Cluster analysis is used to group similar objects together and separate dissimilar objects. It has applications in understanding data patterns and reducing large datasets. The main types are partitional which divides data into non-overlapping subsets, and hierarchical which arranges clusters in a tree structure. Popular clustering algorithms include k-means, hierarchical clustering, and graph-based clustering. K-means partitions data into k clusters by minimizing distances between points and cluster centroids, but requires specifying k and is sensitive to initial centroid positions. Hierarchical clustering creates nested clusters without needing to specify the number of clusters, but has higher computational costs.