -. 00112 .007391 . 0001 3. 8 -. 1206469 -. 00091 .006505 .om1 4.0 -. 1134296 -. 00075 .005753 4.2 -. 1069004 -. 00062 .005111 4.4 -. 1009699 -. 00052 .004560 4.6 -. 0955634 -. 00044 .004085 4.8 -. 0906180 -. 00037 .003672 5. 0 -. 0860804 -. 00032 .003313 6. 2 -. 0819049 -. 00027 .002998 5. 4 -.0780523 -. 00023 .002722 5. 6 -. 0744888 -. 00020 .002478 5. 8 -. 0711850 -. 00018 .002262 6. 0 -. 0681152 -. 00015 .002070 6. 2 -. 0652570 -. 00013 .001899 6. 4 -.0625905 -. 00012 .001746 6. 6 -. 0600985 -. 00010 .001609 6. 8 -. 0577653 -. 00009 .001486 7. 0 -. 0555773 -. 00008 .001375 0. 40 -. 0645731 -. 00013 .001859 .36 -. 0487592 --. 00005 .001056 .32 -. 0352949 -. 00002 .OW551 .28 -. 0242415 -. 00001 .000259 .24 -. 0155683 .000106 .20 -. 0091416 . oooo37 . 16 -. . 0047276 - -. - . .000010 . 12 -. 0020068 .000002 .08 -. 0005965 .04 -. 0000747 .oo I -.0000000 I I
  • 9. BESSEL F " I 0 N S OF FRAcTlONAL ORDER 443 10.2. Modified Spherical Bessel Functions Definitions Differential Equation 10.2.1 1) z2w" +2zw' - z2+n(n+ ]w=0 [ (n=O, f l , f 2 , . . .) Particular solutions are the Modifid Spherka? Bessel fum!;.nS o the$rst kind, f 10.2.2 { &$&++(z) = e-nri/*jn(zer*/a) (-r<arg z 5%.> = e3nrf/2jn(~e-3rt/a) (I)lr<arg z 27) o the second kind, f 10.2.3 -I- ,++ (z)=ea(n+l)rt/ (2e (-r<arg 2 5 31r) -e- - (n+1)rt/%~(~~-3rt/a) (h<arg z5r) o the third kind, f 10.2.4 (n=O, 1,2, . . .) (See 10.1.9.) r n K + + ( Z =fr(-l)"+'dm[In+t(z) -I--)I-+(Z)l ) 10.2.12 The pairs WzIn++(z),n Z I - n - + ( Z ) r &&zI,++(z)=g,(z) sinh z+g-n-l(z) cosh z and go(2) =2-1, g1(z) = -2-2 dGmn++(Z) 9 rnZKn++(Z> gn-1(4 -gn+1(z) = (2n+1) z-'gn(z> are linearly independent solutions for every n. (n=O, f l , f 2 , . . .) Most properties of the Modified Spherical Bessel functions can be derived from those of the The Functions 1/&&2I*cn++,(Z), n=O, 1, 2 . Spherical Bessel functions by use of the above relations. 10.2.13 =z Ascending %rim sinh 10.2.5 rnIl,2(Z> 2 sinh 2-- 3 cosh z Z2 10.2.14 10.2.6 cosh z 1 . 3 . 5 . . . (2n-1) MZI-l/2(Z) =- Z 4GI-n-+(Z)= (-1)"2"+1 sinh z cosh z -3,2 (2) =- - - 3za + & +I Z 22 '+1!(1-2n) 2!(1-%)(3-%) 3 (n=O, 1,2, . . .) -- I- & &) & = 22 sinh z+ f *See page 11.
  • 10. 444 BESSEL FUNCTIONS OF FRACTIONAL ORDER Modified Spherical Besee1 Functions of the T i d Kind hr 10.2.15 &&zKn++(z) =3?rie"+1)~"2h~~)(ze*'f) (-*<wg z 5. 31 --3,,.ie- - (n+1)ri/2h(2)(ze-+rt) I O,,.<arg 2 54 =($?r/z)e-Z 5 (n++,k)(22)-~ 0 10.2.16 K,+*(z)=K-~-~(z)(n=O, 1 , 2 , . . .) The Functions m R n + + ( ~ ) , n = O ,2 1, 10.2.17 &@&(z)= (h/z)e-' &?2GI2(z) = ($n/z)e-Yl+z-') mK~,2(Z)=(3?r/Z)e-'(l+32-'+32-e) Elementary Properties Recurrence Relations f&): r n L + * ( Z ) , (-l)"+'mKn++(Z) (n=O, f l , &2, . . .) 10.2.18 fn-l(z) -fn+1(2) = (2n4-1)z-'fn(z) d (z>=@n+1) fn(z> 10.2.19 nfn-l(z)+(n+l)fn+l s n+l d 10.2.20 7fn(z) +&fn(4 =fn-1(z) (See 10.2.22.) n d 10.2.21 --fn(z) Z +-&fn(z) =fn+1(z) (See 10.2.23.) DifYerentiation Formulae fn(2): r n L + * ( Z ) , (-w+1m&++(4 (n=O, k l , ~ 2 ,. . ) 10.2.22 (; g J k + I= 'f.(z) Zn-m+'f,-,(z) 10.2.23 (5 -g>l -y n [z (2) I =z -n-mfn+m (2) 10.5. -&&+*(z), FIQURE &K,.++(z). z=10. (m=1,2,3,. . . )
  • 11. BESSEL FUNCTION8 OF FRACTIONAL ORDER 4.45 Formulas of Rayleigh's Type Addition Theorems and Degenerate Forms T, p, 6, X arbitrary complex; R=,@+p2-2rp coa 6 10.2.35 10.2.25 (n=O,1,2, . . . ) =l - n (.-1)k+1 (2n-k) ! (2n-2k)! (22)%-*" 2 3 0 k! [(n-k) I]* 10.3. Riccati-Beasel Functions DilTerential Equation Generating Functiom 10.3.1 16.2.30 9w"+ [z5 -n(n +l)]w=0 (n=O, f l , f 2 , . . .) Pairs of linearly independent solutions are zjn(z), q/n(z) (2I t I <I) Iz 10.2.31 &p' (z), zhp (2) All properties of these functions follow directly from those of the Spherical Besael functions. The Functiom zj,(z) zy&) n=O, 1, 2 Derivativea With Reapect to Order 10.3.2 10.2.32 zy'o(z)=sin 2, Zj,(z)=z-'sin 2-cos 2 zy'2(Z)=(3Z-2-1) S h 2-32' COB 2 10.3.3 10.2.33 q/&)=-cos 2, q/1(2)=-sin 2-2-1 cos 2 2&(2)=-32-' Sin 2-(32-'-1) COB 2 WTOMkiIUM 10.3.4 W{zy'n(z),zYn(z)}=l 10.3.5 W{z@)(z), zhF)(~)} =-2i For El(z)and Ei(z), see 5.1.1, 5.1.2. (n=O, 1,2, . . .) *See page n.
  • 12. 446 BESSEL FUNCTIONS OF FRACTIONAL ORDER 10.4. Airy Functions 10.4.12 W{Ai(z), Ai ( ~ e - ~ * ~ / ~ ) } =&r-lerfl6 Definitions and Elementary Properties 10.4.13 W{Ai ( ~ 6 ~ , ~ ~ (1 e - ) Ai ~ ~ ~ *~/~)} =4ir-1 Differential Equation 10.4.1 w" -zw=o Pairs of linearly independent solutions are Ai (z), Bi (z), Ai (z), Ai ( 2 W 3 ), Ai (z), Ai ( ~ e - ~ ~ ~ / ~ ) . Ascending Series 10.4.2 Ai (z) =clf(z) -c2g(z) 10.4.3 Bi (z) = & [cJ(z) +c~g(z)l 1 1-4 1.4.7 f(z)=i+- z3+- z6+- zO+. . . 3! 6 ! 9! =$ 3kk);( G! 2 2.5 2.5.8 g(z)=z+-4! z4+- 7 ! z7+- lo! zl0+ . . . 23k+1 =$ 3k ( ) gk (3k+l)! (a+$),=l 3k(a+i)k=(3sl+1)(3a+4) . . . (&+3k-2) (a arbitrary; k=l, 2, 3, . . .) (See 6.1.22.) 10.4.4 el=& (O)=Bi (0)/8=3-~fi/r(2/3) =.35502 80538 87817 10.4.5 c2=-Ai' (@)=Sif(0)/fi=3-ifl/r(1/3) =.25881 94037 92807 Relations Between Solutions 10.4.6- Bi (2)=erfnAi (a"'/"> Ai (ze-*"fl) +e+@ 10.4.7 Ai (z)+e"fn Ai (a2rtD) +e-2*iD Ai (a-2rfn)=o 10.4.8 Bi (2) +e*fn Bi (=2r*/g> +e--2rfn Bi (=-*rim) =O (2)G 10.4.9 Ai (~e*~~'/~)=)e*'~/~[Ai Bi (z)] Wl-OMkifUl9 10.4.10 W{Ai (z), Bi (z)}= T - ~ .." I ~ 10.4.11 W{Ai (z), Ai ( ~ e ~ * ~ =+r-1e-rf/6 /~)} FIGURE 10.7. Bi (~zz), Bi' (*4.
  • 13. BESSEL FUNCTIONS O F FRACTIONAL ORDER 447 10.4.30 I*2n({)=(@/2z)[f43 Ai'(z)+Bi'(z)] 10.4.31 K*2n({) ( ~ / z ) Ai' (z) =- T { Integral Representations 10.4.32 (3a)-% Ai [f (3a)-lBz]=Lm (at3ffzt)dt cos 10.4.33 =l (3a)-lB7r Bi [f (3a)-lnz] [exp (--at3ffzt)+sin (at3fzt)ldt The Integrals l' Ai ( f t)dt, la Bi ( f t ) d t =#z3/2 10.4.34 l Ai (t)dt=$ s,' [1-113(t)-111&)b!i 10.4.35 Ai (-t)dt=- :sd [J-113(t)+J113(t)]dl Ascending Series for is Ai ( f Qdt, is Bi ( f t)dt Representations of Beosel Functions in Terms of Airy Functions 10.4.38 l Ai (t)dt=clF(z)-c2G(z) (See 10.4.2.) 10.4.39 1 Ai (-t)dt=-clF(-z)+c2G(-z) 10.4.22 5*1/3({)=)m[& Ai (-z)FBi 90.4.23 (-z)-i H:'l,3({)=e~d/6m[Ai (-2)) Bi (-z)] 10.4.40 1 Bi (t)dt=@[clF(z)+c2G(z)l (See 10.4.3.) 10.4.24 H2',,,({)=efd1"m[Ai(-z)+i Bi (-z)] 10.4.41 10.4.25 1*l/a({)=$mz[r& Ai (z)+Bi (z)] s,'Bi (- t)dt= -fi[clF(- z) +c2G(- z) I 10.4.26 K*ln(l) =rm Ai (z) 1 1.4 1.4.7 F(z)=z+- z4+-7 z7+- 1O ,lo+ . . . 10.4.27 J,tzn({)=(J3/2z)[fJ3 (-z)+Bi'(-z)] Ai' 4 ! ! ! 10.4.28 Hi({)=e-2rf /3H(l) it -21&) =erf~'(J3/z)[Ai' (-2)-i Bi' (-41 G(z)=B z'+-2 z~+-z'+-z~'+ 5 . 8 1 2.5 2. . . 5! 8! ll! 10.4.29 p + 2 Hi~~({)=e2rf/3H~z~1a({) =$ ":( k ) (3k+2)! (J3/z)[Ai' (- z) +i (- z)] Bi' The constanta cy,c2 are given in 10.4.4, 10.4.5. 'See page n.
  • 14. 448 BESSEL FUNCI’IONS OF FRACTIONAL ORDER Tbe Functions Gi(z), Hi+) Difterential Equations for Gi (z), Hi (z) 10.4.42 10.4.55 w’-zw=-?r-l Gi ( ~ ) = r - ~ ~ ~ s i n ( i t ~ + z t ) d t 1 1 w(0) =- Bi (0) =- Ai (0) = .20497 55424 78 3 6 =IBi (z)+ 3 s,’[Ai(z) Bi (t)-Ai (t) Bi (z)]dt ( 1 w’(O)=-Bi’ O ) = - l Ai’(0)=.14942 94524 49 10.4.43 3 6 w(z)=Gi(z) Gi’@)=:Bit (z)+J’[Ai’(z) (t)-Ai (t) Bi’(z)]dt Bi 3 0 10.4.56 - w’ -zw= r-1 ’ 10.4.44 2 w(O)=- Bi 3 (O)=A (0)=.40995 10849 56 6 Ai Hi(z)=s-’fomerp(-i P+zt) dt 2 2 w’(O)=-Bi’(O)=-- Ai’(0)=.29885 89048 98 =-Bi (z)+ 3 s , ’ “ [Ai (t) Bi (2)-Ai(z) Bi(t)]dt 3 fl w(z)=Hi (z) 10.4.45 2 Differential Equation for Products of Airy Functions Hi’(z)=3Bi’ (z)+ s,’[Ai (t) Bi’(z)-Ai’(z) (t)]dt Bi 10.4.57 w’ -4ZW’ -2w=o “ 10.4.% Gi (z)+Hi (z)=Bi (z) Linearly independent solutions are Ai2 s’ (2)) Representations of 1’ Ai( f t)&, Bi( f t)& Ai (z) Bi (z), Bi2 (2). Wronskian for Products of Airy Functions by Gi (kz), (*z) Hi 10.4.47 10.4.58 W{Ai2(2))Ai (z) Bi (2)) Bi2 (z) ]=27r3 1 b i (t) d t =-+ T[ (z)Gi (z) -Ai (z)Gi’ (z)] Ai’ Asymptotic Expansions for Iz( Large 3 10.4.48 =--- n[Ai’(2) Hi (2)-Ai (z) Hi’(z)] 3 10.4.49 +I a=-- 6k+l ck ) k 6k-1 (k=1,2, 3, . . .) 1 b i (-t)dt=----?r[Ai’ (-2) Gi (-2) 3 -Ai (-2) Gi’(-41 10.4.50 =?+r[Ai’ (-2) Hi (-2) 3 -Ai (-z)Hi’ (- z) ] 10.4.51 1 Bi (t)dt=?r[Bi’ Gi (2)-Bi (2) (2) Gi’(z)] 10.4.52 =-r[Bi’ (z) Hi (2)-Bi (z) Hi’(z)] 10.4.53 l* Bi (-t)dt=--?r[Bi’ (-2) Gi (-2) -Bi (-2) Gi’(-z)] 10.4.54 =*[Bi’ (-2) Hi (-2) -Bi (-2) Hi’(-z)]
  • 15. BESSEL F U " I O N S OF FRACTIONAL ORDER 449 10.4.62 10.4.70 Ai' (-Z)--T-+Z* Ai' (--s)=N(z) cos +(s),Bi' (-r)=N(z) sin+(t) N(z)=JIAi'o (--s)+Bi'2 (-s)], +(s)=arctan [Bi' (-t)/Ai' (-2)l Differential Equations for Modulue and Phase Primes denote differentiation with respect to x 10.4.71 -r-l, W+'= *-Ix - 10.4.72 jV2,M~i!+M2p=M'2 + r-2M-2 * 10.4.73 NN'=-xMM' 10.4.74 tan (+-e)=Me'/M'= -(TA4M')-1, MNsin (+-e)=r-l 10.4.75 M"+xM- r - 2 ~ - 3 = ~ 10.4.76 (M2)"'+4s(M2)'-2&f2=0 10.4.77 e'2+ q(e"'/e') -f ( e " / e y = X Asymptotic Expansione of Modulus and Phase for Large z 10.4.78 M2(z) 1 x-'"--7r ao 0 ip-jg-23k (-'Ik (i) I (2~)-3k 10.4.79 -- (ZZ)-D+ 82825 128 14336 10.4.80 10.4.68 10.4.81 Bi' (~e*"l~) 49527 1 2065 30429 (2s)-12+ +- 640 (2s) 2048 . . .] Asymptotic Forms o f p (f t) & p for Large z , f t)& ( i (la% 4< 3 10.4.69 Modulus and Phase 10.4.82 I A i (t)dt-i-l 2 7r-1/2x-3/4 3 exp (-: 212) Ai (--5)=M(z) cosB(z), Bi (-s)=M(s) sin e(r) 10.4.83 M(s)=d[Ai2 (--s)+Bi2 (-z)], +)=arctan [Bi (-x)/Ai (-s)] 'See page 11.
  • 16. 450 BESSEL FUNCTIONS OF FRACTIONAL ORDER 10.4.84 l (: Bi ( t ) d t - ~ - ~ / ~ zexp / ~ -~ z3l2) Asymptotic Forms of Gi (kz), (kz),Hi (kz), (kz) Gi‘ Hi’ for Large z 10.4.86 Gi (z)-x-lz-’ 10.4.87 Gi (-z) -7r-l?~-l/~ cos (; z3/2+3 -1080 56875 z-8 10.4.88 Gi’(z) 7 96 -- x-W2 69 67296 16 23755 96875 z-lo, . . .) + 3344 30208 sin 10.4.89 Gi’(--5)-1~-~/~2~/~ (f ill+$) g(z)-z2/3(1-, 7 z-2+- 35 z-*-- 181223 z-6 - l / (3z312) Hi (z)- ~ - ‘ / ~ z exp ~ 288 207360 10.4.90 10.4.91 Hi (-z) -7r-Iz-’ 186 83371 z-8 + 12 44160 10.4.92 Hi‘(x) -x-1/2x1/4 exp (W2) -9 11458 84361 1911 02976 .. .) 10.4.93 Zeros and Their Asymptotic Expansions Ai (z), Ai’(z) have zeros on the negative real +23 97875 z-6- 6 63552 ... ) axis only. Bi (z), Bi’(z) have zeros on the nega- tive real axis and in the sector f< xl arg z<7. 1r $ a,, a:; b b: s-th (real) negative zero of Ai (z), , Ai’(2); Bi (z), Bi’(z), respectively. B,, /3:; 2 8 , -843 94709 z-6+ 265 42080 .. .) s-th complex zero of Bi (z), Bi’(z) in the sectors &r<arg ,< bz -+,x<arg z<-fx, respectively. Formal and Asymptotic Solutions of Ordinary Differ- ential Equations of Second Order With Turning 10.4.94 a,= - j [ 3 ~ ( 4 ~ -1)/8] Points 10.4.95 a:= -g[3~(4~-3)/8] A n equation 10.4.96 Ai’(a,) = (- 1)8-!f1[3~(4s-l)/81 10.4.106 W”+a(z, X)W’+b(z, X)W=O 10.4.97 Ai (a:)=(-1)a-1g1[3a(4s-3)/81 in which X is a real or complex parameter and, for fixed X, a(z, X) is analytic in z and b(z, A) is 10.4.98 b, = -f[ 3~ (49-3)/8] continuous in z in some region of the z-plane, may be reduced by the transformation 10.4.99 b:= - g [ 3 ~ ( 4 ~ -1)/8] 10.4.107 W(z)=w(z) exp ( - i s ’ a ( t , h)dt) 10.4.100 Bi’(b,) = (- 1)8-!f1[3~(4s-3)/8] 10.4.101 Bi (b:) = (- 1)’g1[3r(4s- 1)/8] to the equation 10.4.102 @,=erf/3f (4s-l)+- 3i 4 In 2 1 10.4.108 w”+(o(z, X)w=O 10.4.103 @:=erf/3g (4s-3)+- 3i 4 In 2 1 q(z, 1 I d X)=b(z, X)-- 4 uqz, A)-- 2 - a(z, ’1 dz *See page 11.
  • 17. BESSEL FUNCTIONS O FRACTIONAL ORDER F 451 If p(z, X) can be written in the form 10.4.114 10.4.109 p(z, X)=X'p(z)+q(z, A) yo@)=Ai (-P x ) [1 + O(X-91 where q(z, X) is bounded in a region R of the z- =Bi (- X2%)[ 1 + O(X-91 yl(x) (1x1+m ) plane, then the zeros of p(z) in R are said to be For further representations and details, we refer turning points of the equation 10.4.108. to (10.41. The Special Case w"+[A*z+q(z, X)]w=O When z is complex (bounded or unbounded), conditions under which the formal series 10.4.110 Let X=IX(eiU vary over a sectorial domain S: yields a uniform asymptotic expansion of a solu- IXl>A,,(>O),o l S w S w 2 , and suppose that q(z, X) is tion are given in [10.121 if q(z, A) is independent continuous in z for Ilr z< and X in S, and q(z, X) of X and IXI+m with fixed w, and in 110.141 if X -2q.(z)~-. as 0 in S. lies in any region of the complex plane. Further references are [10.2; 10.9; 10.101. Formal Series Solution The General Case w"+[Agp(z)+q(z, A)]w=O 10.4.110 w(z)=u(z) 5 p.(z)X-*+X-'u'(z) 0 OD J.,(z)X-" Let X=IXJefWwhere IXl2b(>O) and - - ? r l w ~ - ? r ; suppose that p(z) is analytic in a region R and has u" +Pzu=O a zero z=% in R, and that, for fixed A, q(z, A) is analytic in z for z in R. The transformation ~(z)=c0, J.o(~)=~-f~l, co,e constants , €=€(z),v=[p(z)/#"W(z), where [ is defined as the (unique) solution of the equation 10.4.115 yields the special case (n=O, 1,2, . . .) 10.4.116 - + dzv [X2€+j(€, X)]v=O, * dE2 uniform hpnptotic Expand0118Of %lUtiOns For z real, i.e. for the equation 10.4.111 9'' +[XSZ+ &, A) I Y ' 0 Exumple: where x varies in a bounded interval aSxSb that Consider the equation includes the origin and where, for each fixed X in S, 10.4.117 y"+[Xz-((xz-~) s-~]Y=O q(z, A) is continuous in x for a 5s5b, the following asymptotic representations hold. for which the points x=O, are singular points (i) If X is real and positive, there are solutions and x=1 is a turning point. It has the functions yo(x), yl(x)such that, uniformly in x on a_<xlO, ZVA(AZ),A ( ~ z ) particular solutions (see ~Y as 9.1.49). 10.4.112 The equation 10.4.115 becomes yo(s)=Ai ( - P x ) [1 +O(h-')] (A+- ) y,(x)=Bi ( - P Z ) [ ~ + O ( ~ - ~ ) ] whence and, uniformly in x on 0 5 z S b 10.4.113 yo@) =Ai (- W x )[1+ O(X-')] +Bi (- A%) O(X-l), yl(z)=Bi (-X*flx)[l+O(X-l)]+Ai (-Xzfl~)o(X-~) 0-m) Thus (ii) If 52RXl0, A f O , there are solutions YO(Z), y~(z)such that, uniformly in x on a<x<b, 10.4.118 v(€) =(Fy Y(Z) 'See page n.
  • 18.
  • 19. BESSEL FUNCTIONS OF FRACTIONAL ORDER 453 Example 2. Compute &(x) for x=24.6. Modified Spherical Beseel Functiom Interpolation in Table 10.3 yields for x=24.6 ~ - ~ ~ e Z ” * ~ (x) = (-28) 3.934616 j21 To compute &~I,,++(x), &&L+,(x), n=O, 1, 2, . . . for values of x outside the range of ~ - ~ e Z ’ / ~ (2)= (-27)9.48683 j20 whence Table 10.8, use formulas 10.2.13, 10.2.14 together with 10.2.4 and obtain values for the hyperbolic j21(24.6)=.05604 29, &0(24.6)=.03896 98. and exponential functions from Tables 4.4 and From the recurrence relation 10.1.19 there 4.15. In those cases when J$&I,,++(~) and results MxI-,,-+(x) are nearly equal, i.e., when x is j19(24.6)= .00890 67660 [.00890 701 sufficiently large, compute mxK,,+*(x) from j18(24.6)=-.02484 93173 [-.02485 901 formula 10.2.15, for which the coefficients (n+ 3, k) j1,(24.6)= -.04628 17554 [- .04628 161 are given in 10.1.9. j1,(24.6)= -.04099 87086 [- .04099 881 Example 3. Compute J~*/xI,,~(x), J~*~xK,~~(x) j16(24.6)=-.00871 65122 [-.(lo871 671 for z=16.2. For comparison, the correct values,are shown in From 10.2.13, &&166/2(x) = (3 +2) sinh x/2- brackets. 3 cosh 212‘; from Table 4.4, cosh 16.2=(6)5.4267 To compute j15(x)for x=24.6 by Miller’s de- 59950 and this equals the value of sinh 16.2 to the vice, take, for example, N=39 and assume same number of significant figures. Hence FdO=O, F,,=l. Using 10.1.19 with decreasing N, i.e., FN-l=[(2N+l)/x]FN-FN+l,N=39, 38, . . ., 1/$~/16.216/2(16.2)(.06243 402371 = 1, 0, generate the sequence F38, F3,, . . Fl, F, , .,’ -.01143 118427)[(6)5.4267 599501 compute from Table 4.6, j0(24.6)=(sin 24.6)/24.6 = 338814.4594- 62034.29298 - -.02064 620296, and obtain the factor of pro- =276780.1664. portionality To compute J4?r/16.2K6,,(16.2) use 10.2.17 and p=jo(24.6)/Fo= .OOOOO 03839 17642. obtain The value pF16 equals j16(24.6) to 8 decimals. 4 m 2 K 5 / 21( =re 6.2) 6 The final part of the computations is shown in the following table, in which the correct values = (-7)2.8945 38069[.036932 604001 are given for comparison. = (- 8) 1.0690 28283. I N j~ (24.6) To compute m , + 5 n ( , ) a I, + 8xfor 3 I , value of z within the range of Table 10.9, obtain 15 -22704.71107 -. 00871 67391 -. 00871 674 from Table 10.9, & IQ ) .1&$12,D(x) for &l &, 14 +78178.88236 +. 03001 42522 t. 03001 425 13 f114866.80811 +. 04409 93941 f. 04409 939 the desired value of x and use these as starting 12 + 47894. 44353 +. 01838 75218 t.01838 752 values in the recurrence relation 10.2.18 for 11 -66193.59317 -. 02541 28882 -. 02541 289 10 -109782. 76234 -. 04214 75392 -.04214 754 decreasing n. 9 -27523.39903 -. 01056 67185 -.01056 672 To compute mxK.++(z)for some integer n 8 +88524.85252 +. 03398 62526 f. 03398 625 7 i-88699. 11017 +. 03405 31532 f . 03405 315 outside the range of Table 10.9, obtain from 6 -34440.02929 -. 01322 21348 -.01322 213 10.2.15 or from Table 10.8, m x K + ( x ) , 5 -106899. 12565 -. 04104 04602 -. 04104 046 4 - 13360.39272 -. 00512 92905 -.00512 929 WxKal2(x) for the desired value of x and use 3 +102011. 17704 +. 03916 38905 f. 03916 389 2 +42387. 96341 +. 01627 34870 f.01627 349 these as starting values in the recurrence relation 1 -93395. 73728 -. 03585 62712 -. 03585 627 10.2.18 for increasing n. If x lies within the 0 -53777.68747 -. 02064 62030 -. 02064 620 range of Table 10.9 and n>10, the recurrence may be started with 43?rlzK19,2(x), -K21n(x) It may be observed that the normalization of the obtained from Table 10.9. sequence F , FN-l, . ., Focan also be obtained N . Example 4. Compute r n K l l D ( x ) for x=3.6. from formula 10.1.50 by computing the sum Obtain from Table 10.8 for x=3.6 u=g 0 (2k+l)F: and h d i n g p=l/& This yields, in the case of the example, p=l/&= .OOOOO 03839 177.
  • 20. 454 The recurrence relation 10.2.18 yields successively -J3~/3.6K5/2(3.6) -.01192 222 = ---.02461 718 - -dm6K,/2(3.6) = -.02461 718 --.12072 034 - &r/3.6KlI/2(3.6) .04942 4480 = =.35122 533. -- 3.6 d m K r D ( 3 . 6 )= .01523 3952 = .04942.4480 +c6 718) 5 (.01523 3952) (.02461 -- (.04942 4480) 3.6 +c6 034) 9 (.12072 As a check, the recurrencecan be carried out until n=9 and the value of J m K l , n ( 3 . 6 ) so obtained can be compared with the corresponding value from Table 10.9. To compute =I,,+&) when both n and z ~’(x), { BESSEL FUNCTIONS OF FRACTIONAL ORDER respectively, the following formulas may be used, in which d, d’ 3! u4 4! V’ 2! 2! 31- denote approximations to e, c’ and u=y (d)/y (d), v= y ’(d’)/d’’y(d’). ’ c=d-~-2d -+2 --24d2 u3 +88d $-(88+720@) +5856d28! 03 3! - U6 5! -(105+76d‘3+24d’6)$ $ u“-(16640d+40320d4)~+. . . c’=d’ 1-~---(3+2d’~)--(15+10d’~)- -(945+756dt3+272dt6)$- . . .} l-d -+- 3 Y’(C)=Y’(~) u’ u 3d2q?+14d-b I 4 -(14+45@)g+471da fi uQ u7 U 5! -(1432d+l575d4)g+. . . -(15d/3+14d’3$ US -v4 4! { are outside the range o Table 10.9, use the device f described in t9.201. Airy Functions -(105d’3+101d’”+45d’4)~-. .} . To compute Ai(z), Bi(x) for values of x beyond Example 6. Compute the zero of y(z)=Ai(x) 1, use auxiliary functions from Table 10.11. -Bi(z) near d= -.4. Example 5. Compute Ai(z) for 2=4.5. From Table 10.11, Firet, for x=4.5, [=#$”‘=6.363961029, c1=.15713 48403. - g(-.4)=.02420 467, y‘( .4)= -.71276 627 Hence, from Table 10.11, f(-E) = .55848 24 and whence u=y(-.4)/y’(-.4)= -.03395 8776. From thus the above formulas Ai (4.5) ~=-.4+.03395 8776-.OOOOO 5221 =$(4.5)-u4(.5584824) exp (-6.36396 1029) +.ooooo 01 11 +.ooooo 0001 =$(.68658 905)(.55848 24)(.00172 25302) - .36604 6333. _ Y’(c) (- .71276 627) 1 + .00023 0640 = = .00033 02503. -.OOOOO 6527 -.OOOOO 0027 +.OOOOO0002) To compute the zeros c, c’of a solution y(z) of = (- .71276 627)(1.00022 4088) the equation y”-xy=O and of its derivative --.71292 599. -
  • 21. BESSEL FUNCTIONS OF FRACTIONAL ORDER 455 References Texts Tables [10.1] H . Bateman and R. C. Archibald, A guide to tables [10.17] H. K. Crowder and G. C. Francis, Tables of of Bessel functions, Math. Tables Aids Comp. 1, spherical Bessel functions and ordinary Bessel 205-308 (1944), in particular, pp. 229-240. functions of order half and odd integer of the [10.2] T. M. Cherry, Uniform asymptotic formulae for first and second kind, Ballistic Research Labora- functions with transition points, Trans. Amer. tory Memorandum Report No. 1027, Aberdeen Math. Soc. 68, 224-257 (1950). Proving Ground, Md. (1956). [10.3] A. ErdBlyi et al., Higher transcendental functions, [10.18] A. T. Doodson, Bessel functions of half integral vol. 1, 2 (McGraw-Hill Book Co., Inc., New order [Riccati-Bessel functions], British Assoc. York, N.Y., 1953). Adv. Sci. Report, 87-102 (1914). [10.4] A. ErdBlyi, Asymptotic expansions, California [10.19] A. T. Doodson, Riccati-Bessel functions, British Institute of Technology, Dept. of Math., Assoc. Adv. Sci. Report, 97-107 (1916). Technical Report No. 3, Pasadena, Calif. (1955). [10.20] A. T. Doodson, Riccati-Bessel functions, British [10.5] A. ErdBlyi, Asymptotic solutions of differential Assoc. Adv. Sci. Report, 263-270 (1922). equations with transition points or singularities, [10.21] Harvard University, Tables of the modified Hankel J. Mathematical Physics 1, 16-26 (1960). functions of order one-third and of their deriva- [10.6] H. Jeffreys, On certain approximate solutions of tives (Harvard Univ. Press, Cambridge, Mass., linear differential equations of the second order, 1945). h c . London Math. SOC. 428-436 (1925). 23, [10.22] E. Jahnke and F. Emde, Tables of functions, 4th [10.7] H. Jeffreys, The effect on Love waves of hetero- ed. (Dover Publications, Inc., New York, N.Y., geneity in the lower layer, Monthly Nat. Roy. 1945). Astr. Soc., Geophys. Suppl. 2, 101-111 (1928). [10.23] C. W. Jones, A short table for the Bessel functions [10.8] H. Jeffreys, On the use of asymptotic approxima- tions of Green's type when the coefficient has Zn++(z), (2/r)Kn+4(2) (Cambridge Univ. Press, Cambridge, England, 1952). zeros, Proc. Cambridge Philos. Soc. 52, 61-66 (1956). [10.24] J. C. P. Miller, The Airy integral, British h o c . [10.9] R. E. Langer, On the asymptotic solutions of Adv. Sci. Mathematical Tables, Part-vol. B differential equations with an application to the (Cambridge Univ. Press, Cambridge, England, Bessel functions of large complex order, Trans. 1946). Amer. Math. Soc. 34, 447-480 (1932). t10.251 National Bureau of Standards, Tables of spherical [10.10] R. E. Langer, The asymptotic solutions of ordinary Bessel functions, vols. I, I1 (Columbia Univ. linear differential equations of the second order, Press, New York, N.Y., 1947). with special reference to a turning point, Trans. [10.261 National .Bureau of Standards, Tables of Bessel Amer. Math. Soc. 67, 461-490 (1949). functions of fractional order, vols. I, I1 (Co- [10.11] W. Magnus and F. Oberhettinger, Formeln und lumbia Univ. Press, New York, N.Y., 1948-49). Siitze fur die speaiellen Funktionen der mathe- [10.27] National Bureau of Standards, Integrals of Airy matischen Physik, 2d ed. (Springer-Verlag, functions, Applied Math. Series 52 (U.S. Gov- Berlin, Germany, 1948). ernment Printing Office, Washington, D.C., [10.12] F. W. J. Olver, The asymptotic solution of linear 1958). differential equations of the second order for [10.28] J. Proudman, A. T. Doodson and G. Kennedy, large values of a parameter, Philos. Trans. Roy. Numerical results of the theory of the diffraction Soc. London [A] 247, 307-327 (1954-55). of a plane electromagnetic wave by a conducting [10.13] F. W. J. Olver, The asymptotic expansion of Bessel sphere, Philos. Trans. Roy. Soc. London [A] functions of large order, Philos. Trans. Roy. 217, 279-314 (1916-18), in particular pp. 284- Soc. London [A] 247, 328-368 (1954). 288. [10.14] F. W. J. Olver, Uniform asymptotic expansions of [10.29] M. Rothman, The problem of an infinite plate solutions of linear secondarder differential under an inclined loading, with tables of the equations for farge values of a parameter, Philos. integrals of Ai (kz),Bi (+z), Quart. J. Mech. Trans. Roy. Soc. London [A] 250,479-517 (1958). Appl. Math. 7, 1-7 (1954). [10.15] W. R. Wasow, Turning point problems for systems [10.30] M. Rothman, Tables of the integrals and difEer- of linear differential equations. Part I : The ential coefficients of Gi (+z), Hi (--z), Quart. J. formal theory; Part 11: The analytic theory. Mech. Appl. Math. 7, 379-384 (1954). Comm. Pure Appl. Math. 14, 657-673 (1961); 15, 173-187 (1962). [10.31] Royal Society Mathematical Tables, vol. 7, [10.16] G. N. Watson, A treatise on the theory of Bessel Bessel functions, Part 111. Zeros and associated functions, 2d ed. (Cambridge Univ. Press, values (Cambridge Univ. Press, Cambridge, Cambridge, England, 1958). England, 1960).
  • 22. 456 BESSEL FUNCl'IONS OF FRACTIONAL ORDER [10.32] R. S. Scorer, Numerical evaluation of integrals of [10.33] A. D. Smirnov, Tables of Airy functions (and the form special confluent hypergeometric functions). Translated from the Russian by D. G. Fry (Pergamon Press, New York, N.Y., 1960). [10.34] I. M. Vinogadov and N. G. Cetaev, Tables of Besael functions of imaginary argument (Izdat. and the tabulation of the function Akad. Nauk SSSR., Moscow, U.S.S.R., 1950). (10.351 P. M. Woodward, A. M. Woodward, R. Hensman, Gi (2)= (l/r)Jmsin (uz+ l/3u8)du, H. H. Davies and N. Gamble, Four-figure tables of the Airy functions in the complex plane, Quart.J. Mech. Appl. Math. 3, 107-112 (1960). Phil. Mag. (7) 37, 236-261 (1946).