SlideShare a Scribd company logo
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Classical Lamination Theory
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Laminate Behavior
• Modulus Elastis
• The Stacking Position
• Thickness
• Angles of Orientation
• Coefficients of Thermal Expansion
• Coefficients of Moisture Expansion
x
P
P
P
P
z
x
(a)
z
(c)
x
z
M M
(b)
x
M
M
A
P
=
xx
 (4.1)
Strains in a
Gambar 4.2
A beam under (a) axial load, (b) bending moment,
and (c) combined axial and bending moment.
AE
P
=
xx

I
Mz
=
xx



z
=
xx
M
EI
z
+
P
AE
1
=
xx 






















1
z
+
= 0

 z
+
= 0
Types of loads allowed in CLT analysis
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Nx = normal force resultant in the x direction (per unit length)
Ny = normal force resultant in the y direction (per unit length)
Nxy = shear force resultant (per unit length)
Gambar 4.3
Resultant forces and moments on a
laminate.
Gambar 4.3
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Mx = bending moment resultant in the yz plane (per unit length)
My = bending moment resultant in the xz plane (per unit length)
Mxy = twisting moment resultant (per unit length)
Classical Lamination Theory
 Each lamina is orthotropic.
 Each lamina is homogeneous.
 A line straight and perpendicular to the middle surface remains
straight and perpendicular to the middle surface during
deformation. )
0
=
γ
=
γ
( yz
xz .
 The laminate is thin and is loaded only in its plane (plane stress)
)
0
=
τ
=
τ
=
σ
( yz
xz
z .
 Displacements are continuous and small throughout the laminate
|)
h
|
|
w
|
|,
v
|
|,
u
(|  , where h is the laminate thickness.
 Each lamina is elastic.
 No slip occurs between the lamina interfaces.
Gambar 4.4
Cross-Section
after Loading
x
u0
z
z
A


z
A
Mid-Plane
wo
Cross-Section
Before Loading
h/2
h/2
Gambar 4.4
Gambar showing the relationship between displacements through
the thickness of a plate to midplane displacements and curvatures.
Global Strains in a Laminate
















































































y
x
w
y
w
x
w
+ z
x
v
+
y
u
y
v
x
u
=
γ
ε
ε
xy
y
x
0
2
2
0
2
2
0
2
0
0
0
0
2
.
κ
κ
κ
+ z
γ
ε
ε
xy
y
x
xy
y
x





























0
0
0
Gambar 4.5
z
Mid-Plane
Strain Variation Stress Variation
Laminate
Gambar 4.5
Strain and stress variation through the thickness of the laminate.
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Relating Loads to Midplane
Strains/Curvatures
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Types of loads allowed in CLT
analysis
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Nx = normal force resultant in the x direction (per unit length)
Ny = normal force resultant in the y direction (per unit length)
Nxy = shear force resultant (per unit length)
Gambar 4.3
Resultant forces and moments on a
laminate.
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Mx = bending moment resultant in the yz plane (per unit length)
My = bending moment resultant in the xz plane (per unit length)
Mxy = twisting moment resultant (per unit length)
Types of loads allowed in CLT
analysis
Stacking Sequence
hk-1
hk
hn
h2
h1
h0
Mid-Plane
1
2
3
n
k-1
k
k+1
h3
z
h/2
tk
hn-1
h/2
Gambar 4.6
Coordinate locations of plies in the laminate.
Stresses in a Lamina in a Laminate
k
xy
y
x
k
k
xy
y
x
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
τ
σ
σ




































66
26
16
26
22
12
16
12
11
.
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+ z
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
xy
y
x
k
xy
y
x
k


















































66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
Forces and Stresses
dz,
τ
σ
σ
=
N
N
N
xy
y
x
h/
-h/
xy
y
x

























2
2
dz,
τ
σ
σ
=
xy
y
x
k
h
h
n
k=
k
k-














1
1
Forces & Midplane
Strains/Curvatures
dz
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
N
N
N
xy
y
x
k
h
h
n
k =
xy
y
x
k
k-








































0
0
0
66
26
16
26
22
12
16
12
11
1 1
z dz
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
xy
y
x
k
h
h
n
k =
k
k



























66
26
16
26
22
12
16
12
11
1 1
Forces & Midplane
Strains/Curvatures

























































0
xy
0
y
0
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
xy
y
x
dz
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
N
N
N
k
1
-
k











































xy
y
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
dz
z
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
k
1
k
Integrating terms
,
h
h
dz = k -
k
h
h
k
k -
)
( 1
1


,
h
h
zdz = k -
k
h
h
k
k -
)
(
2
1 2
1
2
1


Forces & Midplane
Strains/Curvatures






























































κ
κ
κ
B
B
B
B
B
B
B
B
B
+
γ
ε
ε
A
A
A
A
A
A
A
A
A
=
N
N
N
xy
y
x
xy
y
x
xy
y
x
66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
,
,
,
; j =
,
,
, i =
h
-
h
Q
=
A k -
k
k
ij
n
k =
ij 6
2
1
6
2
1
)
(
)]
[( 1
1

6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
Stiffness Matrices
[A] – Extensional stiffness matrix relating the resultant in-
plane forces to the in-plane strains.
[B] – Coupling stiffness matrix coupling the force and
moment terms to the midplane strains and midplane
curvatures.
Stresses in a Lamina in a Laminate
k
xy
y
x
k
k
xy
y
x
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
τ
σ
σ




































66
26
16
26
22
12
16
12
11
.
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+ z
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
xy
y
x
k
xy
y
x
k


















































66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
Moments and Stresses
zdz,
τ
σ
σ
=
M
M
M
xy
y
x
h/
-h/
xy
y
x

























2
2
zdz,
τ
σ
σ
=
xy
y
x
k
h
h
n
k=
k
k-














1
1
Moments & Midplane
Strains/Curvatures
zdz
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
M
M
M
xy
y
x
k
h
h
n
k =
xy
y
x
k
k-










































0
0
0
66
26
16
26
22
12
16
12
11
1 1
dz
z
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
xy
y
x
k
h
h
n
k =
k
k
2
66
26
16
26
22
12
16
12
11
1 1
























































































0
xy
0
y
0
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
xy
y
x
zdz
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
M
M
M
k
1
-
k













































xy
y
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
dz
z
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
k
1
k
2






























































κ
κ
κ
D
D
D
D
D
D
D
D
D
+
γ
ε
ε
B
B
B
B
B
B
B
B
B
=
M
M
M
xy
y
x
xy
y
x
xy
y
x
66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
.
,
,
; j =
,
,
i =
h
-
h
Q
=
D k -
k
k
ij
n
k =
ij 6
2
1
6
2
1
),
(
)]
[(
3
1 3
1
3
1

6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
i =
,
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
Stiffness Matrices
[A] – Extensional stiffness matrix relating the resultant in-
plane forces to the in-plane strains.
[B] – Coupling stiffness matrix coupling the force and
moment terms to the midplane strains and midplane
curvatures.
[D] – Bending stiffness matrix relating the resultant
bending moments to the plate curvatures.
Forces, Moments, Midplane Strains,
Midplane Curvatures






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Laminate Analysis Steps
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Forces, Moments, Strains,
Curvatures






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Steps
1. Find the value of the reduced stiffness matrix [Q] for each ply using its four
elastic moduli, E1, E2, v12, G12 in Equation (2.93).
2. Find the value of the transformed reduced stiffness matrix ]
Q
[ for each ply
using the [Q] matrix calculated in Step 1 and the angle of the ply in Equation
(2.104) or Equations (2.137) and (2.138).
3. Knowing the thickness, tk of each ply, find the coordinate of the top and
bottom surface, hi, i = 1, . . . . . . . , n of each ply using Equation (4.20).
4. Use the ]
Q
[ matrices from Step 2 and the location of each ply from Step 3 to
find the three stiffness matrices [A], [B] and [D] from Equation (4.28).
5. Substitute the stiffness matrix values found in Step 4 and the applied forces
and moments in Equation (4.29).
Steps
6. Solve the six simultaneous Equations (4.29) to find the mid-plane strains and
curvatures.
7. Knowing the location of each ply, find the global strains in each ply using
Equation (4.16).
8. For finding the global stresses, use the stress-strain Equation (2.103).
9. For finding the local strains, use the transformation Equation (2.99).
10. For finding the local stresses, use the transformation Equation (2.94).
Step 1: Analysis Procedures for Laminate
Step 1: Find the reduced stiffness matrix [Q] for each ply
ν
ν
-
E
=
Q
12
21
1
11
1 ν
ν
E
ν
=
Q
12
21
2
12
12
1 
ν
ν
E
=
Q
12
21
2
22
1  G
=
Q 12
66
Step 2: Analysis Procedures for Laminate
c
s
Q
+
Q
+
s
Q
+
c
Q
=
Q
2
2
66
12
4
22
4
11
11
)
2
(
2
)
(
)
4
( 4
4
12
2
2
66
22
11
12 s
+
c
Q
+
c
s
Q
Q
+
Q
=
Q 
c
s
Q
Q
Q
s
c
Q
Q
Q
=
Q
3
66
12
22
3
66
12
11
16
)
2
(
)
2
( 




c
s
Q
+
Q
+
c
Q
+
s
Q
=
Q
2
2
66
12
4
22
4
11
22
)
2
(
2
s
c
Q
Q
Q
cs
Q
Q
Q
=
Q
3
66
12
22
3
66
12
11
26
)
2
(
)
2
( 




)
(
)
2
2
( 4
4
66
2
2
66
12
22
11
66 c
+
s
Q
+
c
s
Q
Q
Q
+
Q
=
Q 

Step 2: Find the transformed stiffness matrix [Q] using the
reduced stiffness matrix [Q] and the angle of the ply.
Step 3: Analysis Procedures for Laminates
Step 3: Find the coordinate of the top and bottom surface of
each ply.
hk-1
hk
hn
h2
h1
h0
Mid-Plane
1
2
3
n
k-1
k
k+1
h3
z
h/2
tk
hn-1
h/2
Gambar 4.6
Coordinate locations of plies in the laminate.
Step 4: Analysis Procedures for Laminates
Step 4: Find three stiffness matrices [A], [B], and [D]
6
2
1
6
2
1
)
(
)]
[( 1
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
A k -
k
k
ij
n
k =
ij 
6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
6
2
1
6
2
1
),
(
)]
[(
3
1 3
1
3
1
,
,
; j =
,
,
i =
h
-
h
Q
=
D k -
k
k
ij
n
k =
ij 
Step 5: Analysis Procedure for Laminates
Step 5: Substitute the three stiffness matrices [A], [B], and [D]
and the applied forces and moments.






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Step 6: Analysis Procedures for Laminates
Step 6: Solve the six simultaneous equations to find the
midplane strains and curvatures.






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Step 7: Analysis Procedures for Laminates
Step 7: Find the global strains in each ply.



















































xy
y
x
0
xy
0
y
0
x
xy
y
x
z
+
=
Step 8: Analysis Procedure for Laminates
Step 8: Find the global stresses using the stress-strain
equation.












































xy
y
x
66
26
16
26
22
12
16
12
11
xy
y
x
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
Analysis Procedures for Laminated Composites
Step 9: Find the local strains using the transformation equation.

























γ
ε
ε
R
T
R
=
γ
ε
ε
xy
y
x
1
12
2
1
]
[
]
[
]
[










2
0
0
0
1
0
0
0
1
]
[ =
R












s
-
c
sc
-sc
sc
-
c
s
sc
s
c
=
T
2
2
2
2
2
2
2
2
]
[
)
cos(
=
c
)
sin(
=
s
Step 10: Analysis Procedures for Laminates
Step 10: Find the local stresses using the transformation
equation.

























τ
σ
σ
T
=
xy
y
x
12
2
1
1
]
[



















s
c
sc
sc
sc
c
s
sc
s
c
=
T
2
2
2
2
2
2
1
2
2
]
[
)
cos(
=
c
)
sin(

s
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Laminate Analysis: Example
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Problem
A [0/30/-45] Graphite/Epoxy
laminate is subjected to a load of
Nx = Ny = 1000 N/m. Use the
unidirectional properties from
Table 2.1 of Graphite/Epoxy.
Assume each lamina has a
thickness of 5 mm. Find
a) the three stiffness matrices [A],
[B] and [D] for a three ply [0/30/-
45] Graphite/Epoxy laminate.
b) mid-plane strains and
curvatures.
c) global and local stresses on top
surface of 300 ply.
d) percentage of load Nx taken by
each ply.
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7
Thickness and coordinate locations
of the three-ply laminate.
Solution
A) The reduced stiffness matrix for the Oo Graphite/Epoxy ply
is
0
Pa
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
[Q] 9










Pa
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
]
Q
[ 9
0










Pa
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
=
]
Q
[ 9
30










Pa
)
10
(
46.59
42.87
-
42.87
-
42.87
-
56.66
42.32
42.87
-
42.32
56.66
=
]
Q
[ 9
45
-










Matrices Qbar Untuk Laminas
The total thickness of the laminate is
h = (0.005)(3) = 0.015 m.
h0=-0.0075 m
h1=-0.0025 m
h2=0.0025 m
h3=0.0075 m
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Coordinates of top & bottom of
plies
Gambar 4.7
Thickness and coordinate locations
of the three-ply laminate.
Calculating [A] matrix
(-0.0075)]
-
[(-0.0025)
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
[A] 9










(-0.0025)]
-
[0.0025
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
+ 9










0.0025]
-
[0.0075
)
10
(
46.59
42.87
-
42.87
-
42.87
-
56.66
42.32
42.87
-
42.32
56.66
+ 9










)
h
-
h
(
]
Q
[
=
A 1
-
k
k
k
ij
3
1
=
k
ij 
)
(
]
[ 1
3
1
h
-
h
Q
=
A k -
k
k
ij
k =
ij 
The [A] matrix
m
-
Pa
)
4.525(10
)
1.141(10
)
5.663(10
)
1.141(10
)
4.533(10
)
3.884(10
)
5.663(10
)
3.884(10
)
1.739(10
=
[A]
8
8
7
8
8
8
7
8
9












Calculating the [B] Matrix
)
h
-
h
(
]
Q
[
2
1
=
B
2
1
-
k
2
k
k
ij
3
1
=
k
ij 
)]
)
(-0.0075
-
)
[(-0.0025
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.2
2
1
=
[B] 2
2
9










 
)
(-0.0025
-
)
(0.0025
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
2
1
+ 2
2
9










]
)
(0.0025
-
)
[(0.0075
)
10
(
46.59
42.87
42.87
42.87
56.66
42.32
42.87
42.32
56.66
2
1
+ 2
2
9














The [B] Matrix
     
     
     
2
5
6
6
6
6
5
6
5
6
10
855
9
10
072
1
10
072
1
10
072
1
10
158
1
10
855
9
10
072
1
10
855
9
10
129
3
m
Pa
.
.
.
.
.
.
.
.
.
[B] = 















Calculating the [D] matrix
)
h
-
h
(
]
Q
[
3
1
=
D
3
1
-
k
3
k
k
ij
3
1
=
k
ij 
 
3
3
9
)
0075
0
(
)
0025
0
(
)
10
(
17
7
0
0
0
35
10
897
2
0
897
2
8
181
3
1
.
.
.
.
.
.
.
[D] = 












 
3
3
9
)
0025
0
(
)
0025
0
(
)
10
(
74
36
05
20
19
54
05
20
65
23
46
32
19
54
46
32
4
109
3
1
.
.
.
.
.
.
.
.
.
.
.
+ 











 
3
3
9
)
0025
0
)
0075
0
(
)
10
(
59
46
87
42
87
42
87
42
66
56
32
42
87
42
32
42
66
56
3
1
.
- (
.
.
.
.
.
.
.
.
.
.
+














The [D] matrix
     
     
     
3
3
3
3
3
3
3
3
3
4
m
-
Pa
10
7.663
10
5.596
10
5.240
10
5.596
10
9.320
10
6.461
10
5.240
10
6.461
10
3.343
=
[D]














B) Since the applied load is Nx = Ny = 1000 N/m, the mid-
plane strains and curvatures can be found by solving the
following set of simultaneous linear equations






































































κ
κ
κ
γ
ε
ε
)
(
.
)
(
.
-
)
(
.
-
)
(
.
)
(
.
-
)
(
.
-
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
-
)
(
.
)
(
.
-
)
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
)
(
.
)
.
=
xy
y
x
xy
y
x
0
0
0
3
3
3
5
6
6
3
3
3
6
6
5
3
3
4
6
5
6
5
6
6
8
8
7
6
6
5
8
8
8
6
5
6
7
8
9
10
663
7
10
596
5
10
240
5
10
855
9
10
072
1
10
072
1
10
596
5
10
320
9
10
461
6
10
072
1
10
158
1
10
855
9
10
240
5
10
461
6
10
343
3
10
072
1
10
855
9
10
129
3
10
855
9
10
072
1
10
072
1
10
525
4
10
141
1
10
(
663
5
10
072
1
10
158
1
10
855
9
10
141
1
10
533
4
10
(
884
3
10
072
1
10
855
9
10
129
3
10
663
5
10
884
3
10
(
739
1
0
0
0
0
1000
1000
Setting up the 6x6 matrix
Mid-plane strains and
curvatures
/m
.
.
.
m/m
.
.
.
=
κ
κ
κ
γ
ε
ε
xy
y
x
xy
y
x
1
)
10
(
101
4
)
10
(
285
3
)
10
(
971
2
)
10
(
598
7
)
10
(
492
3
)
10
(
123
3
4
4
5
7
6
7
0
0
0


























































C) The strains and stresses at the top surface of the 300 ply are found
as follows. The top surface of the 300 ply is located at z = h1 = -
0.0025 m.




































)
(
.
)
(
.
-
)
(
.
)
.
+ (-
)
(
.
-
)
(
.
)
(
.
=
γ
ε
ε
-
-
-
-
-
-
xy
y
x
, top
10
101
4
10
285
3
10
971
2
0025
0
10
598
7
10
492
3
10
123
3
4
4
5
7
6
7
300
m/m
)
(
.
-
)
(
.
)
(
.
=
-
-
-












10
785
1
10
313
4
10
380
2
6
6
7
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7 Thickness and coordinate locations of the three-ply laminate.
Global strains (m/m)
 xy
Ply # Position εx εy
1 (00) Top
Middle
Bottom
8.944 (10-8)
1.637 (10-7)
2.380 (10-7)
5.955 (10-6)
5.134 (10-6)
4.313 (10-6)
-3.836 (10-6)
-2.811 (10-6)
-1.785 (10-6)
2 (300) Top
Middle
Bottom
2.380 (10-7)
3.123 (10-7)
3.866 (10-7)
4.313 (10-6)
3.492 (10-6)
2.670 (10-6)
-1.785 (10-6)
-7.598 (10-7)
2.655 (10-7)
3(-450) Top
Middle
Bottom
3.866 (10-7)
4.609 (10-7)
5.352 (10-7)
2.670 (10-6)
1.849 (10-6)
1.028 (10-6)
2.655 (10-7)
1.291 (10-6)
2.316 (10-6)


































)
10
1.785(
-
)
10
4.313(
)
10
2.380(
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
=
τ
σ
σ
6
-
6
-
-7
9
xy
y
x
top
,
300
Pa
)
10
3.381(
)
10
7.391(
)
10
6.930(
=
4
4
4












Global stresses in 30o
ply
Global stresses (Pa)
Ply # Position σx σy τxy
1 (00) Top
Middle
Bottom
3.351 (104)
4.464 (104)
5.577 (104)
6.188 (104)
5.359 (104)
4.531 (104)
-2.750 (104)
-2.015 (104)
-1.280 (104)
2 (300) Top
Middle
Bottom
6.930 (104)
1.063 (105)
1.434 (105)
7.391 (104)
7.747 (104)
8.102 (104)
3.381 (104)
5.903 (104)
8.426 (104)
3 (-450) Top
Middle
Bottom
1.235 (105)
4.903 (104)
-2.547 (104)
1.563 (105)
6.894 (104)
-1.840 (104)
-1.187 (105)
-3.888 (104)
4.091 (104)
The local strains and local stress as in the 300 ply at the
top surface are found using transformation equations as


































2
)/
10
1.785(
-
)
10
4.313(
)
10
2.380(
0.5000
0.4330
0.4330
-
0.8660
-
0.7500
0.2500
0.8660
0.2500
0.7500
=
/2
γ
ε
ε
6
-
6
-
-7
12
2
1
m/m
.
.
.
=
γ
ε
ε
-
-
-
























)
10
(
636
2
)
10
(
067
4
)
10
(
837
4
6
6
7
12
2
1
Local strains (m/m)
Ply # Position ε1 ε2 γ12
1 (00) Top
Middle
Bottom
8.944 (10-8)
1.637 (10-7)
2.380 (10-7)
5.955(10-6)
5.134(10-6)
4.313(10-6)
-3.836(10-6)
-2.811(10-6)
-1.785(10-6)
2 (300) Top
Middle
Bottom
4.837(10-7)
7.781(10-7)
1.073(10-6)
4.067(10-6)
3.026(10-6)
1.985(10-6)
2.636(10-6)
2.374(10-6)
2.111(10-6)
3 (-450) Top
Middle
Bottom
1.396(10-6)
5.096(10-7)
-3.766(10-7)
1.661(10-6)
1.800(10-6)
1.940(10-6)
-2.284(10-6)
-1.388(10-6)
-4.928(10-7)


































)
10
3.381(
)
10
7.391(
)
10
6.930(
0.5000
0.4330
0.4330
-
.8660
-
0.7500
0.2500
.8660
0.2500
0.7500
=
τ
σ
σ
4
4
4
12
2
1
Pa
)
10
1.890(
)
10
4.348(
)
10
9.973(
=
4
4
4












Local stresses in 30o
ply
Local stresses (Pa)
Ply # Position σ1 σ2 τ12
1 (00) Top
Middle
Bottom
3.351 (104)
4.464 (104)
5.577 (104)
6.188 (104)
5.359(104)
4.531 (104)
-2.750 (104)
-2.015 (104)
-1.280 (104)
2 (300) Top
Middle
Bottom
9.973 (104)
1.502 (105)
2.007 (105)
4.348 (104)
3.356 (104)
2.364 (104)
1.890 (104)
1.702 (104)
1.513 (104)
3 (-450) Top
Middle
Bottom
2.586 (105)
9.786 (104)
-6.285 (104)
2.123 (104)
2.010 (104)
1.898 (104)
-1.638 (104)
-9.954 (103)
-3.533 (103)
D) Portion of load taken by each ply
Portion of load Nx taken by 00 ply = 4.464(104)(5)(10-3) = 223.2 N/m
Portion of load Nx taken by 300 ply = 1.063(105)(5)(10-3) = 531.5 N/m
Portion of load Nx taken by -450 ply = 4.903(104)(5)(10-3) = 245.2 N/m
The sum total of the loads shared by each ply is 1000 N/m, (223.2 +
531.5 + 245.2) which is the applied load in the x-direction, Nx.
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7
Thickness and coordinate locations of the three-ply laminate.
Percentage of load Nx taken by 00 ply
Percentage of load Nx taken by 300 ply
Percentage of load Nx taken by -450 ply
%
22.32
=
100
1000
223.2


%
53.15
=
100
1000
531.5


%
24.52
=
100
1000
245.2


END

More Related Content

What's hot

Unit –iii manufac of adv comp
Unit –iii manufac of adv compUnit –iii manufac of adv comp
Unit –iii manufac of adv compSathees Kumar
 
Polymer matrix composite
Polymer matrix compositePolymer matrix composite
Polymer matrix composite
Syed Minhazur Rahman
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming Techniques
CORE-Materials
 
Composite Materials
Composite MaterialsComposite Materials
Delamination in composites
Delamination in compositesDelamination in composites
Delamination in composites
soorajndt22
 
Fracture Mechanics & Failure Analysis: Griffith theory of brittle fracture
Fracture Mechanics & Failure Analysis: Griffith theory of brittle fractureFracture Mechanics & Failure Analysis: Griffith theory of brittle fracture
Fracture Mechanics & Failure Analysis: Griffith theory of brittle fracture
NED University of Engineering and Technology
 
COMPOSITE FABRICATION TECHNIQUES
COMPOSITE FABRICATION TECHNIQUESCOMPOSITE FABRICATION TECHNIQUES
COMPOSITE FABRICATION TECHNIQUES
MNNIT Allahabad
 
Unit 2 theory_of_plasticity
Unit 2 theory_of_plasticityUnit 2 theory_of_plasticity
Unit 2 theory_of_plasticity
avinash shinde
 
Fm fatigue
Fm fatigueFm fatigue
Fm fatigue
Illyasmk
 
Vacuum bag molding
Vacuum bag moldingVacuum bag molding
Vacuum bag moldingSethu Ram
 
Chap2 Macromechanical Analysis of Lamina.pdf
Chap2 Macromechanical Analysis of Lamina.pdfChap2 Macromechanical Analysis of Lamina.pdf
Chap2 Macromechanical Analysis of Lamina.pdf
EmHetchMaidabino
 
Theories of failure_scet
Theories of failure_scetTheories of failure_scet
Theories of failure_scet
Gagandeep singh
 
Carbon carbon composite
Carbon carbon compositeCarbon carbon composite
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
Nguyen Vinh Phu
 
Ceramic Matrix Composites
Ceramic Matrix CompositesCeramic Matrix Composites
Ceramic Matrix Composites
University of Technology / Sara Hamid
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix composites
Dr. Ramesh B
 
Metal matrix composites (mmc)
Metal matrix composites (mmc)Metal matrix composites (mmc)
Metal matrix composites (mmc)
Nikhil Dixit
 
Metal matrix composite by Nishikant Bawiskar
Metal matrix composite by Nishikant BawiskarMetal matrix composite by Nishikant Bawiskar
Metal matrix composite by Nishikant Bawiskar
Nishikant Bawiskar
 
Composite manufacturing processes
Composite manufacturing processesComposite manufacturing processes
Composite manufacturing processes
sangeetha baskaran
 
Composites manufacturing technology
Composites manufacturing technologyComposites manufacturing technology
Composites manufacturing technology
Sukhdev Tudu
 

What's hot (20)

Unit –iii manufac of adv comp
Unit –iii manufac of adv compUnit –iii manufac of adv comp
Unit –iii manufac of adv comp
 
Polymer matrix composite
Polymer matrix compositePolymer matrix composite
Polymer matrix composite
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming Techniques
 
Composite Materials
Composite MaterialsComposite Materials
Composite Materials
 
Delamination in composites
Delamination in compositesDelamination in composites
Delamination in composites
 
Fracture Mechanics & Failure Analysis: Griffith theory of brittle fracture
Fracture Mechanics & Failure Analysis: Griffith theory of brittle fractureFracture Mechanics & Failure Analysis: Griffith theory of brittle fracture
Fracture Mechanics & Failure Analysis: Griffith theory of brittle fracture
 
COMPOSITE FABRICATION TECHNIQUES
COMPOSITE FABRICATION TECHNIQUESCOMPOSITE FABRICATION TECHNIQUES
COMPOSITE FABRICATION TECHNIQUES
 
Unit 2 theory_of_plasticity
Unit 2 theory_of_plasticityUnit 2 theory_of_plasticity
Unit 2 theory_of_plasticity
 
Fm fatigue
Fm fatigueFm fatigue
Fm fatigue
 
Vacuum bag molding
Vacuum bag moldingVacuum bag molding
Vacuum bag molding
 
Chap2 Macromechanical Analysis of Lamina.pdf
Chap2 Macromechanical Analysis of Lamina.pdfChap2 Macromechanical Analysis of Lamina.pdf
Chap2 Macromechanical Analysis of Lamina.pdf
 
Theories of failure_scet
Theories of failure_scetTheories of failure_scet
Theories of failure_scet
 
Carbon carbon composite
Carbon carbon compositeCarbon carbon composite
Carbon carbon composite
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Ceramic Matrix Composites
Ceramic Matrix CompositesCeramic Matrix Composites
Ceramic Matrix Composites
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix composites
 
Metal matrix composites (mmc)
Metal matrix composites (mmc)Metal matrix composites (mmc)
Metal matrix composites (mmc)
 
Metal matrix composite by Nishikant Bawiskar
Metal matrix composite by Nishikant BawiskarMetal matrix composite by Nishikant Bawiskar
Metal matrix composite by Nishikant Bawiskar
 
Composite manufacturing processes
Composite manufacturing processesComposite manufacturing processes
Composite manufacturing processes
 
Composites manufacturing technology
Composites manufacturing technologyComposites manufacturing technology
Composites manufacturing technology
 

Similar to Classical Lamination Theory

stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdf
ShikhaSingla15
 
PPT on laminated composite
PPT  on laminated compositePPT  on laminated composite
PPT on laminated composite
smghumare
 
Question Paper Nov-Dec-2018.pdf
Question Paper Nov-Dec-2018.pdfQuestion Paper Nov-Dec-2018.pdf
Question Paper Nov-Dec-2018.pdf
VICTORYSUBIKSHI
 
Beams
BeamsBeams
IJSRED-V2I3P46
IJSRED-V2I3P46IJSRED-V2I3P46
IJSRED-V2I3P46
IJSRED
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
Osama Mohammed Elmardi Suleiman
 
Serr calculation
Serr calculationSerr calculation
Serr calculation
vlpham
 
Neet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biologyNeet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biology
pravallikadodda
 
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTTRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
P singh
 
Stability
StabilityStability
Moment of Inertia by Prof. Malay Badodariya
Moment of Inertia by Prof. Malay BadodariyaMoment of Inertia by Prof. Malay Badodariya
Moment of Inertia by Prof. Malay Badodariya
Malay Badodariya
 
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
Samirsinh Parmar
 
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag TheoryEffect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
IDES Editor
 
Axisymmetric
Axisymmetric Axisymmetric
Axisymmetric
Raj Kumar
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptx
SahilDhanvijay2
 
Paper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelPaper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelRam Mohan
 
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
IJERA Editor
 
Non-Linear Analysis of Steel Frames Subjected To Seismic Force
Non-Linear Analysis of Steel Frames Subjected To Seismic ForceNon-Linear Analysis of Steel Frames Subjected To Seismic Force
Non-Linear Analysis of Steel Frames Subjected To Seismic Force
IJERA Editor
 

Similar to Classical Lamination Theory (20)

stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdf
 
PPT on laminated composite
PPT  on laminated compositePPT  on laminated composite
PPT on laminated composite
 
Question Paper Nov-Dec-2018.pdf
Question Paper Nov-Dec-2018.pdfQuestion Paper Nov-Dec-2018.pdf
Question Paper Nov-Dec-2018.pdf
 
Beams
BeamsBeams
Beams
 
IJSRED-V2I3P46
IJSRED-V2I3P46IJSRED-V2I3P46
IJSRED-V2I3P46
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
 
Serr calculation
Serr calculationSerr calculation
Serr calculation
 
Ijtra1501104
Ijtra1501104Ijtra1501104
Ijtra1501104
 
Neet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biologyNeet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biology
 
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTTRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
 
Stability
StabilityStability
Stability
 
Moment of Inertia by Prof. Malay Badodariya
Moment of Inertia by Prof. Malay BadodariyaMoment of Inertia by Prof. Malay Badodariya
Moment of Inertia by Prof. Malay Badodariya
 
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
 
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag TheoryEffect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
 
Axisymmetric
Axisymmetric Axisymmetric
Axisymmetric
 
20320140503027
2032014050302720320140503027
20320140503027
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptx
 
Paper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelPaper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanel
 
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
 
Non-Linear Analysis of Steel Frames Subjected To Seismic Force
Non-Linear Analysis of Steel Frames Subjected To Seismic ForceNon-Linear Analysis of Steel Frames Subjected To Seismic Force
Non-Linear Analysis of Steel Frames Subjected To Seismic Force
 

Recently uploaded

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 

Recently uploaded (20)

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 

Classical Lamination Theory