SlideShare a Scribd company logo
1 of 57
Download to read offline
Chap 2 Macromechanical
Analysis of a Lamina
• Laminate is constructed by stacking a
number of laminas in the direction of the
lamina thickness)
• Limina is the building block of a laminate
2.1 Brief Review
•Macromechanics means that the average mechanical
properties are focused, ignoring the interaction of
components in composites.
•Generally, a single-layer board is analyzed in terms
of a plane stress problem since its thickness is much
smaller than its length and width. Only the in-plane
stresses exist.













































































12
31
23
3
2
1
66
65
64
63
62
61
56
55
54
53
52
51
46
45
44
43
42
41
36
35
34
33
32
31
26
25
24
23
22
21
16
15
14
13
12
11
12
31
23
3
2
1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C













































































12
31
23
3
2
1
66
56
46
36
26
16
56
55
45
35
25
15
46
45
44
34
24
14
36
35
34
33
23
13
26
25
24
23
22
12
16
15
14
13
12
11
12
31
23
3
2
1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
• Constants Cij=Cji
• C is symmetrical, including 21 independent constants.
For anisotropic elastomers:
Material with one plane of symmetry
• If the material has one symmetry plane, the number of elastic
parameters is reduced to 13.













































































12
31
23
3
2
1
66
36
26
16
55
45
45
44
36
33
23
13
26
23
22
12
16
13
12
11
12
31
23
3
2
1
C
0
0
C
C
C
0
C
C
0
0
0
0
C
C
0
0
0
C
0
0
C
C
C
C
0
0
C
C
C
C
0
0
C
C
C
单对称材料
Orthotropic Material
•More symmetry planes lead to the reduction of
independent constants.
-- If there are two symmetry planes -- 9 independent
constants.













































































12
31
23
3
2
1
66
55
44
33
23
31
23
22
21
13
12
11
12
31
23
3
2
1
C
0
0
0
0
0
0
C
0
0
0
0
0
0
C
0
0
0
0
0
0
C
C
C
0
0
0
C
C
C
0
0
0
C
C
C
No coupling!
Transversely Isotropic Material
•Five independent constants














































































12
31
23
3
2
1
12
11
44
44
33
13
13
13
11
12
13
12
11
12
31
23
3
2
1
2
C
C
0
0
0
0
0
0
C
0
0
0
0
0
0
C
0
0
0
0
0
0
C
C
C
0
0
0
C
C
C
0
0
0
C
C
C
2
C
C
C 12
11
66


Subscripts 1 and 2 can exchange
•Two independent constants
2
/
)
C
C
(
C
C
C
C
C
C
C
C
C
12
11
66
55
44
31
23
12
33
22
11




























































































12
31
23
3
2
1
12
11
12
11
12
11
11
12
12
12
11
12
12
12
11
12
31
23
3
2
1
2
C
C
0
0
0
0
0
0
2
C
C
0
0
0
0
0
0
2
C
C
0
0
0
0
0
0
C
C
C
0
0
0
C
C
C
0
0
0
C
C
C
Isotropic Material
Constitutive equation(flexibility matrix)













































































12
31
23
3
2
1
66
56
46
36
26
16
56
55
45
35
25
15
46
45
44
34
24
14
36
35
34
33
23
13
26
25
24
23
22
12
16
15
14
13
12
11
12
31
23
3
2
1
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
• It is inverse to stiffness matrix
• The both matrices has the same features
Flexibility matrix expressed by engineering constants
 















































12
31
23
3
2
23
1
13
3
32
2
1
12
3
31
2
21
1
ij
G
1
0
0
0
0
0
0
G
1
0
0
0
0
0
0
G
1
0
0
0
0
0
0
E
1
E
E
0
0
0
E
E
1
E
0
0
0
E
E
E
1
S
(Orthotropic material)





































12
2
1
66
22
12
12
11
12
2
1
S
0
0
0
S
S
0
S
S
2.2 Relationship in Plane stress State
(Orthotropic)
1
2
3
Only three stresses 1, 2,12
are non-zero.
The flexibility matrix is
simplified as
12
12
12
2
2
)
2
(
2
2
1
12
)
2
(
1
1
1
12
)
1
(
2
1
1
)
1
(
1
G
1
E
1
E
E
E
1



















1
2
1

2

12

1

2

12

Deducing…
by
2.2 Relationship in Plane stress State
(Orthotropic)
by
by
No coupling!
Based on the superposition principle:
12
12
12
2
2
1
1
12
)
2
(
2
)
1
(
2
2
2
1
12
1
1
)
2
(
1
)
1
(
1
1
G
1
E
1
E
E
E
1









































































12
2
1
12
2
1
12
2
21
1
12
2
1
G
1
0
0
0
E
1
E
0
E
E
1





































12
2
1
66
22
12
12
11
12
2
1
S
0
0
0
S
S
0
S
S
12
66
2
22
2
21
1
12
12
1
11
G
1
S
E
1
S
E
E
S
E
1
S














































12
2
1
66
22
12
12
11
12
2
1
Q
0
0
0
Q
Q
0
Q
Q
66
66
2
12
22
11
11
22
2
12
22
11
12
12
2
12
22
11
22
11
S
1
Q
S
S
S
S
Q
S
S
S
S
Q
S
S
S
S
Q







12
66
21
12
2
22
21
12
1
21
21
12
2
12
12
21
12
1
11
G
Q
1
E
Q
1
E
1
E
Q
1
E
Q



















Stiffness constants in plane stress state
2
21
1
12
E
E



E
S
E
1
S
)
S
S
(
2
0
0
0
S
S
0
S
S
12
11
12
2
1
12
11
11
12
12
11
12
2
1















































































12
2
1
66
11
12
12
11
12
2
1
Q
0
0
0
Q
Q
0
Q
Q
G
)
1
(
2
E
Q
1
E
Q
1
E
Q
66
2
12
2
11











four independent constants:
E1,E2,12 & G12
For isotropic materials
34
.
0
,
GPa
80
.
5
G
,
GPa
50
.
8
E
,
GPa
3
.
134
E 12
12
2
1 




Try to calculate the stiffness constants and flexibility constants.
GPa
80
.
5
G
Q
GPa
91
.
2
E
m
Q
Q
GPa
56
.
8
mE
Q
,
GPa
3
.
135
mE
Q
0074
.
1
)
E
E
1
(
m
,
TPa
4
.
172
G
/
1
S
TPa
53
.
2
E
/
S
S
TPa
6
.
117
E
/
1
S
,
TPa
45
.
7
E
/
1
S
12
66
2
12
21
12
2
22
1
11
1
1
2
2
12
1
12
66
1
1
12
21
12
1
2
22
1
1
11































1
1
2
2
12
1
21
12 )
E
E
1
(
)
1
(
m 
 






Let
Eg. The engineering constants for a lamina (T300/648)
are
2.3 Constitutive eq of single-layer
board in arbitrary direction
Coordinate Transformation is necessary when the principle
directions are inconsistent with the geometric directions.
Oblique to the shaft
1
2
y
x
+
Using the stresses σ1, σ2 and σ3 in 1-2 coordinate
system to express σx, σy and σz in x-y coordinate
system:
2.3 Constitutive eq of single-layer
board in arbitrary direction
     
T 
 
 
     
T 
 
 
1
2 y
x
 1 cos( , )
l x x

 2 cos( , )
l y x

 3 cos( , )
l z x


1 cos( , )
m x y

 2 cos( , )
m y y

 3 cos( , )
m z y


1 cos( , )
n x z

 2 cos( , )
n y z

 3 cos( , )
n z z


2 2 2
1 1 1 1 1 1 1 1 1
2 2 2
2 2 2 2 2 2 2 2 2
2 2 2
3 3 3 3 3 3 3 3 3
2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2
3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3
1 2 1 2 1
2 2 2
2 2 2
2 2 2
x
y
z
yz
zx
xy
l m n m n n l l m
l m n m n n l l m
l m n m n n l l m
l l m m n n m n m n n l n l l m l m
l l m m n n m n m n n l n l l m l m
l l m m n n









 
 
 
 

 
  
 
    
 
 
  2 1 2 2 1 1 2 2 1 1 2 2 1
x
y
z
yz
zx
xy
m n m n n l n l l m l m






 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   
   
2 2 2
1 1 1 1 1 1 1 1 1
2 2 2
2 2 2 2 2 2 2 2 2
2 2 2
3 3 3 3 3 3 3 3 3
2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2
3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3
1 2 1 2 1
2 2 2
2 2 2
2 2 2
x
y
z
yz
zx
xy
l m n m n nl l m
l m n m n n l l m
l m n m n n l l m
l l m m n n m n m n n l n l l m l m
l l m m n n m n m n n l nl l m l m
l l m m n n









 
 
 
 

 
  
 
    
 
 
  2 1 2 2 1 1 2 2 1 1 2 2 1
x
y
z
yz
zx
xy
m n m n nl n l l m l m






 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  






















































12
2
1
2
2
2
2
2
2
xy
y
x
sin
cos
cos
sin
cos
sin
cos
sin
2
cos
sin
cos
sin
2
sin
cos
Similarly,
Coordinate transformation matrix
𝜀𝑥
𝜀𝑦
𝜏𝑥𝑦
=
cos2𝜃 sin2𝜃 −sin𝜃cos𝜃
sin2
𝜃 cos2
𝜃 sin𝜃cos𝜃
2sin𝜃cos𝜃 −2sin𝜃cos𝜃 cos2𝜃 − sin2𝜃
𝜀1
𝜀2
𝜏12
     
T 
 
 
     
T 
 
 



















































12
2
1
66
11
12
12
11
12
2
1
xy
y
x
Q
0
0
0
Q
Q
0
Q
Q
 



























12
2
1
12
2
1
Q
When the principle axises of material are consistent with
the coordinate system:
If inconsistent:
2.3 Constitutive eq of single-layer
board in arbitrary direction
         
1
T S T S
 
  

  
 
   
         
1
T C T C
 
  

  
 
   
   
T
S T S T
 
  
     
T
C T C T
 
  
 
 



















































xy
y
x
66
26
16
26
22
12
16
12
11
xy
y
x
xy
y
x
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
)
sin
(cos
Q
cos
sin
)
Q
2
Q
2
Q
Q
(
Q
cos
sin
)
Q
2
Q
Q
(
cos
sin
)
Q
2
Q
Q
(
Q
cos
sin
)
Q
2
Q
Q
(
cos
sin
)
Q
2
Q
Q
(
Q
cos
Q
cos
sin
)
Q
2
Q
(
2
sin
Q
Q
)
sin
(cos
Q
cos
sin
)
Q
4
Q
Q
(
Q
sin
Q
cos
sin
)
Q
2
Q
(
2
cos
Q
Q
4
4
66
2
2
66
12
22
11
66
3
66
22
12
3
66
12
11
26
3
66
22
12
3
66
12
11
16
4
22
2
2
66
12
4
11
22
4
4
12
2
2
66
22
11
12
4
22
2
2
66
12
4
11
11























































• Nine non-zero constants.
• Coupling phenomena occur in this generalized constitutive eq. for
orthotropic materials. Be quite different from Q!
Odd
Even functions





































12
2
1
66
22
12
12
11
12
2
1
S
0
0
0
S
S
0
S
S
    



















































xy
y
x
66
26
16
26
22
12
16
12
11
xy
y
x
T
xy
y
x
S
S
S
S
S
S
S
S
S
T
S
T
)
sin
(cos
S
cos
sin
)
S
S
4
S
2
S
2
(
2
S
cos
sin
)
S
S
2
S
2
(
cos
sin
)
S
S
2
S
2
(
S
cos
sin
)
S
S
2
S
2
(
cos
sin
)
S
S
2
S
2
(
S
cos
S
cos
sin
)
S
2
S
2
(
sin
S
S
)
sin
(cos
S
cos
sin
)
S
S
S
(
S
sin
S
cos
sin
)
S
S
2
(
cos
S
S
4
4
66
2
2
66
12
22
11
66
3
66
12
22
3
66
12
11
26
3
66
12
22
3
66
12
11
16
4
22
2
2
66
12
4
11
22
4
4
12
2
2
66
22
11
12
4
22
2
2
66
12
4
11
11























































Similarly, the strain can be
expressed by stress
in x-y system:





































12
2
1
66
26
16
26
11
12
16
12
11
12
2
1
Q
Q
Q
Q
Q
Q
Q
Q
Q





































12
2
1
66
26
16
26
22
12
16
12
11
12
2
1
S
S
S
S
S
S
S
S
S
12
12
,
2
2
3
,
12
26
12
12
,
1
1
1
,
12
16
12
66
2
22
2
21
1
12
12
1
11
G
E
S
G
E
S
G
1
S
E
1
S
E
E
S
E
1
S





















i
ij
i
,
ij
ij
i
ij
,
i










The generalized constitutive eq. of a common anisotropic
elastomer can be deduced in a similar way.
Hint: The off-axis tension in composites
leads to axial extension and shear strain!
(New engineering constants
— interaction coefficient )
i
ij
i
,
ij
ij
i
ij
,
i










New engineering constants — interaction coefficient
The first kind: the extension in i-direction caused by
the shear stress in i-j plane
Off-axis tension in composites
The second kind: the shear stress in i-j plane caused
by the normal stress in i-direction
2
22
2
21
1
12
12
1
11
E
1
S
E
E
S
E
1
S








)
sin
(cos
S
cos
sin
)
S
S
4
S
2
S
2
(
2
S
cos
sin
)
S
S
2
S
2
(
cos
sin
)
S
S
2
S
2
(
S
cos
sin
)
S
S
2
S
2
(
cos
sin
)
S
S
2
S
2
(
S
cos
S
cos
sin
)
S
2
S
2
(
sin
S
S
)
sin
(cos
S
cos
sin
)
S
S
S
(
S
sin
S
cos
sin
)
S
S
2
(
cos
S
S
4
4
66
2
2
66
12
22
11
66
3
66
12
22
3
66
12
11
26
3
66
12
22
3
66
12
11
16
4
22
2
2
66
12
4
11
22
4
4
12
2
2
66
22
11
12
4
22
2
2
66
12
4
11
11























































12
12
,
2
2
3
,
12
26
12
12
,
1
1
1
,
12
16
12
66
G
E
S
G
E
S
G
1
S

















































































































 








































 




3
12
1
12
2
3
12
1
12
1
y
y
,
xy
3
12
1
12
2
3
12
1
12
1
x
x
,
xy
4
4
12
2
2
12
1
12
2
1
xy
4
2
2
2
1
12
12
4
1
y
2
2
12
2
1
4
4
1
12
x
xy
4
2
2
2
1
12
12
4
1
x
cos
sin
G
1
E
2
E
2
cos
sin
G
1
E
2
E
2
E
cos
sin
G
1
E
2
E
2
cos
sin
G
1
E
2
E
2
E
)
cos
(sin
G
1
cos
sin
G
1
E
2
E
2
E
2
2
G
1
cos
E
1
cos
sin
E
2
G
1
sin
E
1
E
1
cos
sin
G
1
E
1
E
1
)
cos
(sin
E
E
sin
E
1
cos
sin
E
2
G
1
cos
E
1
E
1
Engineering constants with off-axis loading is expressed by
•Generalized elasticity modulus of anisotropic
elastomers varies with the angle between the
loading direction and the principle direction of
composite material under off-axis loading.
•The ultimate value of material performance (max.
or min.) may not appear in the principle directions
of material.
•Performance of composites can be designed and
optimized according to the above features.
Summary
2.4 Strength of Orthotropic Laminae
Strength -- an important concept
•Practically, a lamina is hardly used due to its low
strength and stiffness in transverse direction.
However, multi-layer composite board is often
used as structural materials.
•Purpose of this section is to express the strength
in arbitrary direction by the properties in the
principle directions of material. (differing from the
traditional isotropic materials)
•Basic strength – in the principle of material
Xt -- longitudinal tensile strength
Xc -- longitudinal compressive stength
Yt -- transverse tensile strength
Yc -- transverse compressive strength
S -- in-plane shear strength
•They, together with E1,E2,12 and G12, are called
engineering constants. (9 constants)
•Strength is dependent of direction.
The strength of isotropic material reflects the material
strength in simple loading state.
•Plastic – yield stress or constraint yield stress
•Brittle – ultimate stress
•Others: shear yield stress, fatigue, etc.
For orthotropic materials
•Strength varies with direction
•The mechanism of tensile failure differs from
that of compressive failure
•In-plane shear strength is independent.
Eg. A unidirectional fibre reinforced lamina is shown in
Fig.1.
1
2
X
Y
S 2
2
2
cm
/
N
2000
S
cm
/
N
1000
Y
cm
/
N
50000
X



Stress field
2
12
2
2
2
1
cm
/
N
1000
cm
/
N
2000
cm
/
N
45000






Fig. 1
The maximum principle stress σ1 is lower than the maximum
material strength X, but the board will fail in 2-direction,
resulting from the higher stress σ2 when compared to the
strength in 2-direction.
Conclusions
Strength
•The shear strength in the principle direction is
independent of tension and compression. The
maximum value of shear stress
-- constant regardless of the performance difference
between compression and tension.
-- invariable in spite of a positive shear stress or a
positive shear stress.
•The maximum value of the off-axis shear strength
is dependent of the positive/negative sign of shear
stress.
Eg.
Different off-axis shear strengths
1
2
1
2 1
2
1
2
Shear in principle directions Shear at 45֠ to the principle axises
complicate
(identical max. )
(different shear strength)
+ -
=
=
Experimentally Determining Strength and Stiffness
•Strength constants
Xt Xc Yt Yc S
•Stiffness constants
E1 – elasticity modulus in 1-direction
E2 – elasticity modulus in 1-direction
12 = 2/1, when 1=  and other stress =0
21 = -1/2, when 2=  and other stress = 0
G12 – shear modulus in 1-2 plane
•Basic principle in tests:
The stress-strain relationship is linear with the increase of
the load until failure.
• Generally, the tensile curve exactly shows linear feature
while the compressive curve and shear curve are nonlinear.
•The key point in the tests is to load specimens
evenly.
Experimentally Determining Strength and Stiffness
Normal stress and shear strain
Shear strain and normal stress
Normal stress and bending curvature
Bending stress and normal strain
Coupling effect
for orthotropic materials, the orthotropy
often leads to coupling phenomena when the
load is off-axis.
Experimentally Determining Strength and Stiffness
 Unidirectional tensile test in 1-direction
1
2
P
P
×
1
1
1
E1
1 max=X
1、2 can be determined by measurement
A
/
P
X
E
A
/
P
max
1
2
12
1
1
1
1











Experimentally Determining Strength and Stiffness
Unidirectional tensile test in 2-direction
2
1
P P
×
2
2
1
E2
2 max=Y
Measure 1、2
A
/
P
Y
E
A
/
P max
2
1
21
2
2
2
2 










Experimentally Determining Strength and Stiffness
2
21
1
12
E
E



Stiffness coefficients
must meet the equation:
 The test devices are not accurate;
 Miscalculation;
 The stress-strain relationship of the tested
material is nonlinear.
If not
Experimentally Determining Strength and Stiffness
Unidirectional test at 45 degrees to 1-axis
450
2
y
1
x
P
P
x
x
1
Ex
2
1
1
12
x
12
2
12
1
12
1
x
x
x
E
1
E
1
E
2
E
4
1
G
E
1
G
1
E
2
E
1
4
1
E
1
A
/
P
E




















Measure x
(G12 is determined)
Based on
Experimentally Determining Strength and Stiffness
2.5 Bidirectional strength theory of
anisotropic laminae
• The above methods often used in unidirectional stress
state.
• Practically, an elastomer may be loaded in two or three
directions.
• A new failure criterion should be identified when loading
in multi-directions.
• Failure criterion is used for predicting failures. It is not
the model of true failures and consequently the failure
mechanism cannot be uncovered by it.
x
y
Failure Data
×
Failure
×
Yield
2.5 Bidirectional strength theory of
anisotropic laminae
Failure envelope -- combinations of the normal and shear
stresses.
Two-dimensional failure envelope with a given shear stress
1. Maximum Stress Failure Theory
In plane stress state, a failure is predicted in a
unidirectional lamina if any stress component in the
local axes equals or exceeds the corresponding
ultimate strength.
This criterion includes 3 independent expressions
or 3 sub-criteria.
The stress should be expressed in the principle
axises of material.
Description
S
Y
X 12
t
2
t
1 





S
Y
X 12
c
2
c
1 





























cos
sin
S
sin
Y
cos
X
cos
sin
sin
cos
x
2
x
2
t
x
x
12
2
x
2
2
x
1
Criterion
Tensile
Compressive
Theoretical and experimental
results are often conflicted
2. Maximum Strain Failure Theory
The criterion also includes 3 independent expressions
or sub-criterions.
Strain should be expressed in the material axes.
Especially, a term incorporating Poisson’s ratio is involved
in the expression, which indicates the effect of bidirectional
stress is considered. The effect will be small if the Poisson’s
ratio is small.
Description
In plane stress state, a failure is predicted if any
strain component in the material axes exceeds the
maximum strain.
Expressions


 




 S
Y
X 12
2
1 t
t
12
12
12
1
21
2
2
2
2
12
1
1
1
G
)
(
E
1
)
(
E
1















In 2-D state (plane stress state):
x
12
12
x
2
21
2
2
2
x
2
12
2
1
1
)
cos
(sin
G
1
)
cos
(sin
E
1
)
sin
(cos
E
1




















2
c
1
c
12
2
t
1
t
E
Y
Y
E
X
X
G
S
S
E
Y
Y
E
X
X
c
c
t
t


























cos
sin
S
cos
sin
Y
sin
cos
X
x
2
21
2
x
2
12
2
t
x














cos
sin
sin
cos
x
12
2
x
2
2
x
1
Maximum Strain theory
Big difference between
theoretical and
experimental results
Unidirectional:
Let
3. Tsai-Hill Failure Theory
1
N
2
M
2
L
2
F
2
G
2
H
2
)
G
F
(
)
H
F
(
)
H
G
(
2
12
2
13
2
23
3
2
3
1
2
1
2
3
2
2
2
1
























Yield criterion
where F, G, H, L, M, N are constants related to failure
load.
This theory is based on the Von-Mises’ distortional energy
yield criterion.
Tsai-Hill Theory
2
2
2
2
Z
1
G
F
Y
1
H
F
X
1
H
G
S
1
N
2







If only 12 is applied
If only 1 is applied
If only 2 is applied
If only 3 is applied
2
2
2
2
2
2
2
2
2
Z
1
Y
1
X
1
F
2
Z
1
Y
1
X
1
G
2
Z
1
Y
1
X
1
H
2










According to the criterion
( X, Y, Z are failure strengths in the three
orthotropic directions, respectively )
1
S
Y
X
X 2
2
12
2
2
2
2
2
1
2
2
1









0
23
13
3 



















cos
sin
sin
cos
x
12
2
x
2
2
x
1
2
x
2
4
2
2
2
2
2
4
1
Y
sin
sin
cos
X
1
S
1
X
cos















Based on transformation eq.
Hill-Tsai Theory
Unidirectional
loading
For a unidimentional lamina under plane stress:
Features of Tsai-Hill Theory
 It is a failure criterion.
 Strength curve varying with direction angle is smooth without
sharp point.
 Unidirectional strength decreases with respect to the direction
angle (different from Max. Stress Theory and Max Strain
Theory)
 The results are more consistent with experimental results.
 In Hill-Tsai theory, the interaction among the failure strengths
X, Y and S is significantly considered, which is ignored by the
other strength theory.
 The result for isotropic elastomers can be obtained by
simplification.
Disadvantages
 It is not suitable for all materials.
The function should be applied for compressive loading
differs from the function for tensile loading.
Hoffman suggested a adapted failure criterion for the
materials with different behavior under compressive loading
when compared to tensile loading.
1
S
Y
Y
Y
Y
X
X
X
X
Y
Y
X
X 2
2
12
2
c
t
t
C
1
c
t
t
C
c
t
2
2
c
t
2
1
2
1















-- Hoffman failure criterion
4. Tsai-Wu Failure Theory
6
,
2
,
1
j
,
i
1
F
F j
i
ij
i
i 






1
F
2
F
F
F
F
F
F 2
1
12
2
6
66
2
2
22
2
1
11
6
6
2
2
1
1 














Assume that the failure surface in stress space is
( Fi and Fij are coefficient tensors)
12
6
13
5
23
4 








For orthotropic elastomers in plane stress state,
This failure theory is based on the total strain energy failure
theory of Beltrami.
Tsai-Wu Failure Theory
1
X
F
X
F 2
t
11
t
1 

c
t
22
c
t
2
Y
Y
1
F
Y
1
Y
1
F




1
X
F
X
F 2
c
11
c
1 

Apply 1=Xt, 2= 0=12:
c
t
11
c
t
1
X
X
1
F
X
1
X
1
F




Similarly
in plane stress state
Some components of the strength tensor can be determined by
engineering parameters:
The shear strength in the principle directions is independent of
the positive/ negative sign of shear stress.
Apply 1=Xc, 2= 0=12:
Apply 1=0, 2= 0,12=S(-S)
Tsai-Wu Failure Theory
1
)
F
2
F
F
(
)
F
F
( 2
12
22
11
2
1 






The tensor coefficient Fij indicates the interaction of the stresses
in two orthotropic directions (1 and 2).




 2
1































 2
c
t
c
t
c
t
c
t
2
12
Y
Y
1
X
X
1
Y
1
Y
1
X
1
X
1
1
2
1
F
Substituting the stresses into the tensor eq. in plane stress
state yields
If 2F12=-F11, the eq. is as same as Hoffman.
If compressive strengths are identical, 2F12=-1/X2.
(as same as Hill-Tsai eq.)
Design a bidirectional tensile test:
Features of Tsai-Wu failure theory
• The linear terms Fi describe the effect of unidirectional
stress;
• The quadratic terms Fij describe the effect of the space
stresses, dependent of the interaction of the normal
stressesi and j.
• The quadratic terms Fij are symmetric.
6
,
2
,
1
j
,
i
1
F
F j
i
ij
i
i 







More Related Content

What's hot

METAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEMETAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEkedarisantosh
 
Finite Element Analysis of Composites by Dan Milligan
 Finite Element Analysis of Composites by Dan Milligan Finite Element Analysis of Composites by Dan Milligan
Finite Element Analysis of Composites by Dan MilliganIulian J
 
Fibre reinforced composites 3
Fibre reinforced composites 3Fibre reinforced composites 3
Fibre reinforced composites 3Naga Muruga
 
Composites and it's manufacturing
Composites and it's manufacturingComposites and it's manufacturing
Composites and it's manufacturingHarsh Joshi
 
Polymer matrix composites [pmc]
Polymer matrix composites [pmc]Polymer matrix composites [pmc]
Polymer matrix composites [pmc]Hafis Puzhakkal
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanicsDeepak Samal
 
Unit 1-Introduction to Composites.pptx
Unit 1-Introduction to Composites.pptxUnit 1-Introduction to Composites.pptx
Unit 1-Introduction to Composites.pptxrohanpanage1
 
composite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processescomposite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processespuneet8589
 
29835305 particle-reinforce-composite
29835305 particle-reinforce-composite29835305 particle-reinforce-composite
29835305 particle-reinforce-compositeAjay Sharma
 

What's hot (20)

Manufacture of composites
Manufacture  of  compositesManufacture  of  composites
Manufacture of composites
 
Composite materials
Composite materialsComposite materials
Composite materials
 
POWDER METALLURGY
POWDER METALLURGYPOWDER METALLURGY
POWDER METALLURGY
 
METAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEMETAL MATRIX COMPOSITE
METAL MATRIX COMPOSITE
 
Aluminum si c mmc
Aluminum si c mmcAluminum si c mmc
Aluminum si c mmc
 
Finite Element Analysis of Composites by Dan Milligan
 Finite Element Analysis of Composites by Dan Milligan Finite Element Analysis of Composites by Dan Milligan
Finite Element Analysis of Composites by Dan Milligan
 
Modeling of elastic properties of laminates
Modeling of elastic properties of laminatesModeling of elastic properties of laminates
Modeling of elastic properties of laminates
 
Fibre reinforced composites 3
Fibre reinforced composites 3Fibre reinforced composites 3
Fibre reinforced composites 3
 
Composites and it's manufacturing
Composites and it's manufacturingComposites and it's manufacturing
Composites and it's manufacturing
 
Superalloys
SuperalloysSuperalloys
Superalloys
 
Polymer matrix composites [pmc]
Polymer matrix composites [pmc]Polymer matrix composites [pmc]
Polymer matrix composites [pmc]
 
Chapter 4 Crystal Structures
Chapter 4 Crystal Structures Chapter 4 Crystal Structures
Chapter 4 Crystal Structures
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Ceramics Matrix Composite
Ceramics Matrix CompositeCeramics Matrix Composite
Ceramics Matrix Composite
 
Metal matrix Composites
Metal matrix CompositesMetal matrix Composites
Metal matrix Composites
 
Unit 1-Introduction to Composites.pptx
Unit 1-Introduction to Composites.pptxUnit 1-Introduction to Composites.pptx
Unit 1-Introduction to Composites.pptx
 
CH 3.pptx
CH 3.pptxCH 3.pptx
CH 3.pptx
 
Polymer matrix composite
Polymer matrix compositePolymer matrix composite
Polymer matrix composite
 
composite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processescomposite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processes
 
29835305 particle-reinforce-composite
29835305 particle-reinforce-composite29835305 particle-reinforce-composite
29835305 particle-reinforce-composite
 

Similar to Macromechanical Analysis of a Lamina

stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdfShikhaSingla15
 
Mekanika : Particle sliding on a smooth inclined plane
Mekanika : Particle sliding on a smooth inclined planeMekanika : Particle sliding on a smooth inclined plane
Mekanika : Particle sliding on a smooth inclined planeSeptiko Aji
 
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...wafahop
 
Some Multivariate Methods Used by Ecologists
Some Multivariate Methods Used by EcologistsSome Multivariate Methods Used by Ecologists
Some Multivariate Methods Used by EcologistsPeter Chapman
 
Mechanics of structures module4
Mechanics of structures  module4Mechanics of structures  module4
Mechanics of structures module4SHAMJITH KM
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space AnalysisHussain K
 
Material modelling for design
Material modelling for design Material modelling for design
Material modelling for design Er Shambhu Chauhan
 
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptxChap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptxSamirsinh Parmar
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesMaxim Eingorn
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
Mathematic for engineering iii for prints calculate by seng phearun in m8
Mathematic for engineering iii for prints calculate by seng phearun in m8Mathematic for engineering iii for prints calculate by seng phearun in m8
Mathematic for engineering iii for prints calculate by seng phearun in m8Phearun Seng
 
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Shekh Muhsen Uddin Ahmed
 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxdatamboli
 
gauss-jordan-100722001245-phpapp01.pdf
gauss-jordan-100722001245-phpapp01.pdfgauss-jordan-100722001245-phpapp01.pdf
gauss-jordan-100722001245-phpapp01.pdfPraveenGaddi2
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式zoayzoay
 
17th ACFM Report — XiLin XIE.pdf
17th ACFM Report — XiLin XIE.pdf17th ACFM Report — XiLin XIE.pdf
17th ACFM Report — XiLin XIE.pdfVincentYang84
 

Similar to Macromechanical Analysis of a Lamina (20)

stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdf
 
Mekanika : Particle sliding on a smooth inclined plane
Mekanika : Particle sliding on a smooth inclined planeMekanika : Particle sliding on a smooth inclined plane
Mekanika : Particle sliding on a smooth inclined plane
 
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
 
Some Multivariate Methods Used by Ecologists
Some Multivariate Methods Used by EcologistsSome Multivariate Methods Used by Ecologists
Some Multivariate Methods Used by Ecologists
 
Mechanics of structures module4
Mechanics of structures  module4Mechanics of structures  module4
Mechanics of structures module4
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
Material modelling for design
Material modelling for design Material modelling for design
Material modelling for design
 
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptxChap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Mathematic for engineering iii for prints calculate by seng phearun in m8
Mathematic for engineering iii for prints calculate by seng phearun in m8Mathematic for engineering iii for prints calculate by seng phearun in m8
Mathematic for engineering iii for prints calculate by seng phearun in m8
 
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
 
Nsm
Nsm Nsm
Nsm
 
Jacobi method
Jacobi methodJacobi method
Jacobi method
 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptx
 
Lect17
Lect17Lect17
Lect17
 
gauss-jordan-100722001245-phpapp01.pdf
gauss-jordan-100722001245-phpapp01.pdfgauss-jordan-100722001245-phpapp01.pdf
gauss-jordan-100722001245-phpapp01.pdf
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
17th ACFM Report — XiLin XIE.pdf
17th ACFM Report — XiLin XIE.pdf17th ACFM Report — XiLin XIE.pdf
17th ACFM Report — XiLin XIE.pdf
 
Quantech reviewer
Quantech reviewerQuantech reviewer
Quantech reviewer
 

More from EmHetchMaidabino

robotics-in-construction.pptx
robotics-in-construction.pptxrobotics-in-construction.pptx
robotics-in-construction.pptxEmHetchMaidabino
 
carbonation-181211172440.pptx
carbonation-181211172440.pptxcarbonation-181211172440.pptx
carbonation-181211172440.pptxEmHetchMaidabino
 
Cement and Concrete Composites.pptx
Cement and Concrete Composites.pptxCement and Concrete Composites.pptx
Cement and Concrete Composites.pptxEmHetchMaidabino
 
4-flexuralbehaviorofrcbeams-170818223637.pdf
4-flexuralbehaviorofrcbeams-170818223637.pdf4-flexuralbehaviorofrcbeams-170818223637.pdf
4-flexuralbehaviorofrcbeams-170818223637.pdfEmHetchMaidabino
 
Concrete structure presentation
Concrete structure presentation Concrete structure presentation
Concrete structure presentation EmHetchMaidabino
 
Presentation steel muslim.pdf
Presentation steel muslim.pdfPresentation steel muslim.pdf
Presentation steel muslim.pdfEmHetchMaidabino
 

More from EmHetchMaidabino (10)

composite materials
composite materialscomposite materials
composite materials
 
robotics-in-construction.pptx
robotics-in-construction.pptxrobotics-in-construction.pptx
robotics-in-construction.pptx
 
carbonation-181211172440.pptx
carbonation-181211172440.pptxcarbonation-181211172440.pptx
carbonation-181211172440.pptx
 
muslim project ppt.pptx
muslim project ppt.pptxmuslim project ppt.pptx
muslim project ppt.pptx
 
OVERVIEW OF CHINA
OVERVIEW OF CHINAOVERVIEW OF CHINA
OVERVIEW OF CHINA
 
Cement and Concrete Composites.pptx
Cement and Concrete Composites.pptxCement and Concrete Composites.pptx
Cement and Concrete Composites.pptx
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
 
4-flexuralbehaviorofrcbeams-170818223637.pdf
4-flexuralbehaviorofrcbeams-170818223637.pdf4-flexuralbehaviorofrcbeams-170818223637.pdf
4-flexuralbehaviorofrcbeams-170818223637.pdf
 
Concrete structure presentation
Concrete structure presentation Concrete structure presentation
Concrete structure presentation
 
Presentation steel muslim.pdf
Presentation steel muslim.pdfPresentation steel muslim.pdf
Presentation steel muslim.pdf
 

Recently uploaded

ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 

Recently uploaded (20)

ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 

Macromechanical Analysis of a Lamina