The WKB approximation is a method to find approximate solutions to the Schrodinger equation. It was developed in 1926 by Wentzel, Kramer, and Brillouin. The approximation assumes the wavefunction is an exponentially varying function with amplitude and phase that change slowly compared to the de Broglie wavelength. It can be used to obtain approximate solutions and energy eigenvalues for systems where the classical limit is valid. The approximation breaks down near classical turning points where the particle's energy is equal to the potential energy. The document provides examples of using the WKB approximation to solve the time-independent Schrodinger equation in one dimension for cases where the particle's energy is both greater than and less than the potential energy.