SlideShare a Scribd company logo
1 of 32
Buenos Aires, junio de 2016
Eduardo Poggi
Clustering
 Supervised vs. Unsupervised Learning
 Clustering Concepts
 Non-Hierarchical Clustering
 K-means
 EM-Algorithm
 Hierarchical Clustering
 Hierarchical Agglomerative Clustering (HAC)
Supervised vs. UnSupervised Learning
 Supervised Learning
 Classification: partition examples into groups according to pre-defined
categories
 Regression: assign value to feature vectors
 Requires labeled data for training
 Unsupervised Learning
 Clustering: partition examples into groups when no pre-defined
categories/classes are available
 Novelty detection: find changes in data
 Outlier detection: find unusual events (e.g. hackers)
 Only instances required, but no labels
Clustering Concepts
 El objetivo básico del análisis de clusters es descubrir grupos en los
datos, de modo tal que los objetos del mismo grupo sean similares,
mientras que los objetos de diferentes grupos sean tan disímiles
como sea posible.
 Partition unlabeled examples into disjoint subsets of clusters, such
that:
 Examples within a cluster are similar
 Examples in different clusters are different
 Discover new categories in an unsupervised manner (no sample
category labels provided).
Clustering Concepts (2)
 Las aplicaciones son muy numerosas, por ejemplo la clasificación de plantas y
animales, en ciencias sociales la clasificación de personas considerando sus
costumbres y preferencias, en marketing la identificación de grupos de consumidores
con necesidades parecidas, etc.
 Cluster retrieved documents (e.g. Teoma)
 to present more organized and understandable results to user
 Detecting near duplicates
 Entity resolution
 E.g. “Thorsten Joachims” == “Thorsten B Joachims”
 Cheating detection
 Exploratory data analysis
 Automated (or semi-automated) creation of taxonomies
 e.g. Yahoo-style
Clustering Concepts (3)
 Consideraremos dos tipos de algoritmos de clustering:
 Métodos de partición: clasifican los datos en k grupos que deben cumplir los
requerimientos de una partición
 Cada grupo debe contener al menos un objeto
 Cada objeto debe pertenecer exactamente a un grupo.
 Métodos jerárquicos:
 Aglomerativos: empiezan con n clusters de una observación cada uno, en cada paso
se combinan dos grupos hasta terminar en un sólo cluster con n observaciones.
 Divisorios: comienzan con un sólo cluster de n observaciones y en cada paso se divide
un grupo en dos hasta tener n clusters con una observación cada uno.
K-Means Clustering Method
1. Ask user how many clusters they’d like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. For each datapoint find out which Center it’s closest to. (Thus each
Center “owns” a set of datapoints)
4. For each Center find the centroid of the points it owns
5. …and jumps there
6. …Repeat until terminated!
(Are we sure it will terminate?)
K-Means Step by step (1 & 2)
1. Ask user how many
clusters they’d like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations
K-Means Step by step (3)
1. Ask…
2. Randomly guess k
cluster Center
locations
3. For each datapoint
find out which Center
it’s closest to. (Thus
each Center “owns” a
set of datapoints)
K-Means Step by step (4)
1. Ask…
2. Randomly guess…
3. For each datapoint
find out which Center
it’s closest to. (Thus
each Center “owns” a
set of datapoints)
4. For each Center find
the centroid of the
points it owns
K-Means Step by step (5 & 6)
1. Ask…
2. Randomly guess…
3. For each datapoint …
4. For each Center find
the centroid of the
points it owns
5. …and jumps there
6. …Repeat until
terminated!
K-Means Q&A
 What is it trying to optimize?
 Are we sure it will terminate?
 Are we sure it will find an optimal clustering?
 How should we start it?
 How could we automatically choose the number
of centers?
K-Means Q&A (2)
 This clustering method is simple and reasonably effective.
 The final cluster centers do not represent a global
minimum but only a local one.
 Completely different final clusters can arise from
differerences in the initial randomly chosen cluster
centers.
K-Means Q&A (3)
Are we sure it will terminate?
 There are only a finite number of ways of partitioning R records into k
groups.
 So there are only a finite number of possible configurations in which all
Centers are the centroids of the points they own.
 If the configuration changes on an iteration, it must have improved the
distortion.
 So each time the configuration changes it must go to a configuration it’s
never been to before.
 So if it tried to go on forever, it would eventually run out of configurations.
K-Means Q&A (4)
 Will we find the optimal configuration?
 Can you invent a configuration that has converged, but does not
have the minimum distortion?
K-Means Q&A (5)
 Will we find the optimal configuration?
 Can you invent a configuration that has converged, but does not
have the minimum distortion?
K-Means Q&A (6)
Trying to find good optima
 Idea 1: Be careful about where you start
 Neat trick:
 Place first center on top of randomly chosen datapoint.
 Place second center on datapoint that’s as far away as possible from first center:
 Place j’th center on datapoint that’s as far away as possible from the closest of
Centers 1 through j-1
 Idea 2: Do many runs of k-means, each from a different random start
configuration
 Many other ideas floating around.
K-Means Q&A (7)
Choosing the number of Centers
 A difficult problem
 Most common approach is to try to find the solution that minimizes
the Schwarz Criterion
 Trying k from 2 to n !!
 Incrementally (k=2, then do 2-Means for each cluster, and so on…)
Common uses of K-means
 Often used as an exploratory data analysis tool
 In one-dimension, a good way to quantize realvalued variables into k
non-uniform buckets
 Used on acoustic data in speech understanding to convert waveforms
into one of k categories (known as Vector Quantization)
 Also used for choosing color palettes on old fashioned graphical
display devices!
Single Linkage Hierarchical Clustering
1. Say “Every point is its
own cluster”
Single Linkage Hierarchical Clustering (2)
1. Say “Every point is its
own cluster”
2. Find “Most similar” pair of
clusters
Single Linkage Hierarchical Clustering (3)
1. Say “Every point is its
own cluster”
2. Find “Most similar” pair of
clusters
3. Merge it into a parent
cluster
Single Linkage Hierarchical Clustering (4)
1. Say “Every point is its
own cluster”
2. Find “Most similar” pair of
clusters
3. Merge it into a parent
cluster
4. Repeat... until you’ve
merged the whole dataset
into one cluster
Single Linkage Hierarchical Clustering (5)
1. Say “Every point is its
own cluster”
2. Find “Most similar” pair of
clusters
3. Merge it into a parent
cluster
4. Repeat... until you’ve
merged the whole dataset
into one cluster
Hierarchical Clustering Q&A
 How do we define similarity between clusters?
 Minimum distance between points in clusters (in which case we’re
simply doing Euclidian Minimum Spanning Trees)
 Maximum distance between points in clusters
 Average distance between points in clusters
 And more…
Hierarchical Clustering Q&A (bis)
Hierarchical Clustering Q&A (2)
 Single Linkage Comments
 Also known in the trade as Hierarchical Agglomerative Clustering (note
the acronym)
 It’s nice that you get a hierarchy instead of an amorphous collection of
groups
 If you want k groups, just cut the (k-1) longest links
 There’s no real statistical or information-theoretic foundation to this.
Makes your lecturer feel a bit queasy.
Cluster Silhouettes
 Para cada ejemplo i definimos a(i), con A el cluster asignado a i
 Luego calculamos d(i, C) para los clusters distintos a A
 Nos quedamos con b(i) como la menor distancia un cluster. El cluster B para el cual este mínimo
se cumple, es decir d(i,B) = b(i) se llama el vecino del objeto i. (La segunda opción de
pertenencia)
Cluster Silhouettes (2)
 Ahora definimos s(i) como:
 Para entender el significado de s(i) veamos que sucede en las situaciones extremas:
 Cuando s(i) es cercano a 1, a(i) es decir, el promedio de las disimilaridades entre i y los objetos de su cluster
son mucho más pequeñas que b(i) la disimilaridad entre i y el cluster vecino. Por lo tanto podemos decir que
i está bien clasificado.
 Cuando s(i) es cercano a 0, b(i) y a(i) son aproximadamente iguales no es claro si i debe ser asignado a A ó al
cluster vecino. El objeto i está tan lejos de uno como de otro.
 La peor situación se da cuando s(i) es cercano a –1, a(i) es mucho más grande que b(i), entonces i en
promedio está más cerca del cluster vecino que de A.
Cluster Silhouettes (3)
0.0 0.2 0.4 0.6 0.8 1.0
Li
J
Le
P
Ti
I
K
Ta
Silhouettewidth
Averagesilhouettewidth:0.8
C1
C2
SC Interpretación
0.71-1 Fuerte estructura
0.51-0.7 Razonable estructura
0.26-0.5 La estructura es débil y podría ser artificial
< 0.25 No se ha hallado estructura
eduardopoggi@yahoo.com.ar
eduardo-poggi
http://ar.linkedin.com/in/eduardoapoggi
https://www.facebook.com/eduardo.poggi
@eduardoapoggi
Bibliografía

More Related Content

What's hot

TypeScript and Deep Learning
TypeScript and Deep LearningTypeScript and Deep Learning
TypeScript and Deep LearningOswald Campesato
 
Clustering on database systems rkm
Clustering on database systems rkmClustering on database systems rkm
Clustering on database systems rkmVahid Mirjalili
 
Neural collaborative filtering-발표
Neural collaborative filtering-발표Neural collaborative filtering-발표
Neural collaborative filtering-발표hyunsung lee
 
3.1 clustering
3.1 clustering3.1 clustering
3.1 clusteringKrish_ver2
 
Intro to threp
Intro to threpIntro to threp
Intro to threpHong Wu
 
Cluster analysis
Cluster analysisCluster analysis
Cluster analysisAcad
 
waseda-presentation-svm-comparisons
waseda-presentation-svm-comparisonswaseda-presentation-svm-comparisons
waseda-presentation-svm-comparisonsKonpat Preechakul
 
Algoritma fuzzy c means fcm java c++ contoh program
Algoritma fuzzy c means fcm java c++   contoh programAlgoritma fuzzy c means fcm java c++   contoh program
Algoritma fuzzy c means fcm java c++ contoh programym.ygrex@comp
 
[DL輪読会]Generative Models of Visually Grounded Imagination
[DL輪読会]Generative Models of Visually Grounded Imagination[DL輪読会]Generative Models of Visually Grounded Imagination
[DL輪読会]Generative Models of Visually Grounded ImaginationDeep Learning JP
 
Mini-batch Variational Inference for Time-Aware Topic Modeling
Mini-batch Variational Inference for Time-Aware Topic ModelingMini-batch Variational Inference for Time-Aware Topic Modeling
Mini-batch Variational Inference for Time-Aware Topic ModelingTomonari Masada
 
Finding bursty topics from microblogs
Finding bursty topics from microblogsFinding bursty topics from microblogs
Finding bursty topics from microblogsmoresmile
 
Unsupervised learning clustering
Unsupervised learning clusteringUnsupervised learning clustering
Unsupervised learning clusteringDr Nisha Arora
 
8.clustering algorithm.k means.em algorithm
8.clustering algorithm.k means.em algorithm8.clustering algorithm.k means.em algorithm
8.clustering algorithm.k means.em algorithmLaura Petrosanu
 
Proactive Secret Sharing using a Trivariate Polynomial
Proactive Secret Sharing using a Trivariate PolynomialProactive Secret Sharing using a Trivariate Polynomial
Proactive Secret Sharing using a Trivariate PolynomialIJERA Editor
 
# Neural network toolbox
# Neural network toolbox # Neural network toolbox
# Neural network toolbox VineetKumar508
 

What's hot (20)

TypeScript and Deep Learning
TypeScript and Deep LearningTypeScript and Deep Learning
TypeScript and Deep Learning
 
Clustering on database systems rkm
Clustering on database systems rkmClustering on database systems rkm
Clustering on database systems rkm
 
Neural collaborative filtering-발표
Neural collaborative filtering-발표Neural collaborative filtering-발표
Neural collaborative filtering-발표
 
3.1 clustering
3.1 clustering3.1 clustering
3.1 clustering
 
Intro to threp
Intro to threpIntro to threp
Intro to threp
 
Cluster analysis
Cluster analysisCluster analysis
Cluster analysis
 
Sparse autoencoder
Sparse autoencoderSparse autoencoder
Sparse autoencoder
 
Dbm630 lecture09
Dbm630 lecture09Dbm630 lecture09
Dbm630 lecture09
 
presentation
presentationpresentation
presentation
 
waseda-presentation-svm-comparisons
waseda-presentation-svm-comparisonswaseda-presentation-svm-comparisons
waseda-presentation-svm-comparisons
 
Algoritma fuzzy c means fcm java c++ contoh program
Algoritma fuzzy c means fcm java c++   contoh programAlgoritma fuzzy c means fcm java c++   contoh program
Algoritma fuzzy c means fcm java c++ contoh program
 
[DL輪読会]Generative Models of Visually Grounded Imagination
[DL輪読会]Generative Models of Visually Grounded Imagination[DL輪読会]Generative Models of Visually Grounded Imagination
[DL輪読会]Generative Models of Visually Grounded Imagination
 
AI Lesson 04
AI Lesson 04AI Lesson 04
AI Lesson 04
 
Mini-batch Variational Inference for Time-Aware Topic Modeling
Mini-batch Variational Inference for Time-Aware Topic ModelingMini-batch Variational Inference for Time-Aware Topic Modeling
Mini-batch Variational Inference for Time-Aware Topic Modeling
 
Finding bursty topics from microblogs
Finding bursty topics from microblogsFinding bursty topics from microblogs
Finding bursty topics from microblogs
 
Dbscan algorithom
Dbscan algorithomDbscan algorithom
Dbscan algorithom
 
Unsupervised learning clustering
Unsupervised learning clusteringUnsupervised learning clustering
Unsupervised learning clustering
 
8.clustering algorithm.k means.em algorithm
8.clustering algorithm.k means.em algorithm8.clustering algorithm.k means.em algorithm
8.clustering algorithm.k means.em algorithm
 
Proactive Secret Sharing using a Trivariate Polynomial
Proactive Secret Sharing using a Trivariate PolynomialProactive Secret Sharing using a Trivariate Polynomial
Proactive Secret Sharing using a Trivariate Polynomial
 
# Neural network toolbox
# Neural network toolbox # Neural network toolbox
# Neural network toolbox
 

Viewers also liked

Let It Go - Our Group's Own Version (lyrics changed)
Let It Go - Our Group's Own Version (lyrics changed)Let It Go - Our Group's Own Version (lyrics changed)
Let It Go - Our Group's Own Version (lyrics changed)Diane Infante
 
Asia Counsel Insights 1 August 2016
Asia Counsel Insights 1 August 2016Asia Counsel Insights 1 August 2016
Asia Counsel Insights 1 August 2016Minh Duong
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled PresentationJamie Welton
 
Asia Counsel Insights 5 September 2016
Asia Counsel Insights 5 September 2016Asia Counsel Insights 5 September 2016
Asia Counsel Insights 5 September 2016Minh Duong
 
CARTA PASTORAL DE NUESTRO OBISPO DON AMADEO: JORNADA DIOCESANA DE NUEVOS TEMP...
CARTA PASTORAL DE NUESTRO OBISPO DON AMADEO: JORNADA DIOCESANA DE NUEVOS TEMP...CARTA PASTORAL DE NUESTRO OBISPO DON AMADEO: JORNADA DIOCESANA DE NUEVOS TEMP...
CARTA PASTORAL DE NUESTRO OBISPO DON AMADEO: JORNADA DIOCESANA DE NUEVOS TEMP...parroquiavillargordo
 
Control de aforo - Comunycarse
Control de aforo - ComunycarseControl de aforo - Comunycarse
Control de aforo - ComunycarseComunycarse
 
PRP, OPRP, HACCP-Plan Awareness (Urdu)
PRP, OPRP, HACCP-Plan Awareness (Urdu)PRP, OPRP, HACCP-Plan Awareness (Urdu)
PRP, OPRP, HACCP-Plan Awareness (Urdu)mzeeshanz
 
OpenStack Dragonflow shenzhen and Hangzhou meetups
OpenStack Dragonflow shenzhen and Hangzhou  meetupsOpenStack Dragonflow shenzhen and Hangzhou  meetups
OpenStack Dragonflow shenzhen and Hangzhou meetupsEran Gampel
 
Hierarchical clustering in Python and beyond
Hierarchical clustering in Python and beyondHierarchical clustering in Python and beyond
Hierarchical clustering in Python and beyondFrank Kelly
 
Multivariate data analysis
Multivariate data analysisMultivariate data analysis
Multivariate data analysisSetia Pramana
 
Cluster analysis
Cluster analysisCluster analysis
Cluster analysissaba khan
 

Viewers also liked (17)

Let It Go - Our Group's Own Version (lyrics changed)
Let It Go - Our Group's Own Version (lyrics changed)Let It Go - Our Group's Own Version (lyrics changed)
Let It Go - Our Group's Own Version (lyrics changed)
 
DESVENTAS Y VENTAJAS
DESVENTAS  Y VENTAJASDESVENTAS  Y VENTAJAS
DESVENTAS Y VENTAJAS
 
Asia Counsel Insights 1 August 2016
Asia Counsel Insights 1 August 2016Asia Counsel Insights 1 August 2016
Asia Counsel Insights 1 August 2016
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled Presentation
 
Asia Counsel Insights 5 September 2016
Asia Counsel Insights 5 September 2016Asia Counsel Insights 5 September 2016
Asia Counsel Insights 5 September 2016
 
Qué significa ser uniatlantico
Qué significa ser uniatlanticoQué significa ser uniatlantico
Qué significa ser uniatlantico
 
講義報告
講義報告講義報告
講義報告
 
CARTA PASTORAL DE NUESTRO OBISPO DON AMADEO: JORNADA DIOCESANA DE NUEVOS TEMP...
CARTA PASTORAL DE NUESTRO OBISPO DON AMADEO: JORNADA DIOCESANA DE NUEVOS TEMP...CARTA PASTORAL DE NUESTRO OBISPO DON AMADEO: JORNADA DIOCESANA DE NUEVOS TEMP...
CARTA PASTORAL DE NUESTRO OBISPO DON AMADEO: JORNADA DIOCESANA DE NUEVOS TEMP...
 
Control de aforo - Comunycarse
Control de aforo - ComunycarseControl de aforo - Comunycarse
Control de aforo - Comunycarse
 
PRP, OPRP, HACCP-Plan Awareness (Urdu)
PRP, OPRP, HACCP-Plan Awareness (Urdu)PRP, OPRP, HACCP-Plan Awareness (Urdu)
PRP, OPRP, HACCP-Plan Awareness (Urdu)
 
OpenStack Dragonflow shenzhen and Hangzhou meetups
OpenStack Dragonflow shenzhen and Hangzhou  meetupsOpenStack Dragonflow shenzhen and Hangzhou  meetups
OpenStack Dragonflow shenzhen and Hangzhou meetups
 
Genome mapping
Genome mappingGenome mapping
Genome mapping
 
Hierarchical clustering in Python and beyond
Hierarchical clustering in Python and beyondHierarchical clustering in Python and beyond
Hierarchical clustering in Python and beyond
 
Multivariate data analysis
Multivariate data analysisMultivariate data analysis
Multivariate data analysis
 
Cluster analysis
Cluster analysisCluster analysis
Cluster analysis
 
Priya
PriyaPriya
Priya
 
Cluster analysis
Cluster analysisCluster analysis
Cluster analysis
 

Similar to Poggi analytics - clustering - 1

Similar to Poggi analytics - clustering - 1 (20)

Clustering.pdf
Clustering.pdfClustering.pdf
Clustering.pdf
 
Lecture8 clustering
Lecture8 clusteringLecture8 clustering
Lecture8 clustering
 
Clustering
ClusteringClustering
Clustering
 
Clustering
ClusteringClustering
Clustering
 
iiit delhi unsupervised pdf.pdf
iiit delhi unsupervised pdf.pdfiiit delhi unsupervised pdf.pdf
iiit delhi unsupervised pdf.pdf
 
Neural nw k means
Neural nw k meansNeural nw k means
Neural nw k means
 
Cluster Analysis
Cluster AnalysisCluster Analysis
Cluster Analysis
 
Cluster Analysis
Cluster AnalysisCluster Analysis
Cluster Analysis
 
Cluster Analysis
Cluster AnalysisCluster Analysis
Cluster Analysis
 
2_9_asset-v1-ColumbiaX+CSMM.101x+2T2017+type@asset+block@AI_edx_ml_unsupervis...
2_9_asset-v1-ColumbiaX+CSMM.101x+2T2017+type@asset+block@AI_edx_ml_unsupervis...2_9_asset-v1-ColumbiaX+CSMM.101x+2T2017+type@asset+block@AI_edx_ml_unsupervis...
2_9_asset-v1-ColumbiaX+CSMM.101x+2T2017+type@asset+block@AI_edx_ml_unsupervis...
 
Data Science - Part VII - Cluster Analysis
Data Science - Part VII -  Cluster AnalysisData Science - Part VII -  Cluster Analysis
Data Science - Part VII - Cluster Analysis
 
Clustering_Overview.pptx
Clustering_Overview.pptxClustering_Overview.pptx
Clustering_Overview.pptx
 
Machine Learning - Clustering
Machine Learning - ClusteringMachine Learning - Clustering
Machine Learning - Clustering
 
Hierachical clustering
Hierachical clusteringHierachical clustering
Hierachical clustering
 
My8clst
My8clstMy8clst
My8clst
 
26-Clustering MTech-2017.ppt
26-Clustering MTech-2017.ppt26-Clustering MTech-2017.ppt
26-Clustering MTech-2017.ppt
 
kmean clustering
kmean clusteringkmean clustering
kmean clustering
 
cluster analysis
cluster analysiscluster analysis
cluster analysis
 
Legal Analytics Course - Class 9 - Clustering Algorithms (K-Means & Hierarch...
Legal Analytics Course - Class 9 -  Clustering Algorithms (K-Means & Hierarch...Legal Analytics Course - Class 9 -  Clustering Algorithms (K-Means & Hierarch...
Legal Analytics Course - Class 9 - Clustering Algorithms (K-Means & Hierarch...
 
Chap8 basic cluster_analysis
Chap8 basic cluster_analysisChap8 basic cluster_analysis
Chap8 basic cluster_analysis
 

More from Gaston Liberman

Poggi analytics - tm - 1b
Poggi   analytics - tm - 1bPoggi   analytics - tm - 1b
Poggi analytics - tm - 1bGaston Liberman
 
Poggi analytics - distance - 1a
Poggi   analytics - distance - 1aPoggi   analytics - distance - 1a
Poggi analytics - distance - 1aGaston Liberman
 
Poggi analytics - sentiment - 1
Poggi   analytics - sentiment - 1Poggi   analytics - sentiment - 1
Poggi analytics - sentiment - 1Gaston Liberman
 
Poggi analytics - geneticos - 1
Poggi   analytics - geneticos - 1Poggi   analytics - geneticos - 1
Poggi analytics - geneticos - 1Gaston Liberman
 
Poggi analytics - ebl - 1
Poggi   analytics - ebl - 1Poggi   analytics - ebl - 1
Poggi analytics - ebl - 1Gaston Liberman
 
Poggi analytics - star - 1a
Poggi   analytics - star - 1aPoggi   analytics - star - 1a
Poggi analytics - star - 1aGaston Liberman
 
Poggi analytics - inference - 1a
Poggi   analytics - inference - 1aPoggi   analytics - inference - 1a
Poggi analytics - inference - 1aGaston Liberman
 
Poggi analytics - ensamble - 1b
Poggi   analytics - ensamble - 1bPoggi   analytics - ensamble - 1b
Poggi analytics - ensamble - 1bGaston Liberman
 
Poggi analytics - trees - 1e
Poggi   analytics - trees - 1ePoggi   analytics - trees - 1e
Poggi analytics - trees - 1eGaston Liberman
 
Poggi analytics - concepts - 1a
Poggi   analytics - concepts - 1aPoggi   analytics - concepts - 1a
Poggi analytics - concepts - 1aGaston Liberman
 
Poggi analytics - ml - 1d
Poggi   analytics - ml - 1dPoggi   analytics - ml - 1d
Poggi analytics - ml - 1dGaston Liberman
 
Poggi analytics - intro - 1c
Poggi   analytics - intro - 1cPoggi   analytics - intro - 1c
Poggi analytics - intro - 1cGaston Liberman
 
Poggi analytics - bayes - 1a
Poggi   analytics - bayes - 1aPoggi   analytics - bayes - 1a
Poggi analytics - bayes - 1aGaston Liberman
 
Henrion poggi analytics - ann - 1
Henrion poggi   analytics - ann - 1Henrion poggi   analytics - ann - 1
Henrion poggi analytics - ann - 1Gaston Liberman
 

More from Gaston Liberman (15)

Taller bd8
Taller bd8Taller bd8
Taller bd8
 
Poggi analytics - tm - 1b
Poggi   analytics - tm - 1bPoggi   analytics - tm - 1b
Poggi analytics - tm - 1b
 
Poggi analytics - distance - 1a
Poggi   analytics - distance - 1aPoggi   analytics - distance - 1a
Poggi analytics - distance - 1a
 
Poggi analytics - sentiment - 1
Poggi   analytics - sentiment - 1Poggi   analytics - sentiment - 1
Poggi analytics - sentiment - 1
 
Poggi analytics - geneticos - 1
Poggi   analytics - geneticos - 1Poggi   analytics - geneticos - 1
Poggi analytics - geneticos - 1
 
Poggi analytics - ebl - 1
Poggi   analytics - ebl - 1Poggi   analytics - ebl - 1
Poggi analytics - ebl - 1
 
Poggi analytics - star - 1a
Poggi   analytics - star - 1aPoggi   analytics - star - 1a
Poggi analytics - star - 1a
 
Poggi analytics - inference - 1a
Poggi   analytics - inference - 1aPoggi   analytics - inference - 1a
Poggi analytics - inference - 1a
 
Poggi analytics - ensamble - 1b
Poggi   analytics - ensamble - 1bPoggi   analytics - ensamble - 1b
Poggi analytics - ensamble - 1b
 
Poggi analytics - trees - 1e
Poggi   analytics - trees - 1ePoggi   analytics - trees - 1e
Poggi analytics - trees - 1e
 
Poggi analytics - concepts - 1a
Poggi   analytics - concepts - 1aPoggi   analytics - concepts - 1a
Poggi analytics - concepts - 1a
 
Poggi analytics - ml - 1d
Poggi   analytics - ml - 1dPoggi   analytics - ml - 1d
Poggi analytics - ml - 1d
 
Poggi analytics - intro - 1c
Poggi   analytics - intro - 1cPoggi   analytics - intro - 1c
Poggi analytics - intro - 1c
 
Poggi analytics - bayes - 1a
Poggi   analytics - bayes - 1aPoggi   analytics - bayes - 1a
Poggi analytics - bayes - 1a
 
Henrion poggi analytics - ann - 1
Henrion poggi   analytics - ann - 1Henrion poggi   analytics - ann - 1
Henrion poggi analytics - ann - 1
 

Recently uploaded

1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样vhwb25kk
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingNeil Barnes
 
Data Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxData Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxFurkanTasci3
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationshipsccctableauusergroup
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...Suhani Kapoor
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdfHuman37
 
vip Sarai Rohilla Call Girls 9999965857 Call or WhatsApp Now Book
vip Sarai Rohilla Call Girls 9999965857 Call or WhatsApp Now Bookvip Sarai Rohilla Call Girls 9999965857 Call or WhatsApp Now Book
vip Sarai Rohilla Call Girls 9999965857 Call or WhatsApp Now Bookmanojkuma9823
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Cantervoginip
 
Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...
Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...
Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...ThinkInnovation
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...soniya singh
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改yuu sss
 
RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998YohFuh
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Sapana Sha
 
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一F La
 
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...limedy534
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一F sss
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFAAndrei Kaleshka
 

Recently uploaded (20)

1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data Storytelling
 
Data Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxData Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptx
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf
 
vip Sarai Rohilla Call Girls 9999965857 Call or WhatsApp Now Book
vip Sarai Rohilla Call Girls 9999965857 Call or WhatsApp Now Bookvip Sarai Rohilla Call Girls 9999965857 Call or WhatsApp Now Book
vip Sarai Rohilla Call Girls 9999965857 Call or WhatsApp Now Book
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Canter
 
Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...
Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...
Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
 
RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
 
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
 
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFA
 

Poggi analytics - clustering - 1

  • 1. Buenos Aires, junio de 2016 Eduardo Poggi
  • 2. Clustering  Supervised vs. Unsupervised Learning  Clustering Concepts  Non-Hierarchical Clustering  K-means  EM-Algorithm  Hierarchical Clustering  Hierarchical Agglomerative Clustering (HAC)
  • 3. Supervised vs. UnSupervised Learning  Supervised Learning  Classification: partition examples into groups according to pre-defined categories  Regression: assign value to feature vectors  Requires labeled data for training  Unsupervised Learning  Clustering: partition examples into groups when no pre-defined categories/classes are available  Novelty detection: find changes in data  Outlier detection: find unusual events (e.g. hackers)  Only instances required, but no labels
  • 4. Clustering Concepts  El objetivo básico del análisis de clusters es descubrir grupos en los datos, de modo tal que los objetos del mismo grupo sean similares, mientras que los objetos de diferentes grupos sean tan disímiles como sea posible.  Partition unlabeled examples into disjoint subsets of clusters, such that:  Examples within a cluster are similar  Examples in different clusters are different  Discover new categories in an unsupervised manner (no sample category labels provided).
  • 5. Clustering Concepts (2)  Las aplicaciones son muy numerosas, por ejemplo la clasificación de plantas y animales, en ciencias sociales la clasificación de personas considerando sus costumbres y preferencias, en marketing la identificación de grupos de consumidores con necesidades parecidas, etc.  Cluster retrieved documents (e.g. Teoma)  to present more organized and understandable results to user  Detecting near duplicates  Entity resolution  E.g. “Thorsten Joachims” == “Thorsten B Joachims”  Cheating detection  Exploratory data analysis  Automated (or semi-automated) creation of taxonomies  e.g. Yahoo-style
  • 6. Clustering Concepts (3)  Consideraremos dos tipos de algoritmos de clustering:  Métodos de partición: clasifican los datos en k grupos que deben cumplir los requerimientos de una partición  Cada grupo debe contener al menos un objeto  Cada objeto debe pertenecer exactamente a un grupo.  Métodos jerárquicos:  Aglomerativos: empiezan con n clusters de una observación cada uno, en cada paso se combinan dos grupos hasta terminar en un sólo cluster con n observaciones.  Divisorios: comienzan con un sólo cluster de n observaciones y en cada paso se divide un grupo en dos hasta tener n clusters con una observación cada uno.
  • 7. K-Means Clustering Method 1. Ask user how many clusters they’d like. (e.g. k=5) 2. Randomly guess k cluster Center locations 3. For each datapoint find out which Center it’s closest to. (Thus each Center “owns” a set of datapoints) 4. For each Center find the centroid of the points it owns 5. …and jumps there 6. …Repeat until terminated! (Are we sure it will terminate?)
  • 8. K-Means Step by step (1 & 2) 1. Ask user how many clusters they’d like. (e.g. k=5) 2. Randomly guess k cluster Center locations
  • 9. K-Means Step by step (3) 1. Ask… 2. Randomly guess k cluster Center locations 3. For each datapoint find out which Center it’s closest to. (Thus each Center “owns” a set of datapoints)
  • 10. K-Means Step by step (4) 1. Ask… 2. Randomly guess… 3. For each datapoint find out which Center it’s closest to. (Thus each Center “owns” a set of datapoints) 4. For each Center find the centroid of the points it owns
  • 11. K-Means Step by step (5 & 6) 1. Ask… 2. Randomly guess… 3. For each datapoint … 4. For each Center find the centroid of the points it owns 5. …and jumps there 6. …Repeat until terminated!
  • 12. K-Means Q&A  What is it trying to optimize?  Are we sure it will terminate?  Are we sure it will find an optimal clustering?  How should we start it?  How could we automatically choose the number of centers?
  • 13. K-Means Q&A (2)  This clustering method is simple and reasonably effective.  The final cluster centers do not represent a global minimum but only a local one.  Completely different final clusters can arise from differerences in the initial randomly chosen cluster centers.
  • 14. K-Means Q&A (3) Are we sure it will terminate?  There are only a finite number of ways of partitioning R records into k groups.  So there are only a finite number of possible configurations in which all Centers are the centroids of the points they own.  If the configuration changes on an iteration, it must have improved the distortion.  So each time the configuration changes it must go to a configuration it’s never been to before.  So if it tried to go on forever, it would eventually run out of configurations.
  • 15. K-Means Q&A (4)  Will we find the optimal configuration?  Can you invent a configuration that has converged, but does not have the minimum distortion?
  • 16. K-Means Q&A (5)  Will we find the optimal configuration?  Can you invent a configuration that has converged, but does not have the minimum distortion?
  • 17. K-Means Q&A (6) Trying to find good optima  Idea 1: Be careful about where you start  Neat trick:  Place first center on top of randomly chosen datapoint.  Place second center on datapoint that’s as far away as possible from first center:  Place j’th center on datapoint that’s as far away as possible from the closest of Centers 1 through j-1  Idea 2: Do many runs of k-means, each from a different random start configuration  Many other ideas floating around.
  • 18. K-Means Q&A (7) Choosing the number of Centers  A difficult problem  Most common approach is to try to find the solution that minimizes the Schwarz Criterion  Trying k from 2 to n !!  Incrementally (k=2, then do 2-Means for each cluster, and so on…)
  • 19. Common uses of K-means  Often used as an exploratory data analysis tool  In one-dimension, a good way to quantize realvalued variables into k non-uniform buckets  Used on acoustic data in speech understanding to convert waveforms into one of k categories (known as Vector Quantization)  Also used for choosing color palettes on old fashioned graphical display devices!
  • 20. Single Linkage Hierarchical Clustering 1. Say “Every point is its own cluster”
  • 21. Single Linkage Hierarchical Clustering (2) 1. Say “Every point is its own cluster” 2. Find “Most similar” pair of clusters
  • 22. Single Linkage Hierarchical Clustering (3) 1. Say “Every point is its own cluster” 2. Find “Most similar” pair of clusters 3. Merge it into a parent cluster
  • 23. Single Linkage Hierarchical Clustering (4) 1. Say “Every point is its own cluster” 2. Find “Most similar” pair of clusters 3. Merge it into a parent cluster 4. Repeat... until you’ve merged the whole dataset into one cluster
  • 24. Single Linkage Hierarchical Clustering (5) 1. Say “Every point is its own cluster” 2. Find “Most similar” pair of clusters 3. Merge it into a parent cluster 4. Repeat... until you’ve merged the whole dataset into one cluster
  • 25. Hierarchical Clustering Q&A  How do we define similarity between clusters?  Minimum distance between points in clusters (in which case we’re simply doing Euclidian Minimum Spanning Trees)  Maximum distance between points in clusters  Average distance between points in clusters  And more…
  • 27. Hierarchical Clustering Q&A (2)  Single Linkage Comments  Also known in the trade as Hierarchical Agglomerative Clustering (note the acronym)  It’s nice that you get a hierarchy instead of an amorphous collection of groups  If you want k groups, just cut the (k-1) longest links  There’s no real statistical or information-theoretic foundation to this. Makes your lecturer feel a bit queasy.
  • 28. Cluster Silhouettes  Para cada ejemplo i definimos a(i), con A el cluster asignado a i  Luego calculamos d(i, C) para los clusters distintos a A  Nos quedamos con b(i) como la menor distancia un cluster. El cluster B para el cual este mínimo se cumple, es decir d(i,B) = b(i) se llama el vecino del objeto i. (La segunda opción de pertenencia)
  • 29. Cluster Silhouettes (2)  Ahora definimos s(i) como:  Para entender el significado de s(i) veamos que sucede en las situaciones extremas:  Cuando s(i) es cercano a 1, a(i) es decir, el promedio de las disimilaridades entre i y los objetos de su cluster son mucho más pequeñas que b(i) la disimilaridad entre i y el cluster vecino. Por lo tanto podemos decir que i está bien clasificado.  Cuando s(i) es cercano a 0, b(i) y a(i) son aproximadamente iguales no es claro si i debe ser asignado a A ó al cluster vecino. El objeto i está tan lejos de uno como de otro.  La peor situación se da cuando s(i) es cercano a –1, a(i) es mucho más grande que b(i), entonces i en promedio está más cerca del cluster vecino que de A.
  • 30. Cluster Silhouettes (3) 0.0 0.2 0.4 0.6 0.8 1.0 Li J Le P Ti I K Ta Silhouettewidth Averagesilhouettewidth:0.8 C1 C2 SC Interpretación 0.71-1 Fuerte estructura 0.51-0.7 Razonable estructura 0.26-0.5 La estructura es débil y podría ser artificial < 0.25 No se ha hallado estructura

Editor's Notes

  1. What is machine learning?
  2. What is machine learning?
  3. What is machine learning?
  4. What is machine learning?
  5. What is machine learning?
  6. What is machine learning?
  7. What is machine learning?
  8. What is machine learning?
  9. What is machine learning?
  10. What is machine learning?
  11. What is machine learning?
  12. What is machine learning?
  13. What is machine learning?
  14. What is machine learning?
  15. What is machine learning?
  16. What is machine learning?
  17. What is machine learning?
  18. What is machine learning?
  19. What is machine learning?
  20. What is machine learning?
  21. What is machine learning?
  22. What is machine learning?
  23. What is machine learning?
  24. What is machine learning?
  25. What is machine learning?
  26. What is machine learning?
  27. What is machine learning?
  28. What is machine learning?
  29. What is machine learning?
  30. 31