SlideShare a Scribd company logo
18|	
  Amino	
  Acid	
  Oxida/on	
  Produc/on	
  of	
  Urea	
  
© 2013 W. H. Freeman and Company
22|	
  Nitrogen	
  Assimila/on,	
  Biosynthe/c	
  Use,	
  and	
  Excre/on	
  
The	
  use	
  of	
  amino	
  acids	
  as	
  fuel	
  	
  
varies	
  greatly	
  by	
  organism	
  	
  
•  About	
  90%	
  of	
  energy	
  needs	
  of	
  carnivores	
  can	
  be	
  met	
  
by	
  amino	
  acids	
  immediately	
  a*er	
  a	
  meal	
  	
  
•  Microorganisms	
  scavenge	
  amino	
  acids	
  from	
  their	
  
environment	
  for	
  fuel	
  when	
  needed	
  
•  Only	
  a	
  very	
  small	
  frac3on	
  of	
  energy	
  needs	
  of	
  
herbivores	
  are	
  met	
  by	
  amino	
  acids	
  
•  Plants	
  do	
  not	
  use	
  amino	
  acids	
  as	
  a	
  fuel	
  source,	
  but	
  
can	
  degrade	
  amino	
  acids	
  to	
  form	
  other	
  metabolites	
  
Metabolic	
  Circumstances	
  	
  
of	
  Amino	
  Acid	
  Oxida/on	
  
•  Le?over	
  amino	
  acids	
  from	
  normal	
  protein	
  turnover	
  
•  Dietary	
  amino	
  acids	
  that	
  exceed	
  body’s	
  protein	
  
synthesis	
  needs	
  
•  Proteins	
  in	
  the	
  body	
  can	
  be	
  broken	
  down	
  to	
  supply	
  
amino	
  acids	
  for	
  energy	
  when	
  carbohydrates	
  are	
  scarce	
  
(starvaFon,	
  diabetes	
  mellitus)	
  	
  
Dietary	
  proteins	
  are	
  enzyma/cally	
  
hydrolyzed	
  into	
  amino	
  acids	
  
•  Pepsin	
  cuts	
  protein	
  into	
  pepFdes	
  in	
  the	
  stomach	
  
•  Trypsin	
  and	
  chymotrypsin	
  cut	
  proteins	
  and	
  larger	
  
pepFdes	
  into	
  smaller	
  pepFdes	
  in	
  the	
  small	
  intesFne	
  
•  AminopepFdase	
  and	
  carboxypepFdases	
  A	
  and	
  B	
  
degrade	
  pepFdes	
  into	
  amino	
  acids	
  in	
  the	
  small	
  
intesFne	
  
Dietary	
  protein	
  is	
  enzyma/cally	
  degraded	
  
through	
  the	
  diges/ve	
  tract	
  
Overview	
  of	
  Amino	
  Acid	
  Catabolism	
  
The amino groups and the carbon
skeleton take separate but
interconnected pathways.
Removal	
  of	
  the	
  Amino	
  Group	
  
The	
  first	
  step	
  of	
  degradaFon	
  for	
  all	
  amino	
  acids	
  
Fates	
  of	
  Nitrogen	
  in	
  Organisms	
  
•  Plants	
  conserve	
  almost	
  all	
  the	
  nitrogen	
  
•  Many	
  aquaFc	
  vertebrates	
  release	
  ammonia	
  to	
  their	
  
environment	
  
–  Passive	
  diffusion	
  from	
  epithelial	
  cells	
  
–  AcFve	
  transport	
  via	
  gills	
  
•  Many	
  terrestrial	
  vertebrates	
  and	
  sharks	
  excrete	
  nitrogen	
  in	
  
the	
  form	
  of	
  urea	
  
–  Urea	
  is	
  far	
  less	
  toxic	
  that	
  ammonia	
  
–  Urea	
  has	
  very	
  high	
  solubility	
  
•  Some	
  animals	
  such	
  as	
  birds	
  and	
  repFles	
  excrete	
  nitrogen	
  as	
  
uric	
  acid	
  
–  Uric	
  acid	
  is	
  rather	
  insoluble	
  
–  ExcreFon	
  as	
  paste	
  allows	
  the	
  animals	
  to	
  conserve	
  water	
  
•  Humans	
  and	
  great	
  apes	
  excrete	
  both	
  urea	
  (from	
  amino	
  acids)	
  
and	
  uric	
  acid	
  (from	
  purines)	
  
Excretory	
  Forms	
  of	
  Nitrogen	
  
Notice that the carbon atoms of
urea and uric acid are highly
oxidized; the organism discards
carbon only after extracting most of
its available energy of oxidation.
Enzyma/c	
  Transamina/on	
  
•  Catalyzed	
  by	
  aminotransferases	
  	
  
•  Uses	
  the	
  pyridoxal	
  phosphate	
  cofactor	
  
•  Typically,	
  α-­‐ketoglutarate	
  accepts	
  amino	
  groups	
  
•  L-­‐Glutamine	
  acts	
  as	
  a	
  temporary	
  storage	
  of	
  nitrogen	
  	
  
•  L-­‐Glutamine	
  can	
  donate	
  the	
  amino	
  group	
  when	
  
needed	
  for	
  amino	
  acid	
  biosynthesis	
  
Enzyma/c	
  Transamina/on	
  
readily reversible
Structure	
  of	
  Pyridoxal	
  Phosphate	
  and	
  
Pyridoxamine	
  Phosphate	
  
• Intermediate,	
  enzyme-­‐bound	
  carrier	
  of	
  amino	
  groups	
  	
  
• Aldehyde	
  form	
  can	
  react	
  reversibly	
  with	
  amino	
  groups	
  
• Aminated	
  form	
  can	
  react	
  reversibly	
  with	
  carbonyl	
  groups	
  
Pyridoxal	
  phosphate	
  is	
  covalently	
  linked	
  to	
  the	
  
enzyme	
  in	
  the	
  res/ng	
  enzyme	
  	
  
•  By	
  an	
  internal	
  aldimine	
  
•  The	
  linkage	
  is	
  made	
  via	
  a	
  
nucleophilic	
  aVack	
  of	
  the	
  
amino	
  group	
  of	
  an	
  	
  
acFve-­‐site	
  lysine	
  
Chemistry	
  of	
  the	
  Amino	
  Group	
  Removal	
  
by	
  the	
  Internal	
  Aldimine	
  
The	
  external	
  aldimine	
  of	
  PLP	
  is	
  a	
  good	
  electron	
  sink,	
  avoiding	
  
formaFon	
  of	
  an	
  unstable	
  carbanion	
  on	
  the	
  α	
  C	
  allowing	
  
removal	
  of	
  α-­‐hydrogen	
  
3 alternative fates
for the external
aldimine
transamination
decarboxylation
racemization
•  OxidaFve	
  deaminaFon	
  occurs	
  
within	
  mitochondrial	
  matrix	
  
•  Can	
  use	
  either	
  NAD+	
  or	
  NADP+	
  
as	
  electron	
  acceptor	
  
•  Ammonia	
  is	
  processed	
  into	
  
urea	
  for	
  excreFon	
  
•  Pathway	
  for	
  ammonia	
  
excreFon;	
  transdeaminaFon	
  =	
  
transaminaFon	
  +	
  oxidaFve	
  
deaminaFon	
  
Ammonia	
  collected	
  in	
  glutamate	
  is	
  
removed	
  by	
  glutamate	
  dehydrogenase	
  
Ammonia	
  is	
  safely	
  transported	
  in	
  the	
  
bloodstream	
  as	
  glutamine	
  
•  Excess	
  ammonia	
  in	
  Fssues	
  is	
  
added	
  to	
  glutamate	
  to	
  form	
  
glutamine	
  (by	
  glutamine	
  
synthetase).	
  	
  
•  Excess	
  glutamine	
  is	
  
processed	
  in	
  intesFnes,	
  
kidneys,	
  and	
  liver	
  (by	
  
glutaminase)	
  liberaFng	
  NH4
+	
  
in	
  mitochondria.	
  
	
  
	
  
Glutamate	
  can	
  donate	
  ammonia	
  to	
  
pyruvate	
  to	
  make	
  alanine	
  
•  Vigorously	
  working	
  muscles	
  operate	
  nearly	
  anaerobically	
  
and	
  rely	
  on	
  glycolysis	
  for	
  energy	
  
•  Glycolysis	
  yields	
  pyruvate	
  
–  	
  if	
  not	
  eliminated	
  lacFc	
  acid	
  will	
  build	
  up	
  
•  This	
  pyruvate	
  can	
  be	
  converted	
  to	
  alanine	
  for	
  transport	
  
into	
  liver	
  	
  
The	
  Glucose-­‐Alanine	
  Cycle	
  
Alanine serves as a
carrier of ammonia and
of the carbon skeleton
of pyruvate from
skeletal muscle to liver.
Excess	
  glutamate	
  is	
  metabolized	
  in	
  the	
  
mitochondria	
  of	
  hepatocytes	
  	
  
Ammonia	
  is	
  highly	
  toxic	
  and	
  	
  
must	
  be	
  u/lized	
  or	
  excreted	
  
•  Free	
  ammonia	
  released	
  from	
  glutamate	
  is	
  converted	
  to	
  
urea	
  for	
  excreFon.	
  
•  Carbamoyl	
  phosphate	
  synthetase	
  I	
  captures	
  free	
  
ammonia	
  in	
  the	
  mitochondrial	
  matrix	
  
•  First	
  step	
  of	
  the	
  urea	
  cycle	
  
•  Regulated	
  
Ammonia	
  is	
  recaptured	
  via	
  	
  
synthesis	
  of	
  carbamoyl	
  phosphate	
  
•  The	
  first	
  nitrogen-­‐acquiring	
  reacFon	
  of	
  the	
  urea	
  cycle	
  
Nitrogen	
  from	
  
carbamoyl	
  phosphate	
  
enters	
  the	
  urea	
  cycle	
  	
  
The	
  Reac/ons	
  in	
  the	
  Urea	
  Cycle	
  
Entry	
  of	
  Aspartate	
  into	
  the	
  Urea	
  Cycle	
  
This	
  is	
  the	
  second	
  nitrogen-­‐acquiring	
  reacFon.	
  
Aspartate	
  –arginosuccinate	
  shunt	
  links	
  	
  
urea	
  cycle	
  and	
  citric	
  acid	
  cycle	
  
Regula/on	
  of	
  the	
  Urea	
  Cycle	
  
•  Carbamoyl	
  phosphate	
  
synthetase	
  I	
  is	
  acFvated	
  by	
  	
  	
  
N-­‐acetylglutamate	
  
•  Formed	
  by	
  N-­‐acetylglutamate	
  
synthase	
  	
  
–  When	
  glutamate	
  and	
  acetyl-­‐CoA	
  
concentraFons	
  are	
  high	
  
–  AcFvated	
  by	
  arginine	
  
•  Expression	
  of	
  urea	
  cycle	
  
enzymes	
  increases	
  when	
  
needed	
  
–  High	
  protein	
  diet	
  
–  StarvaFon,	
  when	
  protein	
  is	
  
being	
  broken	
  down	
  for	
  energy	
  
Not	
  all	
  amino	
  acids	
  can	
  be	
  	
  
synthesized	
  in	
  humans	
  
•  EssenFal	
  amino	
  acids	
  
must	
  be	
  obtained	
  as	
  
dietary	
  protein	
  
•  ConsumpFon	
  of	
  a	
  
variety	
  of	
  foods	
  
supplies	
  all	
  the	
  
essenFal	
  amino	
  acids	
  	
  
–  including	
  vegetarian-­‐	
  
only	
  diets	
  
End	
  products	
  of	
  Amino	
  Acid	
  Degrada/on	
  
•  Intermediates	
  of	
  the	
  Central	
  Metabolic	
  Pathway	
  
•  Some	
  amino	
  acids	
  result	
  in	
  more	
  than	
  one	
  intermediate	
  
•  Ketogenic	
  amino	
  acids	
  can	
  be	
  converted	
  to	
  ketone	
  bodies	
  
•  Glucogenic	
  amino	
  acids	
  can	
  be	
  converted	
  to	
  glucose	
  
Six to pyruvate Ala, Cys, Gly, Ser, Thr, Trp
Five to α-ketoglutarate Arg, Glu, Gln, His, Pro
Four to succinyl-CoA Ile, Met, Thr, Val
Two to fumarate Phe, Tyr
Two to oxaloacetate Asp, Asn
Seven to Acetyl-CoA Leu, Ile, Thr, Lys, Phe, Tyr, Trp
Summary	
  of	
  Amino	
  Acid	
  Catabolism	
  
Only two amino acids, leucine and lysine,
are exclusively ketogenic.
Several	
  cofactors	
  are	
  	
  
involved	
  in	
  amino	
  acid	
  catabolism	
  
•  Important	
  in	
  one-­‐carbon	
  transfer	
  reacFons	
  
–  Tetrahydrafolate	
  (THF)	
  
–  S-­‐adenosylmethionine	
  (adoMet)	
  
–  BioFn	
  
•  BioFn,	
  as	
  we	
  saw	
  in	
  Chapter	
  16,	
  transfers	
  CO2	
  
THF	
  is	
  a	
  versa/le	
  cofactor	
  
•  Tetrahydrofolate	
  is	
  formed	
  from	
  folate	
  	
  
–  an	
  essenFal	
  vitamin	
  (B9)	
  
•  THF	
  can	
  transfer	
  1-­‐carbon	
  in	
  different	
  oxidaFon	
  states	
  
–  CH3,	
  CH2OH,	
  and	
  CHO	
  
•  Used	
  in	
  a	
  wide	
  variety	
  of	
  metabolic	
  reacFons	
  
•  Carbon	
  generally	
  comes	
  from	
  serine	
  
•  Forms	
  interconverted	
  on	
  THF	
  before	
  use	
  	
  
THF	
  is	
  a	
  versa/le	
  cofactor	
  
adoMet	
  is	
  beTer	
  at	
  transferring	
  CH3	
  
•  S-­‐adenosylmethionine	
  is	
  the	
  prefered	
  cofactor	
  for	
  
methyl	
  transfer	
  in	
  biological	
  reacFons	
  
–  Methyl	
  is	
  1000	
  Fmes	
  more	
  reacFve	
  than	
  THF	
  methyl	
  group	
  
•  Synthesized	
  from	
  ATP	
  and	
  methionine	
  
	
  
Ac/vated	
  Methyl	
  Cycle	
  
Degrada/on	
  of	
  ketogenic	
  amino	
  acids	
  
Degrada/on	
  intermediates	
  of	
  tryptophan	
  
are	
  to	
  synthesize	
  other	
  molecules	
  
Gene/c	
  defects	
  in	
  many	
  steps	
  of	
  Phe	
  
degrada/on	
  lead	
  to	
  disease	
  
Phenylketonuria	
  is	
  caused	
  by	
  a	
  defect	
  in	
  
the	
  first	
  step	
  of	
  Phe	
  degrada/on	
  
•  A	
  buildup	
  of	
  phenylalanine	
  
and	
  phenylpyruvate	
  
•  Impairs	
  neurological	
  
development	
  leading	
  to	
  
intellectual	
  deficits	
  
•  Controlled	
  by	
  limiFng	
  
dietary	
  intake	
  of	
  Phe	
  
Degrada/on	
  of	
  Glycine	
  
•  Pathway	
  #1:	
  hydroxylaFon	
  to	
  serine	
  à	
  pyruvate	
  
•  Pathway	
  #2:	
  Glycine	
  cleavage	
  enzyme	
  
–  Apparently	
  major	
  pathway	
  in	
  mammals	
  
–  SeparaFon	
  of	
  three	
  central	
  atoms	
  
–  Releases	
  CO2	
  and	
  NH3	
  
–  Methylene	
  group	
  is	
  transferred	
  to	
  THF	
  
•  Pathway	
  #3:	
  D-­‐amino	
  oxidase	
  
–  RelaFvely	
  minor	
  pathway	
  
–  UlFmately	
  oxidized	
  to	
  oxalate	
  
–  Major	
  component	
  of	
  kidney	
  stones	
  
Degrada/on	
  of	
  Amino	
  Acids	
  to	
  	
  
α-­‐Ketoglutarate	
  
Degrada/on	
  of	
  branched	
  chain	
  	
  
amino	
  acids	
  does	
  not	
  occur	
  in	
  the	
  liver	
  
•  Leucine,	
  Isoleucine,	
  and	
  Valine	
  are	
  oxidized	
  for	
  fuel	
  
–  In	
  muscle,	
  adipose	
  Fssue,	
  kidney,	
  and	
  brain	
  
Degrada/on	
  of	
  Asn	
  and	
  Asp	
  to	
  	
  
Oxaloacetate	
  
Importance	
  of	
  Nitrogen	
  in	
  
Biochemistry	
  
•  Nitrogen	
  (with	
  H,	
  O,	
  and	
  C)	
  is	
  a	
  major	
  
elemental	
  consFtuent	
  of	
  living	
  organisms	
  	
  
•  Mostly	
  in	
  nucleic	
  acids	
  and	
  proteins	
  
•  But	
  also	
  found	
  in:	
  
–  several	
  cofactors	
  (NAD,	
  FAD,	
  bioFn	
  …	
  )	
  
–  many	
  small	
  hormones	
  (epinephrine)	
  
–  many	
  neurotransmiVers	
  (serotonin)	
  
–  many	
  pigments	
  (chlorophyll)	
  
–  many	
  defense	
  chemicals	
  (amaniFn)	
  
Biochemistry	
  of	
  Molecular	
  Nitrogen	
  
•  Atmosphere	
  is	
  80%	
  N2	
  but	
  non-­‐useful	
  form	
  
–  N2	
  chemically	
  inert	
  
–  Need	
  N2	
  +	
  3	
  H2	
  à	
  2	
  NH3	
  	
  
–  Even	
  though	
  ΔGʹ′°=	
  –33.5	
  kJ/mol…breaking	
  triple	
  
bond	
  has	
  high	
  ac4va4on	
  energy	
  
A	
  few	
  non-­‐biological	
  processes	
  can	
  
convert	
  N2	
  to	
  biologically	
  useful	
  forms	
  
•  N2	
  and	
  O2	
  à	
  NO	
  via	
  lightning	
  
•  N2	
  and	
  H2	
  à	
  NH3	
  via	
  the	
  industrial	
  Haber	
  
process	
  
• Requires	
  T>400°C,	
  P>200	
  atm	
  
Some	
  bacteria	
  can	
  “fix”	
  N2	
  	
  
to	
  useful	
  forms
•  Most	
  are	
  single-­‐celled	
  prokaryotes	
  (archaea)	
  
•  Some	
  live	
  in	
  symbiosis	
  with	
  plants	
  	
  
-­‐	
  	
  (e.g.,	
  proteobacteria	
  with	
  legumes	
  such	
  
as	
  peanuts,	
  beans)	
  
•  A	
  few	
  live	
  in	
  symbiosis	
  with	
  animals	
  	
  
-­‐  (e.g.,	
  spirochaete	
  with	
  termites)	
  
	
  
They	
  have	
  enzymes	
  that	
  overcome	
  the	
  high	
  
ac3va3on	
  energy	
  by	
  binding	
  and	
  
hydrolyzing	
  ATP.	
  
Review:	
  	
  Oxida/on	
  States	
  of	
  
Nitrogen	
  Compounds	
  
•  N+5	
  O3
–	
  	
  à	
  N+3	
  O2
–	
  	
  	
  
•  Nitrate	
  àNitrite	
  
•  “ate” is	
  the	
  higher	
  oxidaFon	
  state	
  
•  (Memory	
  trick:	
  	
  I	
  ate	
  too	
  much)	
  
•  NH3:	
  	
  N	
  has	
  oxidaFon	
  state	
  of	
  –3	
  
The	
  Nitrogen	
  Cycle	
  
Chemical	
  transforma4ons	
  maintain	
  a	
  balance	
  between	
  N2	
  
and	
  biologically	
  useful	
  forms	
  of	
  nitrogen.	
  
1.  Fixa4on.	
  	
  Bacteria	
  reduce	
  N2	
  to	
  NH3/NH4
+	
  	
  	
  	
  
2.  Nitrifica4on.	
  	
  Bacteria	
  oxidize	
  ammonia	
  into	
  nitrite	
  (NO2
–)	
  and	
  
nitrate	
  (NO3
–).	
  
3.  Assimila4on.	
  	
  Plants	
  and	
  microorganisms	
  reduce	
  NO2
–	
  and	
  NO3
–	
  to	
  
NH3	
  via	
  nitrite	
  reductases	
  and	
  nitrate	
  reductases.	
  
	
  NH3	
  is	
  incorporated	
  into	
  amino	
  acids,	
  etc.	
  
	
  Organisms	
  die,	
  returning	
  NH3	
  to	
  soil.	
  
	
  Nitrifying	
  bacteria	
  again	
  convert	
  NH3	
  to	
  nitrite	
  and	
  nitrate.	
  
4. Denitrifica4on.	
  	
  Nitrate	
  is	
  reduced	
  to	
  N2	
  under	
  anaerobic	
  condiFons.	
  	
  	
  
	
  NO3
–	
  is	
  the	
  ulFmate	
  electron	
  acceptor	
  instead	
  of	
  O2.	
  
The	
  Nitrogen	
  Cycle	
  
Two	
  Important	
  Enzymes	
  in	
  Nitrate	
  
Assimila/on	
  
Nitrate	
  AssimilaFon:	
  (step	
  3)	
  process	
  by	
  which	
  plants	
  and	
  
microorganisms	
  convert	
  NO3
–	
  to	
  NH3
	
  	
  	
  	
  
1. Nitrate	
  reductase	
  NO3
–	
  +	
  2	
  e–	
  à	
  NO2
–	
  	
  	
  
-­‐	
  large,	
  soluble	
  protein,	
  contains	
  novel	
  Mo	
  cofactor,	
  e–	
  
from	
  NADH	
  
2. Nitrite	
  reductase	
  NO2
–	
  +	
  6	
  e–	
  à	
  NH4
+	
  	
  
-­‐ Found	
  in	
  chloroplasts	
  in	
  plants,	
  e–	
  comes	
  from	
  
ferredoxin	
  
-­‐ 	
  In	
  nonphotosyntheFc	
  microbes,	
  e–	
  comes	
  from	
  NADPH	
  
Nitrate	
  Assimila/on	
  by	
  Nitrate	
  
Reductase	
  
Nitrate	
  Assimila/on	
  by	
  Nitrite	
  
Reductase	
  
Nitrate	
  Assimila/on	
  (step	
  3)	
  vs.	
  
Nitrogen	
  Fixa/on	
  (step	
  1)	
  
•  Both	
  are	
  electron-­‐transfer	
  processes	
  
•  Both	
  use	
  Mo	
  cofactor	
  
–  Nitrate	
  reductase	
  has	
  an	
  Mo	
  cofactor	
  
–  The	
  nitrogenase	
  complex	
  has	
  an	
  Fe-­‐Mo	
  cofactor	
  
•  Both	
  processes	
  involve	
  electron	
  transfer	
  through	
  
groups	
  such	
  as	
  Fe-­‐S	
  complexes,	
  cytochromes,	
  SH	
  
groups,	
  NADH,	
  NADPH,	
  etc.	
  
Nitrogen	
  fixa/on	
  is	
  carried	
  out	
  by	
  the	
  
nitrogenase	
  complex	
  
•  N2	
  +	
  3	
  H2	
  =	
  2	
  NH3	
  	
  
–  Exergonic	
  (ΔG°	
  =	
  –33.5	
  kJ/mol)	
  but	
  very	
  slow	
  due	
  to	
  the	
  triple	
  bond’s	
  
high	
  acFvaFon	
  energy	
  	
  
•  The	
  nitrogenase	
  complex	
  can	
  accelerate	
  this	
  rx	
  
–  Has	
  two	
  subunits:	
  	
  	
  
•  Dinitrogenase	
  reductase	
  
•  Dinitrogenase	
  
•  Passes	
  electrons	
  to	
  N2	
  and	
  catalyzes	
  a	
  step-­‐wise	
  reducFon	
  of	
  
N2	
  to	
  NH3	
  	
  
	
   	
  N2	
  +	
  8	
  H+	
  +	
  8	
  e–	
  +	
  nATP	
  =	
  2	
  NH3	
  +	
  H2	
  +	
  nADP	
  +	
  nPi	
  
	
   	
   	
  	
  	
  	
  	
  2	
  NH3	
  +	
  2	
  H+	
  =	
  2	
  NH4
+
	
  	
  
	
   	
  About	
  16	
  ADP	
  molecules	
  are	
  consumed	
  per	
  one	
  N2.	
  
Features	
  of	
  the	
  Nitrogenase	
  
Complex	
  
•  Source	
  of	
  e–	
  varies	
  between	
  organisms	
  
–  O?en	
  pyruvate	
  àferredoxin	
  
•  ATP	
  hydrolysis	
  and	
  ATP	
  binding	
  help	
  overcome	
  
the	
  high	
  acFvaFon	
  energy	
  
•  Has	
  regions	
  homologous	
  to	
  GTP-­‐binding	
  proteins	
  
used	
  in	
  signaling	
  
•  Has	
  novel	
  FeMo	
  cofactor	
  (or	
  V	
  in	
  some	
  
organisms)	
  
Enzymes	
  and	
  Cofactors	
  in	
  the	
  
Nitrogenase	
  Complex	
  
The	
  Fe-­‐Mo	
  Cofactor	
  in	
  the	
  
Dinitrogenase	
  Subunit	
  	
  
•  Consists	
  of:	
  	
  
–  7	
  Fe	
  atoms	
  
–  9	
  S	
  atoms	
  
–  1	
  Mo	
  atom	
  
–  1	
  bound	
  homocitrate	
  
•  The	
  nitrogen	
  binds	
  to	
  the	
  center	
  of	
  the	
  Mo-­‐FeS	
  cage	
  and	
  
is	
  coordinated	
  to	
  the	
  molybdenum	
  atom	
  
•  Electrons	
  are	
  passed	
  to	
  the	
  molybdenum-­‐bound	
  
nitrogen	
  via	
  the	
  iron-­‐sulfur	
  complex	
  
The	
  Electron-­‐Transfer	
  Cofactors	
  
Oxida/on	
  of	
  pyruvate	
  provides	
  
electrons	
  to	
  nitrogenase	
  
•  Pyruvate	
  passes	
  e–	
  to	
  ferredoxin	
  or	
  flavodoxin	
  
•  Ferredoxin	
  or	
  flavodoxin	
  pass	
  e–	
  to	
  dinitrogenase	
  
reductase	
  
•  The	
  reductase	
  passes	
  e–	
  to	
  dinitrogenase	
  
•  Dinitrogenase	
  passes	
  e–	
  to	
  nitrogen	
  (or	
  to	
  protons)	
  
to	
  make	
  NH3	
  
•  FormaFon	
  of	
  H2	
  appears	
  an	
  obligatory	
  side-­‐reacFon	
  
Nitrogen	
  Fixa/on	
  by	
  
the	
  Nitrogenase	
  
Complex	
  
Redox	
  Reac/ons	
  in	
  Dinitrogenase	
  
•  The	
  net	
  rx	
  of	
  the	
  nitrogenase	
  complex:	
  
	
  	
  	
  	
  	
  	
  N2	
  +	
  8	
  H+	
  +	
  8	
  e–	
  +	
  16	
  ATP	
  =	
  2	
  NH3	
  +	
  H2	
  +	
  16	
  ADP	
  +	
  16	
  Pi	
  
	
  
•  Dinitrogenase	
  reductase	
  catalyzes:	
  	
  
–  transfer	
  of	
  8	
  e–	
  to	
  dinitrogenase	
  	
  
–  hydrolysis	
  of	
  ATP	
  with	
  release	
  of	
  protons	
  
•  Dinitrogenase	
  catalyzes:	
  	
  
–  transfer	
  of	
  6	
  e–	
  to	
  nitrogen:	
  formaFon	
  of	
  NH3	
  	
  
–  transfer	
  of	
  2	
  e–	
  to	
  protons:	
  formaFon	
  of	
  H2 	
  	
  
The	
  mechanism	
  of	
  dinitrogenase	
  
remains	
  poorly	
  understood	
  
•  Extremely	
  complex	
  redox	
  reacFon	
  that	
  involves	
  several	
  
metal	
  atoms	
  as	
  cofactors	
  and/or	
  electron	
  transporters	
  
•  Two	
  mechanisms	
  are	
  plausible	
  that	
  involve	
  the	
  Fe-­‐Mo	
  
cofactor	
  binding	
  directly	
  to	
  N	
  
Two	
  Hypotheses	
  for	
  the	
  
Intermediates	
  of	
  N2
	
  Reduc/on	
  
The	
  nitrogenase	
  complex	
  is	
  very	
  
unstable	
  in	
  O2	
  
–  Some	
  bacteria	
  live	
  in	
  anaerobic	
  environments	
  
–  Some	
  bacteria	
  uncouple	
  electron	
  transfer	
  and	
  
ATP	
  synthesis―so	
  that	
  O2	
  is	
  removed	
  quickly	
  
from	
  the	
  cell.	
  
–  Many	
  bacteria	
  live	
  in	
  root	
  nodules	
  coated	
  with	
  
O2-­‐binding	
  heme	
  leghemoglobin.	
  
Broader	
  Impact	
  of	
  Understanding	
  
the	
  Nitrogen	
  Fixa/on	
  
•  Industrial	
  synthesis	
  of	
  NH3	
  via	
  the	
  Haber	
  process	
  is	
  one	
  of	
  
mankind’s	
  most	
  significant	
  chemical	
  processes	
  
–  Made	
  chemical	
  ferFlizer	
  possible!	
  
–  Yields	
  over	
  100	
  million	
  tons	
  of	
  ferFlizer	
  annually	
  
–  sustains	
  life	
  of	
  over	
  one-­‐third	
  of	
  human	
  populaFon	
  on	
  Earth	
  
–  Consumes	
  non-­‐renewable	
  energy	
  (1–2%	
  of	
  total	
  annual	
  energy)	
  
	
  	
  
•  Mimicking	
  biological	
  nitrogen	
  fixaFon	
  (biomimeFc	
  nitrogen	
  
fixaFon)	
  may	
  yield	
  significant	
  energy	
  savings,	
  or	
  allow	
  use	
  of	
  
renewable	
  energy	
  sources.	
  
Nitrogen-­‐Fixing	
  Bacteria	
  in	
  Root	
  
Nodules	
  of	
  Legumes	
  
•  Takes	
  care	
  of	
  energy	
  requirement	
  and	
  O2	
  lability	
  
•  Bacteria	
  have	
  access	
  to	
  plant’s	
  carbohydrate	
  and	
  
CAC	
  intermediates	
  for	
  energy	
  
•  Bacteria	
  are	
  covered	
  with	
  leghemoglobin	
  to	
  bind	
  
O2	
  
•  Can	
  produce	
  more	
  NH3	
  than	
  plant	
  needs;	
  excess	
  
released	
  to	
  soil	
  
Nitrogen-­‐Fixing	
  Nodules	
  
The	
  Anammox	
  Reac/ons	
  
•  Anaerobic	
  ammonia	
  oxidaFon	
  
	
  
•  Newly	
  discovered	
  ability	
  of	
  some	
  bacteria	
  to	
  
oxidize	
  NH3	
  and	
  NO2
–	
  into	
  N2	
  	
  
•  “short-­‐circuits”	
  the	
  nitrogen	
  cycle	
  (no	
  
denitrificaFon)	
  
•  Used	
  in	
  waste	
  treatment	
  for	
  cheaper	
  
ammonia	
  removal	
  
Surprising	
  Features	
  of	
  the	
  
Anammox	
  Reac/ons	
  
•  Bacteria	
  are	
  of	
  unusual	
  phylum	
  Planctomycetes	
  
–  Have	
  DNA	
  enclosed	
  in	
  membrane	
  	
  
–  Use	
  hydrazine	
  (N2H4)	
  à	
  (rocket	
  fuel),	
  toxic,	
  reacFve,	
  
nonpolar	
  and	
  diffuses	
  across	
  membranes	
  	
  
•  Phospholipids	
  made	
  of	
  ladderanes	
  
–  FaVy	
  acid	
  chains	
  contain	
  cyclobutane	
  rings	
  that	
  stack	
  
Fghtly,	
  slow	
  the	
  diffusion	
  of	
  N2H2	
  
Anammox	
  Reac/ons	
  
Ladderane	
  Lipids	
  
Ammonia	
  is	
  incorporated	
  into	
  
biomolecules	
  through	
  Glu	
  and	
  Gln	
  
•  Glutamine	
  is	
  made	
  from	
  Glu	
  by	
  glutamine	
  synthetase	
  in	
  a	
  two-­‐
step	
  process:	
  
	
  	
  	
  	
  Glu	
  	
  	
  	
  	
  	
  	
  +	
  	
  	
  	
  	
  	
  	
  	
  	
  ATP	
  à	
  γ-­‐glutamyl	
  	
  	
  	
  +	
  	
  	
  	
  	
  	
  NH4
+	
  à	
  	
  	
  	
  	
  Gln	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +	
  	
  Pi	
  
	
   	
   	
  phosphate	
  
•  PhosphorylaFon	
  of	
  Glu	
  creates	
  a	
  good	
  leaving	
  group	
  that	
  can	
  be	
  
easily	
  displaced	
  by	
  ammonia	
  
H3
N
NH2
O
COOH3
N
O
O
COO H3
N
O
O
COO
P
O
O
O
OH
P
O
O
O
+ -+ -
ATP
+ -
NH3 +
Structure	
  of	
  Gln	
  Synthetase	
  
Regula/on	
  of	
  Glutamine	
  Synthetase	
  by	
  
Allosteric	
  Inhibitors	
  
•  Endpoints	
  of	
  Gln	
  metabolism	
  provide	
  
feedback	
  inhibiFon	
  
–  Ala,	
  Gly,	
  Trp,	
  carbamoyl	
  phosphate,	
  AMP,	
  CTP,	
  
His,	
  glucosamine	
  6-­‐phosphate	
  
	
  
•  Effects	
  are	
  addiFve	
  
Regula/on	
  of	
  Gln	
  
Synthetase―by	
  Six	
  
Endpoints	
  of	
  Gln	
  
Metabolism	
  
Gln	
  synthetase	
  is	
  also	
  inhibited	
  by	
  
adenylyla/on	
  
Adenylyla4on	
  (aVachment	
  of	
  AMP)	
  to	
  
Tyr-­‐397	
  assists	
  in	
  inhibiFon.	
  
–  Increases	
  sensiFvity	
  to	
  inhibiFtors	
  
–  AdenylaFon	
  via	
  adenylyltransferase	
  
–  Part	
  of	
  complex	
  cascade	
  that	
  is	
  dependent	
  on	
  
[Glu],	
  [α-­‐ketoglutarate],	
  [ATP],	
  and	
  [Pi]	
  	
  
–  AcFvity	
  of	
  adenylyltransferase	
  regulated	
  by	
  
binding	
  to	
  regulatory	
  protein	
  PII	
  
PII	
  is	
  regulated	
  by	
  uridylyla/on	
  
(Remember	
  that	
  PII	
  regulates	
  adenylyltransferase,	
  
which	
  helps	
  inhibit	
  Gln	
  synthetase.)	
  
• When	
  PII	
  is	
  uridylylated,	
  adenylyltransferase	
  
sFmulates	
  deadenylylaFon	
  of	
  Gln	
  synthetase	
  
(increasing	
  the	
  laVer’s	
  acFvity)	
  
• ALSO,	
  uridylylated	
  PII	
  upregulates	
  
transcripFon	
  of	
  Gln	
  synthetase	
  
End	
  Result	
  of	
  Mul/ple	
  Levels	
  of	
  
Control	
  of	
  Gln	
  Synthetase	
  
•  When	
  Gln	
  is	
  high,	
  Gln	
  synthetase	
  is	
  less	
  
acFve	
  
–  Need	
  less	
  NH4
+	
  conversion	
  to	
  Gln	
  
•  When	
  Gln	
  is	
  low	
  and	
  substrates	
  α-­‐
ketoglutarate	
  and	
  ATP	
  are	
  available,	
  Gln	
  
synthetase	
  is	
  more	
  acFve	
  	
  
–  To	
  convert	
  more	
  NH4
+	
  to	
  Gln	
  
Covalent	
  Modifica/on	
  of	
  Gln	
  Synthetase	
  
Biosynthesis	
  of	
  Amino	
  Acids	
  and	
  
Nucleo/des―Three	
  Types	
  of	
  Reac/ons	
  
1. TransaminaFons	
  and	
  rearrangements	
  using	
  
pyridoxal	
  phosphate	
  (PLP)	
  
–  PLP	
  is	
  acFve	
  form	
  of	
  Vit	
  B6	
  	
  
–  Catalyzed	
  by	
  amidotransferases	
  	
  
–  PLP	
  has	
  aldehyde	
  group	
  that	
  forms	
  Schiff	
  base	
  
with	
  Lys	
  of	
  aminotransferase	
  
2. Transfer	
  of	
  1-­‐C	
  groups	
  using	
  
tetrahydrofolate	
  (H4	
  folate)	
  or	
  S-­‐
adenosylmethionine	
  (adoMet)	
  
–  Both	
  can	
  act	
  as	
  carbon	
  donors	
  
	
  
	
  
H4
	
  folate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  adotMet	
  
3.  Transfer	
  of	
  amino	
  groups	
  derived	
  from	
  
amide	
  of	
  Glu	
  
All	
  three	
  of	
  these	
  categories	
  of	
  reacFons	
  use	
  
glutamine	
  amidotransferases.	
  
Glutamine	
  Amidotransferases	
  
Catalyze	
  Bisubstrate	
  Reac/ons	
  
•  Two	
  domains	
  
–  One	
  binds	
  Gln	
  
–  Other	
  is	
  amino	
  group	
  acceptor	
  and	
  binds	
  
substrate	
  
•  Cys	
  acts	
  as	
  nucleophile	
  to	
  cleave	
  amide	
  
bond	
  of	
  Gln	
  
–  àForms	
  glutamyl-­‐enz	
  intermediate	
  
•  Then	
  second	
  substrate	
  binds	
  to	
  accept	
  
amino	
  group	
  from	
  enzyme	
  
Proposed	
  Mechanism	
  for	
  Glutamine	
  
Amidotransferases	
  
Amino	
  Acid	
  Biosynthesis―Overview	
  
•  Source	
  of	
  N	
  is	
  Glu	
  or	
  Gln	
  
•  Derive	
  from	
  intermediates	
  of	
  
–  Glycolysis	
  
–  Citric	
  acid	
  cycle	
  
–  Pentose	
  phosphate	
  pathway	
  
•  Bacteria	
  can	
  synthesize	
  all	
  20	
  
•  Mammals	
  require	
  some	
  in	
  diet	
  
Amino	
  Acid	
  
Synthesis	
  
Overview	
  
All	
  amino	
  acids	
  derive	
  from	
  one	
  of	
  
seven	
  precursors	
  	
  
(See	
  Table	
  22-­‐1	
  and	
  Figure	
  22-­‐11)	
  
•  CAC:	
  
–  α-­‐ketoglutarate,	
  oxaloacetate	
  
•  Glycolysis	
  
–  Pyruvate,	
  3-­‐phosphoglycerate,	
  
phosphoenolpyruvate,	
  erythrose	
  4-­‐phosphate	
  
•  Pentose	
  phosphate	
  pathway	
  
–  Ribose	
  5-­‐phosphate	
  
Several	
  pathways	
  share	
  5-­‐phosphoribosyl-­‐1-­‐
pyrophosphate	
  (PRPP)	
  as	
  an	
  intermediate	
  
•  Synthesized	
  from	
  ribose	
  5-­‐phosphate	
  of	
  PPP	
  via	
  
ribose	
  phosphate	
  pyrophosphokinase	
  
–  A	
  highly	
  regulated	
  allosteric	
  enzyme	
  
Proline	
  and	
  arginine	
  derive	
  from	
  
glutamate	
  
•  (Glu	
  derives	
  from	
  α-­‐ketoglutarate)	
  
•  Proline	
  is	
  a	
  cyclized	
  reduced	
  derivaFve	
  of	
  Glu	
  
–  ATP	
  reacts	
  w/	
  γ-­‐carboxyl	
  group	
  à	
  acyl	
  phosphate	
  
–  NADPH	
  or	
  NADH	
  reduces	
  the	
  acyl	
  phosphate	
  to	
  a	
  
semialdehyde	
  that	
  rapidly	
  cyclizes	
  
–  Final	
  reducFon	
  step	
  yields	
  proline	
  
–  Pathway	
  operates	
  in	
  animals	
  AND	
  bacteria	
  
–  See	
  Fig.	
  22-­‐12	
  
Biosynthesis	
  of	
  Pro	
  and	
  Arg	
  from	
  Glu	
  in	
  
Bacteria	
  
Arginine	
  is	
  synthesized	
  from	
  Glu	
  via	
  
ornithine	
  in	
  animals	
  
•  Ornithine	
  comes	
  from	
  the	
  urea	
  cycle	
  
•  In	
  bacteria,	
  ornithine	
  has	
  special	
  synthesis	
  
pathway	
  
–  Fig.	
  22-­‐12	
  shows	
  ornithine-­‐derived	
  synthesis	
  of	
  
arginine	
  in	
  bacteria	
  
In	
  animals,	
  proline	
  can	
  ALSO	
  be	
  
synthesized	
  from	
  arginine	
  
•  Arginase	
  converts	
  Arg	
  to	
  ornithine	
  
•  Ornithine	
  δ-­‐aminotransferase	
  converts	
  
ornithine	
  to	
  glutamate	
  γ-­‐semialdehyde	
  that	
  
cyclizes	
  and	
  converts	
  to	
  Pro	
  
•  See	
  Fig	
  22-­‐13	
  
Mammalian	
  Conversion	
  of	
  Ornithine	
  (from	
  
Arg)	
  to	
  Cyclized	
  Precursor	
  to	
  Pro	
  
Serine	
  derives	
  from	
  3-­‐
phosphoglycerate	
  of	
  glycolysis	
  
•  Same	
  pathway	
  in	
  ~all	
  organisms	
  so	
  far	
  
•  Requires	
  Glu	
  as	
  source	
  of	
  NH2	
  group	
  
•  OxidaFon	
  àtransaminaFon	
  à	
  
dephosphorylaFon	
  to	
  yield	
  serine	
  
•  See	
  Fig.	
  22-­‐14	
  
Glycine	
  derives	
  from	
  serine	
  
•  Carbon	
  removed	
  using	
  tetrahydrofolate	
  (H4	
  
folate)	
  to	
  accept	
  the	
  C	
  atom	
  and	
  pyridoxal	
  
phosphate	
  (PLP).	
  
•  Rx	
  uses	
  serine	
  hydroxymethyltransferase	
  
•  See	
  Fig.	
  22-­‐14.	
  
•  In	
  the	
  liver,	
  Gly	
  can	
  be	
  made	
  by	
  another	
  
pathway	
  
Biosynthesis	
  of	
  Ser	
  and	
  Gly	
  from	
  3-­‐
Phosphoglycerate	
  
Cysteine	
  also	
  derives	
  from	
  serine	
  
•  In	
  bacteria	
  and	
  plants,	
  sulfates	
  are	
  the	
  source	
  of	
  S	
  
–  See	
  Fig.	
  22-­‐15	
  
•  In	
  animals,	
  Met	
  is	
  the	
  source	
  of	
  S	
  
–  Met	
  à	
  S-­‐adenosylmethionine	
  
–  Loses	
  CH3,	
  is	
  hydrolyzed	
  to	
  homocysteine,	
  which	
  reacts	
  
with	
  Ser	
  
–  Yields	
  cystathionine	
  then	
  rx	
  w/PLP	
  and	
  a	
  cleavage	
  step	
  
to	
  yield	
  cysteine	
  
–  See	
  Fig.	
  22-­‐16	
  
Biosynthesis	
  of	
  Cys	
  from	
  Ser	
  in	
  Plants	
  
and	
  Bacteria	
  
Biosynthesis	
  of	
  Cys	
  from	
  Homocysteine	
  
and	
  Ser	
  in	
  Mammals	
  
Oxaloacetate	
  yields	
  Asp,	
  which	
  yields	
  
Asn,	
  Met,	
  Lys,	
  and	
  Thr	
  
Thr	
  can	
  be	
  converted	
  to	
  Ile	
  (or	
  Ile	
  can	
  be	
  
made	
  from	
  pyruvate)	
  
Lots	
  of	
  complicated	
  chemistry!	
  
•  See	
  Fig.	
  22-­‐17	
  in	
  text	
  
Pyruvate	
  yields	
  Ala,	
  Val,	
  Leu	
  and	
  Ile	
  
•  Again,	
  see	
  Fig.	
  22-­‐17	
  in	
  text	
  (too	
  big	
  to	
  
show	
  here)	
  
Reminder	
  of	
  Essen/al	
  Amino	
  Acids	
  
•  Humans	
  cannot	
  synthesize	
  Met,	
  Thr,	
  Lys,	
  
Val,	
  Leu,	
  Ile	
  
The	
  bacteria-­‐derived	
  enzyme	
  
asparaginase	
  is	
  a	
  chemotherapy	
  agent	
  
•  Childhood	
  acute	
  lymphoblasFc	
  leukemia	
  
(ALL)	
  dependent	
  on	
  serum	
  Asn	
  
•  Asparaginase	
  removes	
  Asn	
  
•  Has	
  side-­‐effects	
  
•  Being	
  used	
  in	
  conjuncFon	
  with	
  inhibitor	
  of	
  
human	
  Asn	
  synthetase	
  
Aroma/c	
  amino	
  acids	
  derive	
  from	
  
phosphoenolpyruvate	
  and	
  erythrose	
  4-­‐
phosphate	
  
•  Very	
  complicated	
  chemistry!	
  
•  Rings	
  must	
  be	
  synthesized	
  and	
  closed	
  then	
  
oxidized	
  to	
  create	
  double	
  bonds	
  
•  Chorismate	
  is	
  a	
  common	
  intermediate	
  
See	
  Figs.	
  22-­‐18	
  
through	
  22-­‐21	
  in	
  text.	
  
His	
  derives	
  from	
  PPP	
  metabolite	
  
ribose	
  5-­‐phosphate	
  
•  Also	
  involves	
  the	
  purine	
  ring	
  of	
  ATP,	
  PRPP	
  
(5-­‐phosphoribosyl-­‐1-­‐pyrophosphate,	
  which	
  
is	
  also	
  derived	
  from	
  the	
  Pentose	
  Phosphate	
  
Pathway)	
  and	
  of	
  course	
  Gln	
  (source	
  of	
  N)	
  
–  See	
  Fig.	
  22-­‐22	
  in	
  text.	
  
There	
  are	
  many	
  layers	
  of	
  regula/on	
  in	
  
amino	
  acid	
  synthesis	
  
•  First	
  enzyme	
  in	
  a	
  sequence	
  is	
  o?en	
  most	
  
highly	
  regulated	
  
•  Feedback	
  inhibiFon	
  can	
  be	
  coupled	
  with	
  
allosteric	
  regulaFon	
  
–  Example:	
  Ile	
  synthesis	
  from	
  Thr	
  	
  
• Threonine	
  dehydratase	
  is	
  inhibited	
  by	
  Ile	
  
• See	
  next	
  slide	
  (Fig.	
  22-­‐23)	
  
Feedback	
  Inhibi/on	
  in	
  Ile	
  Synthesis	
  
from	
  Thr	
  
Use	
  of	
  isozymes	
  is	
  another	
  
important	
  means	
  of	
  regula/on	
  
Example:	
  Asp	
  can	
  lead	
  to	
  Lys,	
  Met,	
  Thr,	
  and	
  
Ile.	
  	
  Use	
  of	
  isozymes,	
  all	
  regulated	
  by	
  
different	
  effectors,	
  allows	
  E.	
  coli	
  to	
  produce	
  
the	
  amino	
  acids	
  when	
  needed.	
  	
  	
  	
  
–  Example:	
  At	
  step	
  1,	
  isozyme	
  A1	
  is	
  inhibited	
  if	
  
Ile	
  is	
  high	
  but	
  not	
  if	
  Met	
  or	
  Thr	
  are	
  high	
  
–  Only	
  the	
  A1	
  isozyme	
  is	
  inhibited	
  by	
  Ile	
  at	
  this	
  
step	
  
	
  
Regula/on	
  of	
  Aspartate-­‐Derived	
  
Pathways	
  
Glycine	
  or	
  glutamate	
  is	
  the	
  precursor	
  
	
  to	
  porphyrins	
  
•  Porphyrin	
  makes	
  up	
  the	
  heme	
  of	
  hemoglobin,	
  
cytochromes,	
  myoglobin	
  
•  In	
  higher	
  animals,	
  porphyrin	
  arises	
  from	
  rx	
  of	
  
glycine	
  with	
  succinyl-­‐CoA	
  
•  In	
  plants	
  and	
  bacteria,	
  glutamate	
  is	
  the	
  precursor	
  
•  Pathway	
  generates	
  two	
  molecules	
  of	
  the	
  
important	
  intermediate	
  δ-­‐aminolevulinate	
  
•  Porphobilinogen	
  is	
  another	
  important	
  
intermediate	
  
Synthesis	
  of	
  δ-­‐Aminolevulinate	
  in	
  
Higher	
  Eukaryotes	
  
Synthesis	
  of	
  δ-­‐Aminolevulinate	
  in	
  
Plants	
  and	
  Bacteria	
  
Synthesis	
  of	
  Heme	
  from	
  	
  
δ-­‐Aminolevulinate	
  
•  Two	
  molecules	
  of	
  δ-­‐aminolevulinate	
  
condense	
  to	
  form	
  porphobilinogen	
  
•  Four	
  molecules	
  of	
  porphobilinogen	
  
combine	
  to	
  form	
  protoporphyrin	
  
•  Fe	
  ion	
  is	
  inserted	
  into	
  protoporphyrin	
  with	
  
the	
  enzyme	
  ferrochelatase
Synthesis	
  of	
  Heme	
  from	
  	
  
δ-­‐Aminolevulinate	
  	
  
Defects	
  in	
  Heme	
  Biosynthesis	
  
•  Most	
  animals	
  synthesize	
  their	
  own	
  heme	
  
•  MutaFons	
  or	
  misregulaton	
  of	
  enzymes	
  in	
  heme	
  
biosynthesis	
  pathway	
  lead	
  to	
  porphyrias	
  
–  Precursors	
  accumulate	
  in	
  red	
  blood	
  cells,	
  body	
  fluids,	
  and	
  
liver.	
  
–  Homozygous	
  individuals	
  also	
  suffer	
  intermiVent	
  neurological	
  
impairment,	
  abdominal	
  pain	
  
–  King	
  George	
  III	
  may	
  have	
  been	
  affected	
  
Other	
  Types	
  of	
  Porphyrias	
  
•  AccumulaFon	
  of	
  precursor	
  uroporphyrinogen	
  I	
  
–  Urine	
  becomes	
  discolored	
  (pink	
  to	
  dark	
  purplish	
  
depending	
  on	
  light,	
  heat	
  exposure)	
  
–  Teeth	
  may	
  show	
  red	
  fluorescence	
  under	
  UV	
  light	
  
–  Skin	
  is	
  sensiFve	
  to	
  UV	
  light	
  
–  Craving	
  for	
  heme	
  
•  Explored	
  as	
  possible	
  biochemical	
  basis	
  for	
  vampire	
  myths	
  
as	
  well	
  as	
  neurological	
  condiFons	
  of	
  famous	
  individuals	
  
(King	
  George	
  III,	
  etc.)	
  but	
  all	
  speculaFve	
  
Enzymes	
  
Inhibited	
  in	
  
Heme	
  Synthesis	
  
Defects	
  
Heme	
  is	
  the	
  source	
  of	
  bile	
  pigments	
  
•  Heme	
  from	
  dying	
  erythrocytes	
  is	
  degraded	
  
to	
  bilirubin	
  in	
  two	
  steps:	
  
1.  Heme	
  oxygenase	
  linearizes	
  heme	
  to	
  create	
  
biliverdin,	
  a	
  green	
  compound	
  (seen	
  in	
  a	
  
bruise)	
  
2.  Biliverdin	
  reductase	
  converts	
  biliverdin	
  to	
  
bilirubin,	
  a	
  yellow	
  compound	
  that	
  travels	
  
bound	
  to	
  serum	
  albumin	
  in	
  the	
  bloodstream
•  In	
  liver,	
  bilirubin	
  diglucouronide	
  is	
  made	
  
from	
  bilirubin	
  
–  Secreted	
  with	
  rest	
  of	
  bile	
  into	
  small	
  intesFne	
  
–  Microbial	
  enzymes	
  break	
  it	
  down	
  to	
  
urobilinogen	
  and	
  other	
  compounds	
  
–  Some	
  urobilinogen	
  is	
  transported	
  to	
  the	
  kidney	
  
and	
  converted	
  to	
  urobilin	
  
• Gives	
  urine	
  its	
  yellow	
  color	
  
•  Remaining	
  intesFnal	
  urobilinogen	
  is	
  
microbially	
  digested	
  to	
  stercobilin	
  of	
  feces	
  
Forma/on	
  and	
  Breakdown	
  of	
  Bilirubin	
  
Jaundice	
  is	
  caused	
  by	
  bilirubin	
  
accumula/on	
  
•  Jaundice	
  (yellowish	
  pigmentaFon	
  of	
  skin,	
  
whites	
  of	
  eyes,	
  etc.)	
  can	
  result	
  from:	
  
–  Impaired	
  liver	
  (in	
  liver	
  cancer,	
  hepaFFs)	
  
–  Blocked	
  bile	
  secreFon	
  (due	
  to	
  gallstones,	
  
pancreaFc	
  cancer)	
  
–  Insufficient	
  glucouronyl	
  bilirubin	
  transferase	
  to	
  
process	
  bilirubin	
  (occurs	
  in	
  infants)	
  
• Treated	
  with	
  UV	
  to	
  cause	
  photochemical	
  
breakdown	
  of	
  bilirubin	
  
Gly	
  and	
  Arg	
  are	
  precursors	
  of	
  crea/ne	
  
and	
  phosphocrea/ne	
  
•  PhosphocreaFne	
  is	
  hydrolyzed	
  for	
  energy	
  in	
  
muscle	
  
•  Gly	
  and	
  Arg	
  combine,	
  then	
  Adomet	
  acts	
  as	
  
a	
  methyl	
  donor	
  
Biosynthesis	
  of	
  Crea/ne	
  and	
  
Phosphocrea/ne	
  
Glutathione	
  (GSH)	
  derives	
  from	
  Glu,	
  
Cys,	
  and	
  Gly	
  
•  GSH	
  is	
  present	
  in	
  most	
  cells	
  at	
  high	
  
amounts	
  
•  Reducing	
  agent/anFoxidant	
  
–  Keeps	
  proteins,	
  metal	
  caFons	
  reduced	
  
–  Keeps	
  redox	
  enzymes	
  in	
  reduced	
  state	
  
–  Removes	
  toxic	
  peroxides	
  
•  Oxidized	
  to	
  a	
  dimer	
  (GSSG)	
  
Biosynthesis	
  and	
  Oxida/on	
  of	
  Glutathione	
  
D-­‐amino	
  acids	
  in	
  bacteria	
  arise	
  from	
  
racemases	
  
•  Bacterial	
  pepFdoglycans	
  contain	
  D-­‐Al	
  and	
  
D-­‐Glu	
  
•  Racemases	
  act	
  on	
  D-­‐amino	
  acids,	
  use	
  PLP	
  
as	
  cofactor	
  
•  Racemase	
  inhibitors	
  are	
  used/studied	
  as	
  
anFbioFc	
  targets	
  
	
  
Aroma/c	
  amino	
  acids	
  are	
  precursors	
  to	
  
plant	
  lignins,	
  hormones,	
  and	
  natural	
  
products	
  
•  Lignin	
  (rigid	
  polymer	
  in	
  plants)	
  from	
  Phe	
  
and	
  Tyr	
  
•  Auxin	
  (growth	
  hormone	
  indole-­‐3-­‐acetate)	
  
from	
  Trp	
  
•  Other	
  extracts:	
  	
  spices	
  (nutmeg,	
  vanilla),	
  
alkaloids	
  (morphine),	
  etc.	
  
Biosynthesis	
  of	
  Auxin	
  from	
  Trp	
  and	
  
Cinnamate	
  from	
  Phe	
  
Amino	
  acid	
  decarboxyla/on	
  yields	
  
neurotransmiTers,	
  inhibitors	
  
•  DecarboxylaFons	
  o?en	
  require	
  PLP	
  
•  Trp	
  yields	
  catecholamines	
  such	
  as	
  dopamine,	
  
norepinephrine,	
  and	
  epinephrine	
  
•  Glu	
  yields	
  neurotransmiVers	
  γ-­‐aminobutyrate	
  
(GABA)	
  and	
  serotonin	
  
•  His	
  yields	
  the	
  vasodilator	
  and	
  stomach	
  acid	
  
secreFon	
  sFmulant	
  Histamine	
  
Biosynthesis	
  of	
  Some	
  NeurotransmiTers	
  
Arg	
  is	
  precursor	
  for	
  nitric	
  oxide	
  (NO)	
  
•  Mid-­‐80’s	
  discovery	
  that	
  pollutant	
  NO	
  
played	
  important	
  role	
  in	
  blood	
  pressure	
  
regulaFon,	
  blood	
  clo{ng,	
  etc.	
  
•  Synthesized	
  from	
  Arg	
  via	
  nitric	
  oxide	
  
synthase	
  using	
  NADPH	
  
–  Enz	
  similar	
  to	
  cyt	
  P450	
  reductase	
  
–  SFmulated	
  by	
  interacFon	
  with	
  Ca2+	
  and	
  
calmodulin	
  
Biosynthesis	
  of	
  Nitric	
  Oxide	
  
Nucleo/de	
  Biosynthesis	
  	
  
•  NucleoFdes	
  can	
  be	
  synthesized	
  de	
  novo	
  from	
  amino	
  
acids,	
  ribose-­‐5-­‐phosphate,	
  CO2,	
  and	
  NH3	
  
•  NucleoFdes	
  can	
  be	
  salvaged	
  from	
  nucleobases	
  
•  Many	
  parasites	
  (e.g.,	
  malaria)	
  lack	
  de	
  novo	
  biosynthesis	
  
pathways	
  and	
  rely	
  exclusively	
  on	
  salvage	
  
–  Compounds	
  that	
  inhibit	
  salvage	
  pathways	
  are	
  
promising	
  anF-­‐parasite	
  drugs	
  
De	
  Novo	
  Biosynthesis	
  of	
  Nucleo/des	
  
•  Approximately	
  the	
  same	
  in	
  all	
  organisms	
  studied	
  
•  Bases	
  synthesized	
  while	
  aVached	
  to	
  ribose	
  
•  Glu	
  provides	
  most	
  amino	
  groups	
  
•  Gly	
  is	
  precursor	
  for	
  purines	
  
•  Asp	
  is	
  precursor	
  for	
  pyrimidines	
  
•  NucleoFde	
  pools	
  are	
  kept	
  low,	
  so	
  cells	
  must	
  
conFnually	
  synthesize	
  them	
  
–  This	
  synthesis	
  may	
  actually	
  limit	
  rates	
  of	
  transcripFon	
  
and	
  replicaFon	
  
Origin	
  of	
  Ring	
  Atoms	
  in	
  Purines	
  
De	
  novo	
  biosynthesis	
  of	
  purines	
  begins	
  
with	
  PRPP	
  
•  Adenine	
  and	
  guanine	
  are	
  synthesized	
  as	
  AMP	
  and	
  
GMP	
  
•  Synthesis	
  begins	
  with	
  rx	
  of	
  5-­‐phosphoribosyl	
  1-­‐
pyrophosphate	
  (PRPP)	
  with	
  Glu	
  
•  Purine	
  ring	
  builds	
  up	
  following	
  addiFon	
  of	
  three	
  
carbons	
  from	
  glycine	
  
•  The	
  first	
  intermediate	
  with	
  full	
  purine	
  ring	
  is	
  
inosinate	
  (IMP)	
  
Construc/on	
  
of	
  IMP	
  
Synthesis	
  of	
  AMP	
  and	
  GMP	
  from	
  IMP	
  
Regula/on	
  of	
  purine	
  biosynthesis	
  in	
  E.	
  
coli	
  is	
  largely	
  feedback	
  inhibi/on	
  
Four	
  major	
  mechanisms	
  
1.  Glutamine-­‐PRPP	
  amidotransferase	
  is	
  feedback	
  
inhibited	
  by	
  end-­‐products	
  IMP,	
  AMP,	
  and	
  GMP	
  
	
  
2.  Excess	
  GMP	
  inhibits	
  formaFon	
  of	
  xanthylate	
  
from	
  inosinate	
  by	
  IMP	
  dehydrogenase	
  
	
  (or	
  excess	
  adenylate	
  inhibits	
  formaFon	
  of	
  
adenylosuccinate	
  by	
  adenylosuccinate	
  synthetase)	
  
3.  GTP	
  limits	
  conversion	
  of	
  IMP	
  to	
  AMP,	
  and	
  ATP	
  
limits	
  conversion	
  of	
  IMP	
  to	
  GMP	
  
4.  PRPP	
  synthesis	
  is	
  inhibited	
  by	
  ADP	
  and	
  GDP	
  
Regula/on	
  of	
  
Adenine	
  and	
  
Guanine	
  
Biosynthesis	
  in	
  
E.	
  coli	
  
Pyrimidines	
  are	
  made	
  from	
  Asp,	
  PRPP,	
  
and	
  carbamoyl	
  phosphate	
  
•  Unlike	
  purine	
  synthesis,	
  pyrimidine	
  
synthesis	
  proceeds	
  by	
  first	
  making	
  the	
  
pyrimidine	
  ring	
  and	
  then	
  aVaching	
  it	
  to	
  
ribose	
  5-­‐phosphate	
  
•  First	
  commiVed	
  step	
  is	
  rx	
  between	
  Asp	
  and	
  
N-­‐carbamoylphosphate,	
  catalyzed	
  by	
  
aspartate	
  transcarbamoylase	
  (ATCase)
De	
  novo	
  Synthesis	
  of	
  Pyrimidine	
  
Nucleo/des	
  
ATCase	
  channels	
  substrates	
  from	
  one	
  
site	
  to	
  another	
  
Regula/on	
  of	
  pyrimidine	
  biosynthesis	
  is	
  
also	
  via	
  feedback	
  inhibi/on	
  
•  ATCase	
  is	
  inhibited	
  by	
  end-­‐product	
  CTP	
  and	
  
is	
  accelerated	
  by	
  ATP	
  
Allosteric	
  Regula/on	
  of	
  ATCase	
  by	
  
CTP	
  and	
  ATP	
  
Ribonucleo/des	
  are	
  precursors	
  to	
  
deoxyribonucleo/des	
  
•  2’C-­‐OH	
  bond	
  is	
  directly	
  reduced	
  to	
  2’-­‐H	
  
bond…without	
  acFvaFng	
  the	
  carbon!	
  
–  Catalyzed	
  by	
  ribonucleo3de	
  reductase	
  
•  Mechanism:	
  	
  Two	
  H	
  atoms	
  are	
  donated	
  by	
  
NADPH	
  and	
  carried	
  by	
  proteins	
  thioredoxin	
  
or	
  glutaredoxin	
  
Reduc/on	
  of	
  Ribonucleo/des	
  	
  
to	
  Deoxyribonucleo/des	
  	
  
by	
  Ribonucleo/de	
  Reductase	
  
Structure	
  of	
  Ribonucleo/de	
  
Reductase	
  
Proposed	
  ribonucleo/de	
  reductase	
  
mechanism	
  involves	
  free	
  radicals	
  
•  Most	
  forms	
  of	
  enzyme	
  have	
  two	
  catalyFc/
regulatory	
  subunits	
  and	
  two	
  radical-­‐generaFng	
  
subunits	
  
–  Contain	
  Fe3+	
  and	
  dithiol	
  groups	
  
–  Enz	
  creates	
  stable	
  Tyr	
  radical	
  to	
  abstract	
  H•	
  from	
  sugar	
  
•  A	
  3’-­‐ribonucleoFde	
  radical	
  forms	
  
•  2’-­‐OH	
  is	
  protonated	
  to	
  help	
  eliminate	
  H2O	
  and	
  
form	
  a	
  radical-­‐stabilized	
  carbocaFon	
  
•  Electrons	
  are	
  transferred	
  to	
  the	
  2’-­‐C	
  
Proposed	
  mechanism	
  for	
  
ribonucleo/de	
  reductase	
  
Ribonucleo/de	
  reductase	
  has	
  two	
  
types	
  of	
  regulatory	
  sites	
  
•  One	
  type	
  affects	
  ac3vity	
  
–  ATP	
  acFvates,	
  dATP	
  inhibits	
  
•  Other	
  type	
  affects	
  substrate	
  specificity	
  in	
  order	
  to	
  
maintain	
  balanced	
  pools	
  of	
  nucleoFdes 	
  	
  
–  If	
  ATP	
  or	
  dATP	
  high	
  à	
  less	
  specificity	
  for	
  adenine	
  and	
  
MORE	
  specificity	
  for	
  UDP	
  and	
  CDP,	
  etc.	
  
–  Enzyme	
  oligomerizes	
  to	
  accomplish	
  this	
  change.	
  
Regula/on	
  of	
  Ribonucleo/de	
  
Reductase	
  by	
  dNTPs	
  
Oligomeriza/on	
  of	
  Ribonucleo/de	
  
Reductase	
  when	
  dATP	
  Binds	
  
dTMP	
  is	
  made	
  from	
  dUTP	
  
•  Roundabout	
  pathway…	
  
1. dUTP	
  is	
  made	
  (via	
  deaminaFon	
  of	
  dCTP	
  or	
  by	
  
phosphorylaton	
  of	
  dUDP)	
  
2. dUTP	
  à	
  to	
  dUMP	
  by	
  dUTPase	
  
3. dUMP	
  à	
  dTMP	
  by	
  thymidylate	
  synthase	
  
	
  -­‐	
  adds	
  a	
  methyl	
  group	
  from	
  tetrahydrofolate	
  
Thymidylate	
  synthase	
  is	
  a	
  target	
  for	
  some	
  anFcancer	
  
drugs.	
  
Biosynthesis	
  of	
  dTMP	
  
Conversion	
  of	
  
dUMP	
  to	
  dTMP	
  by	
  
Thymidylate	
  
Synthase	
  
Folic	
  acid	
  deficiency	
  leads	
  to	
  
reduced	
  thymidylate	
  synthesis	
  
•  Folic	
  acid	
  deficiency	
  is	
  widespread,	
  
especially	
  in	
  nutriFonally	
  poor	
  populaFons	
  
•  Reduced	
  thymidylate	
  synthesis	
  causes	
  
uracil	
  to	
  be	
  incorporated	
  into	
  DNA	
  
•  Repair	
  mechanisms	
  remove	
  the	
  uracil	
  by	
  
creaFng	
  strand	
  breaks	
  that	
  affect	
  the	
  
structure	
  and	
  funcFon	
  of	
  DNA	
  
–  Associated	
  with	
  cancer,	
  heart	
  disease,	
  
neurological	
  impairment	
  
Catabolism	
  of	
  Purines:	
  	
  
Forma/on	
  of	
  Uric	
  Acid	
  
•  DegradaFon	
  of	
  purines	
  proceeds	
  through	
  
dephosphorylaFon	
  (via	
  5’-­‐nucleo3dase)	
  
•  Adenosine	
  is	
  deaminated	
  to	
  inosine	
  and	
  then	
  
hydrolyzed	
  to	
  hypoxanthine	
  and	
  ribose	
  
•  Guanosine	
  yields	
  xanthine	
  via	
  these	
  hydrolysis	
  and	
  
deaminaFon	
  reacFons	
  
•  Hypoxanthine	
  and	
  xanthine	
  are	
  then	
  oxidized	
  into	
  uric	
  
acid	
  by	
  xanthine	
  oxidase	
  
•  Spiders	
  and	
  other	
  arachnids	
  lack	
  xanthine	
  oxidase	
  
Catabolism	
  of	
  
Purines	
  
Conversion	
  of	
  Uric	
  Acid	
  to	
  Allantoin,	
  
Allantoate,	
  and	
  Urea	
  
Catabolism	
  of	
  Purines:	
  	
  
Degrada/on	
  of	
  Urate	
  to	
  Allantoin	
  
•  Urate	
  is	
  oxidized	
  into	
  a	
  5-­‐hydroxy-­‐
isourate	
  by	
  urate	
  oxidase	
  
•  Hydrolysis	
  and	
  the	
  subsequent	
  
decarboxylaFon	
  of	
  5-­‐hydroxy-­‐
isourate	
  yields	
  allantoin	
  
•  Most	
  mammals	
  excrete	
  nitrogen	
  
from	
  purines	
  as	
  allantoin	
  
•  Urate	
  oxidase	
  is	
  inacFve	
  in	
  humans	
  
and	
  other	
  great	
  apes;	
  we	
  excrete	
  
urate	
  
•  Birds,	
  most	
  repFles,	
  some	
  
amphibians,	
  and	
  most	
  insects	
  also	
  
excrete	
  urate	
  
NH
N N
H
N
H
O
O
O
NH
N N
N
H
O
O
O OH
NH2
N
H
N
H
N
H
O
O
O
H
H
+
-
-
O2 + H2O
H2O2
CO2
H2O
urate oxidase
spontaneous
or
catalyzed
urate
5-hydroxyisourate
allantoin
Catabolism	
  of	
  Purines:	
  	
  
Degrada/on	
  of	
  Allantoin	
  
•  Most	
  mammals	
  do	
  not	
  degrade	
  
allantoin	
  
•  Amphibians	
  and	
  fishes	
  hydrolyze	
  
allantoin	
  into	
  	
  allantoate;	
  bony	
  
fishes	
  excrete	
  allantoate	
  
•  Amphibians	
  and	
  carFlaginous	
  
fishes	
  hydrolyze	
  allantoate	
  into	
  
glyoxylate	
  and	
  urea;	
  many	
  excrete	
  
urea	
  
•  Some	
  marine	
  invertebrates	
  break	
  
urea	
  down	
  into	
  ammonia	
  
NH2
N
H
N
H
N
H
O
O
O
H
NH2
N
H
N
H
NH2
O O
O
H
O
H
+
OH
OO
NH2
NH2
ONH2
NH2
O
NH4+
H2O
H2O
2 H2O + 4 H+
2 CO2
4
allantoinase
allantoicase
urease
allantoin
allantoate
urea
ammonium cation
Catabolism	
  of	
  Pyrimidines	
  
•  Leads	
  to	
  NH4
+	
  then	
  urea	
  
•  Can	
  produce	
  intermediates	
  of	
  CAC	
  
–  Example:	
  Thymine	
  is	
  degraded	
  to	
  
succinyl-­‐CoA	
  
Catabolism	
  of	
  Thymine,	
  a	
  Pyrimdine	
  
Purine	
  and	
  pyrimidine	
  bases	
  are	
  
recycled	
  by	
  salvage	
  pathways	
  
•  Free	
  bases,	
  released	
  in	
  metabolism,	
  are	
  reused	
  
–  Example:	
  	
  Adenine	
  reacts	
  with	
  PRPP	
  to	
  form	
  the	
  
adenine	
  nucleoFde	
  AMP	
  
•  Catalyzed	
  by	
  adenosine	
  phosphoribosyltransferase	
  
•  Brain	
  is	
  especially	
  dependent	
  on	
  salvage	
  
pathways	
  
•  Lack	
  of	
  hypoxanthine-­‐guanine	
  
phosphoribosyltransferase	
  leads	
  to	
  Lesch-­‐Nyhan	
  
Syndrome	
  with	
  neurological	
  impairment,	
  finger-­‐
and-­‐toe-­‐biFng	
  behavior	
  
Excess	
  uric	
  acid	
  seen	
  in	
  gout	
  
•  Painful	
  joints	
  (o?en	
  in	
  toes)	
  due	
  to	
  deposits	
  of	
  
sodium	
  urate	
  crystals	
  
•  Primarily	
  affects	
  males	
  
•  May	
  involve	
  geneFc	
  under-­‐excreFon	
  of	
  urate	
  
and/or	
  may	
  involve	
  over-­‐consumpFon	
  of	
  fructose	
  
•  Treated	
  with	
  avoidance	
  of	
  purine-­‐rich	
  foods	
  
(seafood,	
  liver)	
  or	
  avoidance	
  of	
  fructose.	
  
•  Also	
  treated	
  with	
  xanthine	
  oxidase	
  inhibitor	
  
allopurinol	
  
Allopurinol	
  inhibits	
  xanthine	
  oxidase	
  
Many	
  chemotherapeu/c	
  agents	
  
target	
  nucleo/de	
  biosynthesis	
  
•  Glutamine	
  analogs:	
  	
  azaserine,	
  acivicin	
  
–  Inhibit	
  glutamine	
  amidotransferases	
  
•  Fluorouracil	
  
–  Converted	
  by	
  salvage	
  pathway	
  into	
  FdUMP,	
  
which	
  inhibits	
  thymidylate	
  synthase	
  
•  Methotrexate	
  and	
  aminopterin	
  
–  Inhibit	
  dihydrofolate	
  reductase	
  (compeFFve	
  
inhibitors)	
  
An/bio/cs	
  also	
  target	
  nucleo/de	
  	
  
biosynthesis	
  
•  Allopurinol,	
  etc.	
  
–  Studied	
  against	
  African	
  sleeping	
  sickness	
  
(trypanosomiasis)	
  because	
  the	
  trypanosomes	
  
lack	
  enzymes	
  for	
  de	
  novo	
  nucleoFde	
  synthesis	
  
•  Trimethoprim	
  –	
  	
  
–  Inhibits	
  bacterial	
  dihydrofolate	
  reductase	
  but	
  
binds	
  human	
  enzyme	
  several	
  orders	
  of	
  
magnitude	
  less	
  strongly	
  
Azaserine	
  and	
  Acivicin,	
  Inhibitors	
  of	
  
Glutamine	
  Amidotransferases	
  
Chemotherapy	
  Targets―Thymidylate	
  
Synthesis	
  and	
  Folate	
  Metabolism	
  
fdUMP	
  Inhibi/on	
  of	
  dUMPàdTMP	
  
Conversion	
  

More Related Content

What's hot

Chapter 8 nucleotides Biochemistry
Chapter 8 nucleotides BiochemistryChapter 8 nucleotides Biochemistry
Chapter 8 nucleotides Biochemistry
Areej Abu Hanieh
 
Biochemistry ii protein (metabolism of amino acids) (new edition)
Biochemistry ii protein (metabolism of amino acids) (new edition)Biochemistry ii protein (metabolism of amino acids) (new edition)
Biochemistry ii protein (metabolism of amino acids) (new edition)
abdulhussien aljebory
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
Dipesh Tamrakar
 
Metabolism of amino acids
Metabolism of amino acidsMetabolism of amino acids
Metabolism of amino acids
Ramesh Gupta
 
Biosynthesis of fatty acids
Biosynthesis of fatty acidsBiosynthesis of fatty acids
Biosynthesis of fatty acids
Anamika Banerjee
 
atp production & utilization ppt
atp production & utilization  pptatp production & utilization  ppt
atp production & utilization ppt
KAUSHAL SAHU
 
Nucleic Acid Metabolism
Nucleic Acid Metabolism Nucleic Acid Metabolism
Nucleic Acid Metabolism
NahalMalik1
 
Amino acids metabolism new
Amino acids metabolism newAmino acids metabolism new
Chapter 7 carbohydrate Biocjemistry
Chapter 7 carbohydrate BiocjemistryChapter 7 carbohydrate Biocjemistry
Chapter 7 carbohydrate Biocjemistry
Areej Abu Hanieh
 
Amino acid metabolism
Amino acid metabolismAmino acid metabolism
Amino acid metabolism
Bassant Alaa
 
Biological oxidation and oxidative phosphorylation
Biological oxidation and oxidative phosphorylationBiological oxidation and oxidative phosphorylation
Biological oxidation and oxidative phosphorylation
Namrata Chhabra
 
BIOSYNTHESIS OF AMINOACIDS
BIOSYNTHESIS OF AMINOACIDSBIOSYNTHESIS OF AMINOACIDS
BIOSYNTHESIS OF AMINOACIDS
Archana Shaw
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
Ramesh Gupta
 
Chapter-6 enzymes - Biochemistry
Chapter-6 enzymes - Biochemistry Chapter-6 enzymes - Biochemistry
Chapter-6 enzymes - Biochemistry
Areej Abu Hanieh
 
Amino acid catabolism- Part-1
Amino acid catabolism- Part-1Amino acid catabolism- Part-1
Amino acid catabolism- Part-1
Namrata Chhabra
 
Chapter6 enzymes
Chapter6 enzymesChapter6 enzymes
Chapter6 enzymes
Baraah Jafari
 
Chapter 15 - principle of metabolic regulation - Biochemistry
Chapter 15 - principle of metabolic regulation - BiochemistryChapter 15 - principle of metabolic regulation - Biochemistry
Chapter 15 - principle of metabolic regulation - Biochemistry
Areej Abu Hanieh
 
Enzyme substrate complex and enzyme action.
Enzyme substrate complex and enzyme action.Enzyme substrate complex and enzyme action.
Enzyme substrate complex and enzyme action.
AHMED HASSAN
 
Learning Keys , Lehninger Chapter # 10 LIPIDS
Learning Keys , Lehninger Chapter # 10 LIPIDSLearning Keys , Lehninger Chapter # 10 LIPIDS
Learning Keys , Lehninger Chapter # 10 LIPIDS
Tauqeer Ahmad
 
Pentose phosphate pathway,hmp shunt
Pentose phosphate pathway,hmp shuntPentose phosphate pathway,hmp shunt
Pentose phosphate pathway,hmp shunt
Sijo A
 

What's hot (20)

Chapter 8 nucleotides Biochemistry
Chapter 8 nucleotides BiochemistryChapter 8 nucleotides Biochemistry
Chapter 8 nucleotides Biochemistry
 
Biochemistry ii protein (metabolism of amino acids) (new edition)
Biochemistry ii protein (metabolism of amino acids) (new edition)Biochemistry ii protein (metabolism of amino acids) (new edition)
Biochemistry ii protein (metabolism of amino acids) (new edition)
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Metabolism of amino acids
Metabolism of amino acidsMetabolism of amino acids
Metabolism of amino acids
 
Biosynthesis of fatty acids
Biosynthesis of fatty acidsBiosynthesis of fatty acids
Biosynthesis of fatty acids
 
atp production & utilization ppt
atp production & utilization  pptatp production & utilization  ppt
atp production & utilization ppt
 
Nucleic Acid Metabolism
Nucleic Acid Metabolism Nucleic Acid Metabolism
Nucleic Acid Metabolism
 
Amino acids metabolism new
Amino acids metabolism newAmino acids metabolism new
Amino acids metabolism new
 
Chapter 7 carbohydrate Biocjemistry
Chapter 7 carbohydrate BiocjemistryChapter 7 carbohydrate Biocjemistry
Chapter 7 carbohydrate Biocjemistry
 
Amino acid metabolism
Amino acid metabolismAmino acid metabolism
Amino acid metabolism
 
Biological oxidation and oxidative phosphorylation
Biological oxidation and oxidative phosphorylationBiological oxidation and oxidative phosphorylation
Biological oxidation and oxidative phosphorylation
 
BIOSYNTHESIS OF AMINOACIDS
BIOSYNTHESIS OF AMINOACIDSBIOSYNTHESIS OF AMINOACIDS
BIOSYNTHESIS OF AMINOACIDS
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Chapter-6 enzymes - Biochemistry
Chapter-6 enzymes - Biochemistry Chapter-6 enzymes - Biochemistry
Chapter-6 enzymes - Biochemistry
 
Amino acid catabolism- Part-1
Amino acid catabolism- Part-1Amino acid catabolism- Part-1
Amino acid catabolism- Part-1
 
Chapter6 enzymes
Chapter6 enzymesChapter6 enzymes
Chapter6 enzymes
 
Chapter 15 - principle of metabolic regulation - Biochemistry
Chapter 15 - principle of metabolic regulation - BiochemistryChapter 15 - principle of metabolic regulation - Biochemistry
Chapter 15 - principle of metabolic regulation - Biochemistry
 
Enzyme substrate complex and enzyme action.
Enzyme substrate complex and enzyme action.Enzyme substrate complex and enzyme action.
Enzyme substrate complex and enzyme action.
 
Learning Keys , Lehninger Chapter # 10 LIPIDS
Learning Keys , Lehninger Chapter # 10 LIPIDSLearning Keys , Lehninger Chapter # 10 LIPIDS
Learning Keys , Lehninger Chapter # 10 LIPIDS
 
Pentose phosphate pathway,hmp shunt
Pentose phosphate pathway,hmp shuntPentose phosphate pathway,hmp shunt
Pentose phosphate pathway,hmp shunt
 

Similar to Chapters 18 , 22 - Biochemistry

Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Areej Abu Hanieh
 
Nitrogen metabolism (metabolic fate of amino acid, catabolism of amino acid, ...
Nitrogen metabolism (metabolic fate of amino acid, catabolism of amino acid, ...Nitrogen metabolism (metabolic fate of amino acid, catabolism of amino acid, ...
Nitrogen metabolism (metabolic fate of amino acid, catabolism of amino acid, ...
anamsharif
 
Lec12 ureacyc
Lec12 ureacycLec12 ureacyc
Lec12 ureacycdream10f
 
Beta oxidation & protein catabolism
Beta oxidation & protein catabolismBeta oxidation & protein catabolism
Beta oxidation & protein catabolism
obanbrahma
 
Degradation of amino acids
Degradation of amino acidsDegradation of amino acids
Degradation of amino acidsAnuradha Verma
 
Ads 3014 l5
Ads 3014 l5Ads 3014 l5
Ads 3014 l5
hudzari
 
Ammonia metabolism
Ammonia metabolismAmmonia metabolism
Ammonia metabolism
BiochemistrySGRDIMSAR
 
Metabolism of amino acid
Metabolism of amino acid Metabolism of amino acid
Metabolism of amino acid
Allied Health Sciences
 
Metabolism of amino acids (general metabolism)
Metabolism of amino acids (general metabolism)Metabolism of amino acids (general metabolism)
Metabolism of amino acids (general metabolism)
Ashok Katta
 
Biochemistry _ amino acid oxidation
Biochemistry _ amino acid oxidationBiochemistry _ amino acid oxidation
Biochemistry _ amino acid oxidationPrabesh Raj Jamkatel
 
Amino acid meatbolism and Urea cycle-1.pptx
Amino acid meatbolism and Urea cycle-1.pptxAmino acid meatbolism and Urea cycle-1.pptx
Amino acid meatbolism and Urea cycle-1.pptx
ABIDOFFICIALCHANNEL
 
PROTEIN CLASS PPT-1.pptx
PROTEIN CLASS PPT-1.pptxPROTEIN CLASS PPT-1.pptx
PROTEIN CLASS PPT-1.pptx
RoopaRanganathan
 
urea cycle.pptx
urea cycle.pptxurea cycle.pptx
urea cycle.pptx
AmitSamadhiya1
 
Amino acid catabolism and urea cycle.pptx
Amino acid catabolism and urea cycle.pptxAmino acid catabolism and urea cycle.pptx
Amino acid catabolism and urea cycle.pptx
HashimBashir1
 
urea- tca cycle(0).pdf
urea- tca cycle(0).pdfurea- tca cycle(0).pdf
urea- tca cycle(0).pdf
MishiSoza
 
Amino acid catabolism
Amino acid catabolismAmino acid catabolism
Amino acid catabolism
V.V.V.College for Women
 
bbbbbbbbBiosynthesis of amino acids.pptx
bbbbbbbbBiosynthesis of amino acids.pptxbbbbbbbbBiosynthesis of amino acids.pptx
bbbbbbbbBiosynthesis of amino acids.pptx
DiptiPriya6
 
Lec 3 level 3-de(protein metabolism &urea cycle)
Lec 3  level 3-de(protein metabolism &urea cycle)Lec 3  level 3-de(protein metabolism &urea cycle)
Lec 3 level 3-de(protein metabolism &urea cycle)dream10f
 
8402594 pm.ppt metabolism of amino acids
8402594 pm.ppt metabolism of amino acids8402594 pm.ppt metabolism of amino acids
8402594 pm.ppt metabolism of amino acids
AnnaKhurshid
 
Protein-Metabolism.ppt
Protein-Metabolism.pptProtein-Metabolism.ppt
Protein-Metabolism.ppt
KhalidBassiouny1
 

Similar to Chapters 18 , 22 - Biochemistry (20)

Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
 
Nitrogen metabolism (metabolic fate of amino acid, catabolism of amino acid, ...
Nitrogen metabolism (metabolic fate of amino acid, catabolism of amino acid, ...Nitrogen metabolism (metabolic fate of amino acid, catabolism of amino acid, ...
Nitrogen metabolism (metabolic fate of amino acid, catabolism of amino acid, ...
 
Lec12 ureacyc
Lec12 ureacycLec12 ureacyc
Lec12 ureacyc
 
Beta oxidation & protein catabolism
Beta oxidation & protein catabolismBeta oxidation & protein catabolism
Beta oxidation & protein catabolism
 
Degradation of amino acids
Degradation of amino acidsDegradation of amino acids
Degradation of amino acids
 
Ads 3014 l5
Ads 3014 l5Ads 3014 l5
Ads 3014 l5
 
Ammonia metabolism
Ammonia metabolismAmmonia metabolism
Ammonia metabolism
 
Metabolism of amino acid
Metabolism of amino acid Metabolism of amino acid
Metabolism of amino acid
 
Metabolism of amino acids (general metabolism)
Metabolism of amino acids (general metabolism)Metabolism of amino acids (general metabolism)
Metabolism of amino acids (general metabolism)
 
Biochemistry _ amino acid oxidation
Biochemistry _ amino acid oxidationBiochemistry _ amino acid oxidation
Biochemistry _ amino acid oxidation
 
Amino acid meatbolism and Urea cycle-1.pptx
Amino acid meatbolism and Urea cycle-1.pptxAmino acid meatbolism and Urea cycle-1.pptx
Amino acid meatbolism and Urea cycle-1.pptx
 
PROTEIN CLASS PPT-1.pptx
PROTEIN CLASS PPT-1.pptxPROTEIN CLASS PPT-1.pptx
PROTEIN CLASS PPT-1.pptx
 
urea cycle.pptx
urea cycle.pptxurea cycle.pptx
urea cycle.pptx
 
Amino acid catabolism and urea cycle.pptx
Amino acid catabolism and urea cycle.pptxAmino acid catabolism and urea cycle.pptx
Amino acid catabolism and urea cycle.pptx
 
urea- tca cycle(0).pdf
urea- tca cycle(0).pdfurea- tca cycle(0).pdf
urea- tca cycle(0).pdf
 
Amino acid catabolism
Amino acid catabolismAmino acid catabolism
Amino acid catabolism
 
bbbbbbbbBiosynthesis of amino acids.pptx
bbbbbbbbBiosynthesis of amino acids.pptxbbbbbbbbBiosynthesis of amino acids.pptx
bbbbbbbbBiosynthesis of amino acids.pptx
 
Lec 3 level 3-de(protein metabolism &urea cycle)
Lec 3  level 3-de(protein metabolism &urea cycle)Lec 3  level 3-de(protein metabolism &urea cycle)
Lec 3 level 3-de(protein metabolism &urea cycle)
 
8402594 pm.ppt metabolism of amino acids
8402594 pm.ppt metabolism of amino acids8402594 pm.ppt metabolism of amino acids
8402594 pm.ppt metabolism of amino acids
 
Protein-Metabolism.ppt
Protein-Metabolism.pptProtein-Metabolism.ppt
Protein-Metabolism.ppt
 

More from Areej Abu Hanieh

Announcement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAnnouncement about my previous presentations - Thank you
Announcement about my previous presentations - Thank you
Areej Abu Hanieh
 
Infection - penicillins
Infection - penicillinsInfection - penicillins
Infection - penicillins
Areej Abu Hanieh
 
Hospital acquired pneumonia
Hospital acquired pneumoniaHospital acquired pneumonia
Hospital acquired pneumonia
Areej Abu Hanieh
 
catheter related blood stream infection
catheter related blood stream infection catheter related blood stream infection
catheter related blood stream infection
Areej Abu Hanieh
 
Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy
Areej Abu Hanieh
 
Cellulitis - Treatment
Cellulitis - TreatmentCellulitis - Treatment
Cellulitis - Treatment
Areej Abu Hanieh
 
Carbapenems - Pharmacology
Carbapenems - PharmacologyCarbapenems - Pharmacology
Carbapenems - Pharmacology
Areej Abu Hanieh
 
Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Cephalosporins - Pharmacology
Cephalosporins - Pharmacology
Areej Abu Hanieh
 
Sickle cell anemia
Sickle cell anemia Sickle cell anemia
Sickle cell anemia
Areej Abu Hanieh
 
Poisoning - Treatment
Poisoning - TreatmentPoisoning - Treatment
Poisoning - Treatment
Areej Abu Hanieh
 
Hypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesHypertensive urgencies and emergencies
Hypertensive urgencies and emergencies
Areej Abu Hanieh
 
Diabetic ketoacidosis DKA
Diabetic ketoacidosis DKADiabetic ketoacidosis DKA
Diabetic ketoacidosis DKA
Areej Abu Hanieh
 
Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency  Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency
Areej Abu Hanieh
 
Acute decompensated heart failure
Acute decompensated heart failureAcute decompensated heart failure
Acute decompensated heart failure
Areej Abu Hanieh
 
Acute Coronary syndrome
Acute Coronary syndrome Acute Coronary syndrome
Acute Coronary syndrome
Areej Abu Hanieh
 
Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus
Areej Abu Hanieh
 
Stress ulcer prophylaxis
Stress ulcer prophylaxis Stress ulcer prophylaxis
Stress ulcer prophylaxis
Areej Abu Hanieh
 
Pain in the ICU
Pain in the ICUPain in the ICU
Pain in the ICU
Areej Abu Hanieh
 
Deep Vein Thrombosis - DVT
Deep Vein Thrombosis  - DVTDeep Vein Thrombosis  - DVT
Deep Vein Thrombosis - DVT
Areej Abu Hanieh
 
Anti - Coagulants agents
Anti - Coagulants agentsAnti - Coagulants agents
Anti - Coagulants agents
Areej Abu Hanieh
 

More from Areej Abu Hanieh (20)

Announcement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAnnouncement about my previous presentations - Thank you
Announcement about my previous presentations - Thank you
 
Infection - penicillins
Infection - penicillinsInfection - penicillins
Infection - penicillins
 
Hospital acquired pneumonia
Hospital acquired pneumoniaHospital acquired pneumonia
Hospital acquired pneumonia
 
catheter related blood stream infection
catheter related blood stream infection catheter related blood stream infection
catheter related blood stream infection
 
Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy
 
Cellulitis - Treatment
Cellulitis - TreatmentCellulitis - Treatment
Cellulitis - Treatment
 
Carbapenems - Pharmacology
Carbapenems - PharmacologyCarbapenems - Pharmacology
Carbapenems - Pharmacology
 
Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Cephalosporins - Pharmacology
Cephalosporins - Pharmacology
 
Sickle cell anemia
Sickle cell anemia Sickle cell anemia
Sickle cell anemia
 
Poisoning - Treatment
Poisoning - TreatmentPoisoning - Treatment
Poisoning - Treatment
 
Hypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesHypertensive urgencies and emergencies
Hypertensive urgencies and emergencies
 
Diabetic ketoacidosis DKA
Diabetic ketoacidosis DKADiabetic ketoacidosis DKA
Diabetic ketoacidosis DKA
 
Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency  Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency
 
Acute decompensated heart failure
Acute decompensated heart failureAcute decompensated heart failure
Acute decompensated heart failure
 
Acute Coronary syndrome
Acute Coronary syndrome Acute Coronary syndrome
Acute Coronary syndrome
 
Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus
 
Stress ulcer prophylaxis
Stress ulcer prophylaxis Stress ulcer prophylaxis
Stress ulcer prophylaxis
 
Pain in the ICU
Pain in the ICUPain in the ICU
Pain in the ICU
 
Deep Vein Thrombosis - DVT
Deep Vein Thrombosis  - DVTDeep Vein Thrombosis  - DVT
Deep Vein Thrombosis - DVT
 
Anti - Coagulants agents
Anti - Coagulants agentsAnti - Coagulants agents
Anti - Coagulants agents
 

Recently uploaded

bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
sanjana502982
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
zeex60
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
NoelManyise1
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 

Recently uploaded (20)

bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 

Chapters 18 , 22 - Biochemistry

  • 1. 18|  Amino  Acid  Oxida/on  Produc/on  of  Urea   © 2013 W. H. Freeman and Company 22|  Nitrogen  Assimila/on,  Biosynthe/c  Use,  and  Excre/on  
  • 2. The  use  of  amino  acids  as  fuel     varies  greatly  by  organism     •  About  90%  of  energy  needs  of  carnivores  can  be  met   by  amino  acids  immediately  a*er  a  meal     •  Microorganisms  scavenge  amino  acids  from  their   environment  for  fuel  when  needed   •  Only  a  very  small  frac3on  of  energy  needs  of   herbivores  are  met  by  amino  acids   •  Plants  do  not  use  amino  acids  as  a  fuel  source,  but   can  degrade  amino  acids  to  form  other  metabolites  
  • 3. Metabolic  Circumstances     of  Amino  Acid  Oxida/on   •  Le?over  amino  acids  from  normal  protein  turnover   •  Dietary  amino  acids  that  exceed  body’s  protein   synthesis  needs   •  Proteins  in  the  body  can  be  broken  down  to  supply   amino  acids  for  energy  when  carbohydrates  are  scarce   (starvaFon,  diabetes  mellitus)    
  • 4. Dietary  proteins  are  enzyma/cally   hydrolyzed  into  amino  acids   •  Pepsin  cuts  protein  into  pepFdes  in  the  stomach   •  Trypsin  and  chymotrypsin  cut  proteins  and  larger   pepFdes  into  smaller  pepFdes  in  the  small  intesFne   •  AminopepFdase  and  carboxypepFdases  A  and  B   degrade  pepFdes  into  amino  acids  in  the  small   intesFne  
  • 5. Dietary  protein  is  enzyma/cally  degraded   through  the  diges/ve  tract  
  • 6. Overview  of  Amino  Acid  Catabolism   The amino groups and the carbon skeleton take separate but interconnected pathways.
  • 7. Removal  of  the  Amino  Group   The  first  step  of  degradaFon  for  all  amino  acids  
  • 8. Fates  of  Nitrogen  in  Organisms   •  Plants  conserve  almost  all  the  nitrogen   •  Many  aquaFc  vertebrates  release  ammonia  to  their   environment   –  Passive  diffusion  from  epithelial  cells   –  AcFve  transport  via  gills   •  Many  terrestrial  vertebrates  and  sharks  excrete  nitrogen  in   the  form  of  urea   –  Urea  is  far  less  toxic  that  ammonia   –  Urea  has  very  high  solubility   •  Some  animals  such  as  birds  and  repFles  excrete  nitrogen  as   uric  acid   –  Uric  acid  is  rather  insoluble   –  ExcreFon  as  paste  allows  the  animals  to  conserve  water   •  Humans  and  great  apes  excrete  both  urea  (from  amino  acids)   and  uric  acid  (from  purines)  
  • 9. Excretory  Forms  of  Nitrogen   Notice that the carbon atoms of urea and uric acid are highly oxidized; the organism discards carbon only after extracting most of its available energy of oxidation.
  • 10. Enzyma/c  Transamina/on   •  Catalyzed  by  aminotransferases     •  Uses  the  pyridoxal  phosphate  cofactor   •  Typically,  α-­‐ketoglutarate  accepts  amino  groups   •  L-­‐Glutamine  acts  as  a  temporary  storage  of  nitrogen     •  L-­‐Glutamine  can  donate  the  amino  group  when   needed  for  amino  acid  biosynthesis  
  • 12. Structure  of  Pyridoxal  Phosphate  and   Pyridoxamine  Phosphate   • Intermediate,  enzyme-­‐bound  carrier  of  amino  groups     • Aldehyde  form  can  react  reversibly  with  amino  groups   • Aminated  form  can  react  reversibly  with  carbonyl  groups  
  • 13. Pyridoxal  phosphate  is  covalently  linked  to  the   enzyme  in  the  res/ng  enzyme     •  By  an  internal  aldimine   •  The  linkage  is  made  via  a   nucleophilic  aVack  of  the   amino  group  of  an     acFve-­‐site  lysine  
  • 14. Chemistry  of  the  Amino  Group  Removal   by  the  Internal  Aldimine   The  external  aldimine  of  PLP  is  a  good  electron  sink,  avoiding   formaFon  of  an  unstable  carbanion  on  the  α  C  allowing   removal  of  α-­‐hydrogen   3 alternative fates for the external aldimine transamination decarboxylation racemization
  • 15. •  OxidaFve  deaminaFon  occurs   within  mitochondrial  matrix   •  Can  use  either  NAD+  or  NADP+   as  electron  acceptor   •  Ammonia  is  processed  into   urea  for  excreFon   •  Pathway  for  ammonia   excreFon;  transdeaminaFon  =   transaminaFon  +  oxidaFve   deaminaFon   Ammonia  collected  in  glutamate  is   removed  by  glutamate  dehydrogenase  
  • 16. Ammonia  is  safely  transported  in  the   bloodstream  as  glutamine   •  Excess  ammonia  in  Fssues  is   added  to  glutamate  to  form   glutamine  (by  glutamine   synthetase).     •  Excess  glutamine  is   processed  in  intesFnes,   kidneys,  and  liver  (by   glutaminase)  liberaFng  NH4 +   in  mitochondria.      
  • 17. Glutamate  can  donate  ammonia  to   pyruvate  to  make  alanine   •  Vigorously  working  muscles  operate  nearly  anaerobically   and  rely  on  glycolysis  for  energy   •  Glycolysis  yields  pyruvate   –   if  not  eliminated  lacFc  acid  will  build  up   •  This  pyruvate  can  be  converted  to  alanine  for  transport   into  liver    
  • 18. The  Glucose-­‐Alanine  Cycle   Alanine serves as a carrier of ammonia and of the carbon skeleton of pyruvate from skeletal muscle to liver.
  • 19.
  • 20. Excess  glutamate  is  metabolized  in  the   mitochondria  of  hepatocytes    
  • 21. Ammonia  is  highly  toxic  and     must  be  u/lized  or  excreted   •  Free  ammonia  released  from  glutamate  is  converted  to   urea  for  excreFon.   •  Carbamoyl  phosphate  synthetase  I  captures  free   ammonia  in  the  mitochondrial  matrix   •  First  step  of  the  urea  cycle   •  Regulated  
  • 22. Ammonia  is  recaptured  via     synthesis  of  carbamoyl  phosphate   •  The  first  nitrogen-­‐acquiring  reacFon  of  the  urea  cycle  
  • 23. Nitrogen  from   carbamoyl  phosphate   enters  the  urea  cycle    
  • 24. The  Reac/ons  in  the  Urea  Cycle  
  • 25. Entry  of  Aspartate  into  the  Urea  Cycle   This  is  the  second  nitrogen-­‐acquiring  reacFon.  
  • 26. Aspartate  –arginosuccinate  shunt  links     urea  cycle  and  citric  acid  cycle  
  • 27. Regula/on  of  the  Urea  Cycle   •  Carbamoyl  phosphate   synthetase  I  is  acFvated  by       N-­‐acetylglutamate   •  Formed  by  N-­‐acetylglutamate   synthase     –  When  glutamate  and  acetyl-­‐CoA   concentraFons  are  high   –  AcFvated  by  arginine   •  Expression  of  urea  cycle   enzymes  increases  when   needed   –  High  protein  diet   –  StarvaFon,  when  protein  is   being  broken  down  for  energy  
  • 28. Not  all  amino  acids  can  be     synthesized  in  humans   •  EssenFal  amino  acids   must  be  obtained  as   dietary  protein   •  ConsumpFon  of  a   variety  of  foods   supplies  all  the   essenFal  amino  acids     –  including  vegetarian-­‐   only  diets  
  • 29. End  products  of  Amino  Acid  Degrada/on   •  Intermediates  of  the  Central  Metabolic  Pathway   •  Some  amino  acids  result  in  more  than  one  intermediate   •  Ketogenic  amino  acids  can  be  converted  to  ketone  bodies   •  Glucogenic  amino  acids  can  be  converted  to  glucose   Six to pyruvate Ala, Cys, Gly, Ser, Thr, Trp Five to α-ketoglutarate Arg, Glu, Gln, His, Pro Four to succinyl-CoA Ile, Met, Thr, Val Two to fumarate Phe, Tyr Two to oxaloacetate Asp, Asn Seven to Acetyl-CoA Leu, Ile, Thr, Lys, Phe, Tyr, Trp
  • 30. Summary  of  Amino  Acid  Catabolism   Only two amino acids, leucine and lysine, are exclusively ketogenic.
  • 31. Several  cofactors  are     involved  in  amino  acid  catabolism   •  Important  in  one-­‐carbon  transfer  reacFons   –  Tetrahydrafolate  (THF)   –  S-­‐adenosylmethionine  (adoMet)   –  BioFn   •  BioFn,  as  we  saw  in  Chapter  16,  transfers  CO2  
  • 32. THF  is  a  versa/le  cofactor   •  Tetrahydrofolate  is  formed  from  folate     –  an  essenFal  vitamin  (B9)   •  THF  can  transfer  1-­‐carbon  in  different  oxidaFon  states   –  CH3,  CH2OH,  and  CHO   •  Used  in  a  wide  variety  of  metabolic  reacFons   •  Carbon  generally  comes  from  serine   •  Forms  interconverted  on  THF  before  use    
  • 33. THF  is  a  versa/le  cofactor  
  • 34. adoMet  is  beTer  at  transferring  CH3   •  S-­‐adenosylmethionine  is  the  prefered  cofactor  for   methyl  transfer  in  biological  reacFons   –  Methyl  is  1000  Fmes  more  reacFve  than  THF  methyl  group   •  Synthesized  from  ATP  and  methionine    
  • 36. Degrada/on  of  ketogenic  amino  acids  
  • 37. Degrada/on  intermediates  of  tryptophan   are  to  synthesize  other  molecules  
  • 38. Gene/c  defects  in  many  steps  of  Phe   degrada/on  lead  to  disease  
  • 39. Phenylketonuria  is  caused  by  a  defect  in   the  first  step  of  Phe  degrada/on   •  A  buildup  of  phenylalanine   and  phenylpyruvate   •  Impairs  neurological   development  leading  to   intellectual  deficits   •  Controlled  by  limiFng   dietary  intake  of  Phe  
  • 40. Degrada/on  of  Glycine   •  Pathway  #1:  hydroxylaFon  to  serine  à  pyruvate   •  Pathway  #2:  Glycine  cleavage  enzyme   –  Apparently  major  pathway  in  mammals   –  SeparaFon  of  three  central  atoms   –  Releases  CO2  and  NH3   –  Methylene  group  is  transferred  to  THF   •  Pathway  #3:  D-­‐amino  oxidase   –  RelaFvely  minor  pathway   –  UlFmately  oxidized  to  oxalate   –  Major  component  of  kidney  stones  
  • 41. Degrada/on  of  Amino  Acids  to     α-­‐Ketoglutarate  
  • 42. Degrada/on  of  branched  chain     amino  acids  does  not  occur  in  the  liver   •  Leucine,  Isoleucine,  and  Valine  are  oxidized  for  fuel   –  In  muscle,  adipose  Fssue,  kidney,  and  brain  
  • 43. Degrada/on  of  Asn  and  Asp  to     Oxaloacetate  
  • 44.
  • 45.
  • 46. Importance  of  Nitrogen  in   Biochemistry   •  Nitrogen  (with  H,  O,  and  C)  is  a  major   elemental  consFtuent  of  living  organisms     •  Mostly  in  nucleic  acids  and  proteins   •  But  also  found  in:   –  several  cofactors  (NAD,  FAD,  bioFn  …  )   –  many  small  hormones  (epinephrine)   –  many  neurotransmiVers  (serotonin)   –  many  pigments  (chlorophyll)   –  many  defense  chemicals  (amaniFn)  
  • 47. Biochemistry  of  Molecular  Nitrogen   •  Atmosphere  is  80%  N2  but  non-­‐useful  form   –  N2  chemically  inert   –  Need  N2  +  3  H2  à  2  NH3     –  Even  though  ΔGʹ′°=  –33.5  kJ/mol…breaking  triple   bond  has  high  ac4va4on  energy  
  • 48. A  few  non-­‐biological  processes  can   convert  N2  to  biologically  useful  forms   •  N2  and  O2  à  NO  via  lightning   •  N2  and  H2  à  NH3  via  the  industrial  Haber   process   • Requires  T>400°C,  P>200  atm  
  • 49. Some  bacteria  can  “fix”  N2     to  useful  forms •  Most  are  single-­‐celled  prokaryotes  (archaea)   •  Some  live  in  symbiosis  with  plants     -­‐    (e.g.,  proteobacteria  with  legumes  such   as  peanuts,  beans)   •  A  few  live  in  symbiosis  with  animals     -­‐  (e.g.,  spirochaete  with  termites)     They  have  enzymes  that  overcome  the  high   ac3va3on  energy  by  binding  and   hydrolyzing  ATP.  
  • 50. Review:    Oxida/on  States  of   Nitrogen  Compounds   •  N+5  O3 –    à  N+3  O2 –       •  Nitrate  àNitrite   •  “ate” is  the  higher  oxidaFon  state   •  (Memory  trick:    I  ate  too  much)   •  NH3:    N  has  oxidaFon  state  of  –3  
  • 51. The  Nitrogen  Cycle   Chemical  transforma4ons  maintain  a  balance  between  N2   and  biologically  useful  forms  of  nitrogen.   1.  Fixa4on.    Bacteria  reduce  N2  to  NH3/NH4 +         2.  Nitrifica4on.    Bacteria  oxidize  ammonia  into  nitrite  (NO2 –)  and   nitrate  (NO3 –).   3.  Assimila4on.    Plants  and  microorganisms  reduce  NO2 –  and  NO3 –  to   NH3  via  nitrite  reductases  and  nitrate  reductases.    NH3  is  incorporated  into  amino  acids,  etc.    Organisms  die,  returning  NH3  to  soil.    Nitrifying  bacteria  again  convert  NH3  to  nitrite  and  nitrate.   4. Denitrifica4on.    Nitrate  is  reduced  to  N2  under  anaerobic  condiFons.        NO3 –  is  the  ulFmate  electron  acceptor  instead  of  O2.  
  • 53. Two  Important  Enzymes  in  Nitrate   Assimila/on   Nitrate  AssimilaFon:  (step  3)  process  by  which  plants  and   microorganisms  convert  NO3 –  to  NH3         1. Nitrate  reductase  NO3 –  +  2  e–  à  NO2 –       -­‐  large,  soluble  protein,  contains  novel  Mo  cofactor,  e–   from  NADH   2. Nitrite  reductase  NO2 –  +  6  e–  à  NH4 +     -­‐ Found  in  chloroplasts  in  plants,  e–  comes  from   ferredoxin   -­‐   In  nonphotosyntheFc  microbes,  e–  comes  from  NADPH  
  • 54. Nitrate  Assimila/on  by  Nitrate   Reductase  
  • 55. Nitrate  Assimila/on  by  Nitrite   Reductase  
  • 56. Nitrate  Assimila/on  (step  3)  vs.   Nitrogen  Fixa/on  (step  1)   •  Both  are  electron-­‐transfer  processes   •  Both  use  Mo  cofactor   –  Nitrate  reductase  has  an  Mo  cofactor   –  The  nitrogenase  complex  has  an  Fe-­‐Mo  cofactor   •  Both  processes  involve  electron  transfer  through   groups  such  as  Fe-­‐S  complexes,  cytochromes,  SH   groups,  NADH,  NADPH,  etc.  
  • 57. Nitrogen  fixa/on  is  carried  out  by  the   nitrogenase  complex   •  N2  +  3  H2  =  2  NH3     –  Exergonic  (ΔG°  =  –33.5  kJ/mol)  but  very  slow  due  to  the  triple  bond’s   high  acFvaFon  energy     •  The  nitrogenase  complex  can  accelerate  this  rx   –  Has  two  subunits:       •  Dinitrogenase  reductase   •  Dinitrogenase   •  Passes  electrons  to  N2  and  catalyzes  a  step-­‐wise  reducFon  of   N2  to  NH3        N2  +  8  H+  +  8  e–  +  nATP  =  2  NH3  +  H2  +  nADP  +  nPi                2  NH3  +  2  H+  =  2  NH4 +        About  16  ADP  molecules  are  consumed  per  one  N2.  
  • 58. Features  of  the  Nitrogenase   Complex   •  Source  of  e–  varies  between  organisms   –  O?en  pyruvate  àferredoxin   •  ATP  hydrolysis  and  ATP  binding  help  overcome   the  high  acFvaFon  energy   •  Has  regions  homologous  to  GTP-­‐binding  proteins   used  in  signaling   •  Has  novel  FeMo  cofactor  (or  V  in  some   organisms)  
  • 59. Enzymes  and  Cofactors  in  the   Nitrogenase  Complex  
  • 60. The  Fe-­‐Mo  Cofactor  in  the   Dinitrogenase  Subunit     •  Consists  of:     –  7  Fe  atoms   –  9  S  atoms   –  1  Mo  atom   –  1  bound  homocitrate   •  The  nitrogen  binds  to  the  center  of  the  Mo-­‐FeS  cage  and   is  coordinated  to  the  molybdenum  atom   •  Electrons  are  passed  to  the  molybdenum-­‐bound   nitrogen  via  the  iron-­‐sulfur  complex  
  • 62. Oxida/on  of  pyruvate  provides   electrons  to  nitrogenase   •  Pyruvate  passes  e–  to  ferredoxin  or  flavodoxin   •  Ferredoxin  or  flavodoxin  pass  e–  to  dinitrogenase   reductase   •  The  reductase  passes  e–  to  dinitrogenase   •  Dinitrogenase  passes  e–  to  nitrogen  (or  to  protons)   to  make  NH3   •  FormaFon  of  H2  appears  an  obligatory  side-­‐reacFon  
  • 63. Nitrogen  Fixa/on  by   the  Nitrogenase   Complex  
  • 64. Redox  Reac/ons  in  Dinitrogenase   •  The  net  rx  of  the  nitrogenase  complex:              N2  +  8  H+  +  8  e–  +  16  ATP  =  2  NH3  +  H2  +  16  ADP  +  16  Pi     •  Dinitrogenase  reductase  catalyzes:     –  transfer  of  8  e–  to  dinitrogenase     –  hydrolysis  of  ATP  with  release  of  protons   •  Dinitrogenase  catalyzes:     –  transfer  of  6  e–  to  nitrogen:  formaFon  of  NH3     –  transfer  of  2  e–  to  protons:  formaFon  of  H2    
  • 65. The  mechanism  of  dinitrogenase   remains  poorly  understood   •  Extremely  complex  redox  reacFon  that  involves  several   metal  atoms  as  cofactors  and/or  electron  transporters   •  Two  mechanisms  are  plausible  that  involve  the  Fe-­‐Mo   cofactor  binding  directly  to  N  
  • 66. Two  Hypotheses  for  the   Intermediates  of  N2  Reduc/on  
  • 67. The  nitrogenase  complex  is  very   unstable  in  O2   –  Some  bacteria  live  in  anaerobic  environments   –  Some  bacteria  uncouple  electron  transfer  and   ATP  synthesis―so  that  O2  is  removed  quickly   from  the  cell.   –  Many  bacteria  live  in  root  nodules  coated  with   O2-­‐binding  heme  leghemoglobin.  
  • 68. Broader  Impact  of  Understanding   the  Nitrogen  Fixa/on   •  Industrial  synthesis  of  NH3  via  the  Haber  process  is  one  of   mankind’s  most  significant  chemical  processes   –  Made  chemical  ferFlizer  possible!   –  Yields  over  100  million  tons  of  ferFlizer  annually   –  sustains  life  of  over  one-­‐third  of  human  populaFon  on  Earth   –  Consumes  non-­‐renewable  energy  (1–2%  of  total  annual  energy)       •  Mimicking  biological  nitrogen  fixaFon  (biomimeFc  nitrogen   fixaFon)  may  yield  significant  energy  savings,  or  allow  use  of   renewable  energy  sources.  
  • 69. Nitrogen-­‐Fixing  Bacteria  in  Root   Nodules  of  Legumes   •  Takes  care  of  energy  requirement  and  O2  lability   •  Bacteria  have  access  to  plant’s  carbohydrate  and   CAC  intermediates  for  energy   •  Bacteria  are  covered  with  leghemoglobin  to  bind   O2   •  Can  produce  more  NH3  than  plant  needs;  excess   released  to  soil  
  • 71. The  Anammox  Reac/ons   •  Anaerobic  ammonia  oxidaFon     •  Newly  discovered  ability  of  some  bacteria  to   oxidize  NH3  and  NO2 –  into  N2     •  “short-­‐circuits”  the  nitrogen  cycle  (no   denitrificaFon)   •  Used  in  waste  treatment  for  cheaper   ammonia  removal  
  • 72. Surprising  Features  of  the   Anammox  Reac/ons   •  Bacteria  are  of  unusual  phylum  Planctomycetes   –  Have  DNA  enclosed  in  membrane     –  Use  hydrazine  (N2H4)  à  (rocket  fuel),  toxic,  reacFve,   nonpolar  and  diffuses  across  membranes     •  Phospholipids  made  of  ladderanes   –  FaVy  acid  chains  contain  cyclobutane  rings  that  stack   Fghtly,  slow  the  diffusion  of  N2H2  
  • 75. Ammonia  is  incorporated  into   biomolecules  through  Glu  and  Gln   •  Glutamine  is  made  from  Glu  by  glutamine  synthetase  in  a  two-­‐ step  process:          Glu              +                  ATP  à  γ-­‐glutamyl        +            NH4 +  à          Gln                            +    Pi        phosphate   •  PhosphorylaFon  of  Glu  creates  a  good  leaving  group  that  can  be   easily  displaced  by  ammonia   H3 N NH2 O COOH3 N O O COO H3 N O O COO P O O O OH P O O O + -+ - ATP + - NH3 +
  • 76. Structure  of  Gln  Synthetase  
  • 77. Regula/on  of  Glutamine  Synthetase  by   Allosteric  Inhibitors   •  Endpoints  of  Gln  metabolism  provide   feedback  inhibiFon   –  Ala,  Gly,  Trp,  carbamoyl  phosphate,  AMP,  CTP,   His,  glucosamine  6-­‐phosphate     •  Effects  are  addiFve  
  • 78. Regula/on  of  Gln   Synthetase―by  Six   Endpoints  of  Gln   Metabolism  
  • 79. Gln  synthetase  is  also  inhibited  by   adenylyla/on   Adenylyla4on  (aVachment  of  AMP)  to   Tyr-­‐397  assists  in  inhibiFon.   –  Increases  sensiFvity  to  inhibiFtors   –  AdenylaFon  via  adenylyltransferase   –  Part  of  complex  cascade  that  is  dependent  on   [Glu],  [α-­‐ketoglutarate],  [ATP],  and  [Pi]     –  AcFvity  of  adenylyltransferase  regulated  by   binding  to  regulatory  protein  PII  
  • 80. PII  is  regulated  by  uridylyla/on   (Remember  that  PII  regulates  adenylyltransferase,   which  helps  inhibit  Gln  synthetase.)   • When  PII  is  uridylylated,  adenylyltransferase   sFmulates  deadenylylaFon  of  Gln  synthetase   (increasing  the  laVer’s  acFvity)   • ALSO,  uridylylated  PII  upregulates   transcripFon  of  Gln  synthetase  
  • 81. End  Result  of  Mul/ple  Levels  of   Control  of  Gln  Synthetase   •  When  Gln  is  high,  Gln  synthetase  is  less   acFve   –  Need  less  NH4 +  conversion  to  Gln   •  When  Gln  is  low  and  substrates  α-­‐ ketoglutarate  and  ATP  are  available,  Gln   synthetase  is  more  acFve     –  To  convert  more  NH4 +  to  Gln  
  • 82. Covalent  Modifica/on  of  Gln  Synthetase  
  • 83. Biosynthesis  of  Amino  Acids  and   Nucleo/des―Three  Types  of  Reac/ons   1. TransaminaFons  and  rearrangements  using   pyridoxal  phosphate  (PLP)   –  PLP  is  acFve  form  of  Vit  B6     –  Catalyzed  by  amidotransferases     –  PLP  has  aldehyde  group  that  forms  Schiff  base   with  Lys  of  aminotransferase  
  • 84. 2. Transfer  of  1-­‐C  groups  using   tetrahydrofolate  (H4  folate)  or  S-­‐ adenosylmethionine  (adoMet)   –  Both  can  act  as  carbon  donors       H4  folate                                                                                            adotMet  
  • 85. 3.  Transfer  of  amino  groups  derived  from   amide  of  Glu   All  three  of  these  categories  of  reacFons  use   glutamine  amidotransferases.  
  • 86. Glutamine  Amidotransferases   Catalyze  Bisubstrate  Reac/ons   •  Two  domains   –  One  binds  Gln   –  Other  is  amino  group  acceptor  and  binds   substrate   •  Cys  acts  as  nucleophile  to  cleave  amide   bond  of  Gln   –  àForms  glutamyl-­‐enz  intermediate   •  Then  second  substrate  binds  to  accept   amino  group  from  enzyme  
  • 87. Proposed  Mechanism  for  Glutamine   Amidotransferases  
  • 88. Amino  Acid  Biosynthesis―Overview   •  Source  of  N  is  Glu  or  Gln   •  Derive  from  intermediates  of   –  Glycolysis   –  Citric  acid  cycle   –  Pentose  phosphate  pathway   •  Bacteria  can  synthesize  all  20   •  Mammals  require  some  in  diet  
  • 89. Amino  Acid   Synthesis   Overview  
  • 90. All  amino  acids  derive  from  one  of   seven  precursors     (See  Table  22-­‐1  and  Figure  22-­‐11)   •  CAC:   –  α-­‐ketoglutarate,  oxaloacetate   •  Glycolysis   –  Pyruvate,  3-­‐phosphoglycerate,   phosphoenolpyruvate,  erythrose  4-­‐phosphate   •  Pentose  phosphate  pathway   –  Ribose  5-­‐phosphate  
  • 91. Several  pathways  share  5-­‐phosphoribosyl-­‐1-­‐ pyrophosphate  (PRPP)  as  an  intermediate   •  Synthesized  from  ribose  5-­‐phosphate  of  PPP  via   ribose  phosphate  pyrophosphokinase   –  A  highly  regulated  allosteric  enzyme  
  • 92.
  • 93.
  • 94.
  • 95. Proline  and  arginine  derive  from   glutamate   •  (Glu  derives  from  α-­‐ketoglutarate)   •  Proline  is  a  cyclized  reduced  derivaFve  of  Glu   –  ATP  reacts  w/  γ-­‐carboxyl  group  à  acyl  phosphate   –  NADPH  or  NADH  reduces  the  acyl  phosphate  to  a   semialdehyde  that  rapidly  cyclizes   –  Final  reducFon  step  yields  proline   –  Pathway  operates  in  animals  AND  bacteria   –  See  Fig.  22-­‐12  
  • 96. Biosynthesis  of  Pro  and  Arg  from  Glu  in   Bacteria  
  • 97. Arginine  is  synthesized  from  Glu  via   ornithine  in  animals   •  Ornithine  comes  from  the  urea  cycle   •  In  bacteria,  ornithine  has  special  synthesis   pathway   –  Fig.  22-­‐12  shows  ornithine-­‐derived  synthesis  of   arginine  in  bacteria  
  • 98. In  animals,  proline  can  ALSO  be   synthesized  from  arginine   •  Arginase  converts  Arg  to  ornithine   •  Ornithine  δ-­‐aminotransferase  converts   ornithine  to  glutamate  γ-­‐semialdehyde  that   cyclizes  and  converts  to  Pro   •  See  Fig  22-­‐13  
  • 99. Mammalian  Conversion  of  Ornithine  (from   Arg)  to  Cyclized  Precursor  to  Pro  
  • 100. Serine  derives  from  3-­‐ phosphoglycerate  of  glycolysis   •  Same  pathway  in  ~all  organisms  so  far   •  Requires  Glu  as  source  of  NH2  group   •  OxidaFon  àtransaminaFon  à   dephosphorylaFon  to  yield  serine   •  See  Fig.  22-­‐14  
  • 101. Glycine  derives  from  serine   •  Carbon  removed  using  tetrahydrofolate  (H4   folate)  to  accept  the  C  atom  and  pyridoxal   phosphate  (PLP).   •  Rx  uses  serine  hydroxymethyltransferase   •  See  Fig.  22-­‐14.   •  In  the  liver,  Gly  can  be  made  by  another   pathway  
  • 102. Biosynthesis  of  Ser  and  Gly  from  3-­‐ Phosphoglycerate  
  • 103. Cysteine  also  derives  from  serine   •  In  bacteria  and  plants,  sulfates  are  the  source  of  S   –  See  Fig.  22-­‐15   •  In  animals,  Met  is  the  source  of  S   –  Met  à  S-­‐adenosylmethionine   –  Loses  CH3,  is  hydrolyzed  to  homocysteine,  which  reacts   with  Ser   –  Yields  cystathionine  then  rx  w/PLP  and  a  cleavage  step   to  yield  cysteine   –  See  Fig.  22-­‐16  
  • 104. Biosynthesis  of  Cys  from  Ser  in  Plants   and  Bacteria  
  • 105. Biosynthesis  of  Cys  from  Homocysteine   and  Ser  in  Mammals  
  • 106. Oxaloacetate  yields  Asp,  which  yields   Asn,  Met,  Lys,  and  Thr   Thr  can  be  converted  to  Ile  (or  Ile  can  be   made  from  pyruvate)   Lots  of  complicated  chemistry!   •  See  Fig.  22-­‐17  in  text  
  • 107. Pyruvate  yields  Ala,  Val,  Leu  and  Ile   •  Again,  see  Fig.  22-­‐17  in  text  (too  big  to   show  here)  
  • 108. Reminder  of  Essen/al  Amino  Acids   •  Humans  cannot  synthesize  Met,  Thr,  Lys,   Val,  Leu,  Ile  
  • 109. The  bacteria-­‐derived  enzyme   asparaginase  is  a  chemotherapy  agent   •  Childhood  acute  lymphoblasFc  leukemia   (ALL)  dependent  on  serum  Asn   •  Asparaginase  removes  Asn   •  Has  side-­‐effects   •  Being  used  in  conjuncFon  with  inhibitor  of   human  Asn  synthetase  
  • 110. Aroma/c  amino  acids  derive  from   phosphoenolpyruvate  and  erythrose  4-­‐ phosphate   •  Very  complicated  chemistry!   •  Rings  must  be  synthesized  and  closed  then   oxidized  to  create  double  bonds   •  Chorismate  is  a  common  intermediate   See  Figs.  22-­‐18   through  22-­‐21  in  text.  
  • 111. His  derives  from  PPP  metabolite   ribose  5-­‐phosphate   •  Also  involves  the  purine  ring  of  ATP,  PRPP   (5-­‐phosphoribosyl-­‐1-­‐pyrophosphate,  which   is  also  derived  from  the  Pentose  Phosphate   Pathway)  and  of  course  Gln  (source  of  N)   –  See  Fig.  22-­‐22  in  text.  
  • 112. There  are  many  layers  of  regula/on  in   amino  acid  synthesis   •  First  enzyme  in  a  sequence  is  o?en  most   highly  regulated   •  Feedback  inhibiFon  can  be  coupled  with   allosteric  regulaFon   –  Example:  Ile  synthesis  from  Thr     • Threonine  dehydratase  is  inhibited  by  Ile   • See  next  slide  (Fig.  22-­‐23)  
  • 113. Feedback  Inhibi/on  in  Ile  Synthesis   from  Thr  
  • 114. Use  of  isozymes  is  another   important  means  of  regula/on   Example:  Asp  can  lead  to  Lys,  Met,  Thr,  and   Ile.    Use  of  isozymes,  all  regulated  by   different  effectors,  allows  E.  coli  to  produce   the  amino  acids  when  needed.         –  Example:  At  step  1,  isozyme  A1  is  inhibited  if   Ile  is  high  but  not  if  Met  or  Thr  are  high   –  Only  the  A1  isozyme  is  inhibited  by  Ile  at  this   step    
  • 116. Glycine  or  glutamate  is  the  precursor    to  porphyrins   •  Porphyrin  makes  up  the  heme  of  hemoglobin,   cytochromes,  myoglobin   •  In  higher  animals,  porphyrin  arises  from  rx  of   glycine  with  succinyl-­‐CoA   •  In  plants  and  bacteria,  glutamate  is  the  precursor   •  Pathway  generates  two  molecules  of  the   important  intermediate  δ-­‐aminolevulinate   •  Porphobilinogen  is  another  important   intermediate  
  • 117. Synthesis  of  δ-­‐Aminolevulinate  in   Higher  Eukaryotes  
  • 118. Synthesis  of  δ-­‐Aminolevulinate  in   Plants  and  Bacteria  
  • 119. Synthesis  of  Heme  from     δ-­‐Aminolevulinate   •  Two  molecules  of  δ-­‐aminolevulinate   condense  to  form  porphobilinogen   •  Four  molecules  of  porphobilinogen   combine  to  form  protoporphyrin   •  Fe  ion  is  inserted  into  protoporphyrin  with   the  enzyme  ferrochelatase
  • 120. Synthesis  of  Heme  from     δ-­‐Aminolevulinate    
  • 121. Defects  in  Heme  Biosynthesis   •  Most  animals  synthesize  their  own  heme   •  MutaFons  or  misregulaton  of  enzymes  in  heme   biosynthesis  pathway  lead  to  porphyrias   –  Precursors  accumulate  in  red  blood  cells,  body  fluids,  and   liver.   –  Homozygous  individuals  also  suffer  intermiVent  neurological   impairment,  abdominal  pain   –  King  George  III  may  have  been  affected  
  • 122. Other  Types  of  Porphyrias   •  AccumulaFon  of  precursor  uroporphyrinogen  I   –  Urine  becomes  discolored  (pink  to  dark  purplish   depending  on  light,  heat  exposure)   –  Teeth  may  show  red  fluorescence  under  UV  light   –  Skin  is  sensiFve  to  UV  light   –  Craving  for  heme   •  Explored  as  possible  biochemical  basis  for  vampire  myths   as  well  as  neurological  condiFons  of  famous  individuals   (King  George  III,  etc.)  but  all  speculaFve  
  • 123. Enzymes   Inhibited  in   Heme  Synthesis   Defects  
  • 124. Heme  is  the  source  of  bile  pigments   •  Heme  from  dying  erythrocytes  is  degraded   to  bilirubin  in  two  steps:   1.  Heme  oxygenase  linearizes  heme  to  create   biliverdin,  a  green  compound  (seen  in  a   bruise)   2.  Biliverdin  reductase  converts  biliverdin  to   bilirubin,  a  yellow  compound  that  travels   bound  to  serum  albumin  in  the  bloodstream
  • 125. •  In  liver,  bilirubin  diglucouronide  is  made   from  bilirubin   –  Secreted  with  rest  of  bile  into  small  intesFne   –  Microbial  enzymes  break  it  down  to   urobilinogen  and  other  compounds   –  Some  urobilinogen  is  transported  to  the  kidney   and  converted  to  urobilin   • Gives  urine  its  yellow  color   •  Remaining  intesFnal  urobilinogen  is   microbially  digested  to  stercobilin  of  feces  
  • 126. Forma/on  and  Breakdown  of  Bilirubin  
  • 127. Jaundice  is  caused  by  bilirubin   accumula/on   •  Jaundice  (yellowish  pigmentaFon  of  skin,   whites  of  eyes,  etc.)  can  result  from:   –  Impaired  liver  (in  liver  cancer,  hepaFFs)   –  Blocked  bile  secreFon  (due  to  gallstones,   pancreaFc  cancer)   –  Insufficient  glucouronyl  bilirubin  transferase  to   process  bilirubin  (occurs  in  infants)   • Treated  with  UV  to  cause  photochemical   breakdown  of  bilirubin  
  • 128. Gly  and  Arg  are  precursors  of  crea/ne   and  phosphocrea/ne   •  PhosphocreaFne  is  hydrolyzed  for  energy  in   muscle   •  Gly  and  Arg  combine,  then  Adomet  acts  as   a  methyl  donor  
  • 129. Biosynthesis  of  Crea/ne  and   Phosphocrea/ne  
  • 130. Glutathione  (GSH)  derives  from  Glu,   Cys,  and  Gly   •  GSH  is  present  in  most  cells  at  high   amounts   •  Reducing  agent/anFoxidant   –  Keeps  proteins,  metal  caFons  reduced   –  Keeps  redox  enzymes  in  reduced  state   –  Removes  toxic  peroxides   •  Oxidized  to  a  dimer  (GSSG)  
  • 131. Biosynthesis  and  Oxida/on  of  Glutathione  
  • 132. D-­‐amino  acids  in  bacteria  arise  from   racemases   •  Bacterial  pepFdoglycans  contain  D-­‐Al  and   D-­‐Glu   •  Racemases  act  on  D-­‐amino  acids,  use  PLP   as  cofactor   •  Racemase  inhibitors  are  used/studied  as   anFbioFc  targets    
  • 133. Aroma/c  amino  acids  are  precursors  to   plant  lignins,  hormones,  and  natural   products   •  Lignin  (rigid  polymer  in  plants)  from  Phe   and  Tyr   •  Auxin  (growth  hormone  indole-­‐3-­‐acetate)   from  Trp   •  Other  extracts:    spices  (nutmeg,  vanilla),   alkaloids  (morphine),  etc.  
  • 134. Biosynthesis  of  Auxin  from  Trp  and   Cinnamate  from  Phe  
  • 135. Amino  acid  decarboxyla/on  yields   neurotransmiTers,  inhibitors   •  DecarboxylaFons  o?en  require  PLP   •  Trp  yields  catecholamines  such  as  dopamine,   norepinephrine,  and  epinephrine   •  Glu  yields  neurotransmiVers  γ-­‐aminobutyrate   (GABA)  and  serotonin   •  His  yields  the  vasodilator  and  stomach  acid   secreFon  sFmulant  Histamine  
  • 136. Biosynthesis  of  Some  NeurotransmiTers  
  • 137. Arg  is  precursor  for  nitric  oxide  (NO)   •  Mid-­‐80’s  discovery  that  pollutant  NO   played  important  role  in  blood  pressure   regulaFon,  blood  clo{ng,  etc.   •  Synthesized  from  Arg  via  nitric  oxide   synthase  using  NADPH   –  Enz  similar  to  cyt  P450  reductase   –  SFmulated  by  interacFon  with  Ca2+  and   calmodulin  
  • 139. Nucleo/de  Biosynthesis     •  NucleoFdes  can  be  synthesized  de  novo  from  amino   acids,  ribose-­‐5-­‐phosphate,  CO2,  and  NH3   •  NucleoFdes  can  be  salvaged  from  nucleobases   •  Many  parasites  (e.g.,  malaria)  lack  de  novo  biosynthesis   pathways  and  rely  exclusively  on  salvage   –  Compounds  that  inhibit  salvage  pathways  are   promising  anF-­‐parasite  drugs  
  • 140. De  Novo  Biosynthesis  of  Nucleo/des   •  Approximately  the  same  in  all  organisms  studied   •  Bases  synthesized  while  aVached  to  ribose   •  Glu  provides  most  amino  groups   •  Gly  is  precursor  for  purines   •  Asp  is  precursor  for  pyrimidines   •  NucleoFde  pools  are  kept  low,  so  cells  must   conFnually  synthesize  them   –  This  synthesis  may  actually  limit  rates  of  transcripFon   and  replicaFon  
  • 141. Origin  of  Ring  Atoms  in  Purines  
  • 142. De  novo  biosynthesis  of  purines  begins   with  PRPP   •  Adenine  and  guanine  are  synthesized  as  AMP  and   GMP   •  Synthesis  begins  with  rx  of  5-­‐phosphoribosyl  1-­‐ pyrophosphate  (PRPP)  with  Glu   •  Purine  ring  builds  up  following  addiFon  of  three   carbons  from  glycine   •  The  first  intermediate  with  full  purine  ring  is   inosinate  (IMP)  
  • 144.
  • 145.
  • 146.
  • 147. Synthesis  of  AMP  and  GMP  from  IMP  
  • 148. Regula/on  of  purine  biosynthesis  in  E.   coli  is  largely  feedback  inhibi/on   Four  major  mechanisms   1.  Glutamine-­‐PRPP  amidotransferase  is  feedback   inhibited  by  end-­‐products  IMP,  AMP,  and  GMP     2.  Excess  GMP  inhibits  formaFon  of  xanthylate   from  inosinate  by  IMP  dehydrogenase    (or  excess  adenylate  inhibits  formaFon  of   adenylosuccinate  by  adenylosuccinate  synthetase)  
  • 149. 3.  GTP  limits  conversion  of  IMP  to  AMP,  and  ATP   limits  conversion  of  IMP  to  GMP   4.  PRPP  synthesis  is  inhibited  by  ADP  and  GDP  
  • 150. Regula/on  of   Adenine  and   Guanine   Biosynthesis  in   E.  coli  
  • 151. Pyrimidines  are  made  from  Asp,  PRPP,   and  carbamoyl  phosphate   •  Unlike  purine  synthesis,  pyrimidine   synthesis  proceeds  by  first  making  the   pyrimidine  ring  and  then  aVaching  it  to   ribose  5-­‐phosphate   •  First  commiVed  step  is  rx  between  Asp  and   N-­‐carbamoylphosphate,  catalyzed  by   aspartate  transcarbamoylase  (ATCase)
  • 152. De  novo  Synthesis  of  Pyrimidine   Nucleo/des  
  • 153. ATCase  channels  substrates  from  one   site  to  another  
  • 154. Regula/on  of  pyrimidine  biosynthesis  is   also  via  feedback  inhibi/on   •  ATCase  is  inhibited  by  end-­‐product  CTP  and   is  accelerated  by  ATP  
  • 155. Allosteric  Regula/on  of  ATCase  by   CTP  and  ATP  
  • 156. Ribonucleo/des  are  precursors  to   deoxyribonucleo/des   •  2’C-­‐OH  bond  is  directly  reduced  to  2’-­‐H   bond…without  acFvaFng  the  carbon!   –  Catalyzed  by  ribonucleo3de  reductase   •  Mechanism:    Two  H  atoms  are  donated  by   NADPH  and  carried  by  proteins  thioredoxin   or  glutaredoxin  
  • 157. Reduc/on  of  Ribonucleo/des     to  Deoxyribonucleo/des     by  Ribonucleo/de  Reductase  
  • 158. Structure  of  Ribonucleo/de   Reductase  
  • 159. Proposed  ribonucleo/de  reductase   mechanism  involves  free  radicals   •  Most  forms  of  enzyme  have  two  catalyFc/ regulatory  subunits  and  two  radical-­‐generaFng   subunits   –  Contain  Fe3+  and  dithiol  groups   –  Enz  creates  stable  Tyr  radical  to  abstract  H•  from  sugar   •  A  3’-­‐ribonucleoFde  radical  forms   •  2’-­‐OH  is  protonated  to  help  eliminate  H2O  and   form  a  radical-­‐stabilized  carbocaFon   •  Electrons  are  transferred  to  the  2’-­‐C  
  • 160. Proposed  mechanism  for   ribonucleo/de  reductase  
  • 161. Ribonucleo/de  reductase  has  two   types  of  regulatory  sites   •  One  type  affects  ac3vity   –  ATP  acFvates,  dATP  inhibits   •  Other  type  affects  substrate  specificity  in  order  to   maintain  balanced  pools  of  nucleoFdes     –  If  ATP  or  dATP  high  à  less  specificity  for  adenine  and   MORE  specificity  for  UDP  and  CDP,  etc.   –  Enzyme  oligomerizes  to  accomplish  this  change.  
  • 162. Regula/on  of  Ribonucleo/de   Reductase  by  dNTPs  
  • 163. Oligomeriza/on  of  Ribonucleo/de   Reductase  when  dATP  Binds  
  • 164. dTMP  is  made  from  dUTP   •  Roundabout  pathway…   1. dUTP  is  made  (via  deaminaFon  of  dCTP  or  by   phosphorylaton  of  dUDP)   2. dUTP  à  to  dUMP  by  dUTPase   3. dUMP  à  dTMP  by  thymidylate  synthase    -­‐  adds  a  methyl  group  from  tetrahydrofolate   Thymidylate  synthase  is  a  target  for  some  anFcancer   drugs.  
  • 166. Conversion  of   dUMP  to  dTMP  by   Thymidylate   Synthase  
  • 167. Folic  acid  deficiency  leads  to   reduced  thymidylate  synthesis   •  Folic  acid  deficiency  is  widespread,   especially  in  nutriFonally  poor  populaFons   •  Reduced  thymidylate  synthesis  causes   uracil  to  be  incorporated  into  DNA   •  Repair  mechanisms  remove  the  uracil  by   creaFng  strand  breaks  that  affect  the   structure  and  funcFon  of  DNA   –  Associated  with  cancer,  heart  disease,   neurological  impairment  
  • 168. Catabolism  of  Purines:     Forma/on  of  Uric  Acid   •  DegradaFon  of  purines  proceeds  through   dephosphorylaFon  (via  5’-­‐nucleo3dase)   •  Adenosine  is  deaminated  to  inosine  and  then   hydrolyzed  to  hypoxanthine  and  ribose   •  Guanosine  yields  xanthine  via  these  hydrolysis  and   deaminaFon  reacFons   •  Hypoxanthine  and  xanthine  are  then  oxidized  into  uric   acid  by  xanthine  oxidase   •  Spiders  and  other  arachnids  lack  xanthine  oxidase  
  • 170. Conversion  of  Uric  Acid  to  Allantoin,   Allantoate,  and  Urea  
  • 171. Catabolism  of  Purines:     Degrada/on  of  Urate  to  Allantoin   •  Urate  is  oxidized  into  a  5-­‐hydroxy-­‐ isourate  by  urate  oxidase   •  Hydrolysis  and  the  subsequent   decarboxylaFon  of  5-­‐hydroxy-­‐ isourate  yields  allantoin   •  Most  mammals  excrete  nitrogen   from  purines  as  allantoin   •  Urate  oxidase  is  inacFve  in  humans   and  other  great  apes;  we  excrete   urate   •  Birds,  most  repFles,  some   amphibians,  and  most  insects  also   excrete  urate   NH N N H N H O O O NH N N N H O O O OH NH2 N H N H N H O O O H H + - - O2 + H2O H2O2 CO2 H2O urate oxidase spontaneous or catalyzed urate 5-hydroxyisourate allantoin
  • 172. Catabolism  of  Purines:     Degrada/on  of  Allantoin   •  Most  mammals  do  not  degrade   allantoin   •  Amphibians  and  fishes  hydrolyze   allantoin  into    allantoate;  bony   fishes  excrete  allantoate   •  Amphibians  and  carFlaginous   fishes  hydrolyze  allantoate  into   glyoxylate  and  urea;  many  excrete   urea   •  Some  marine  invertebrates  break   urea  down  into  ammonia   NH2 N H N H N H O O O H NH2 N H N H NH2 O O O H O H + OH OO NH2 NH2 ONH2 NH2 O NH4+ H2O H2O 2 H2O + 4 H+ 2 CO2 4 allantoinase allantoicase urease allantoin allantoate urea ammonium cation
  • 173. Catabolism  of  Pyrimidines   •  Leads  to  NH4 +  then  urea   •  Can  produce  intermediates  of  CAC   –  Example:  Thymine  is  degraded  to   succinyl-­‐CoA  
  • 174. Catabolism  of  Thymine,  a  Pyrimdine  
  • 175. Purine  and  pyrimidine  bases  are   recycled  by  salvage  pathways   •  Free  bases,  released  in  metabolism,  are  reused   –  Example:    Adenine  reacts  with  PRPP  to  form  the   adenine  nucleoFde  AMP   •  Catalyzed  by  adenosine  phosphoribosyltransferase   •  Brain  is  especially  dependent  on  salvage   pathways   •  Lack  of  hypoxanthine-­‐guanine   phosphoribosyltransferase  leads  to  Lesch-­‐Nyhan   Syndrome  with  neurological  impairment,  finger-­‐ and-­‐toe-­‐biFng  behavior  
  • 176. Excess  uric  acid  seen  in  gout   •  Painful  joints  (o?en  in  toes)  due  to  deposits  of   sodium  urate  crystals   •  Primarily  affects  males   •  May  involve  geneFc  under-­‐excreFon  of  urate   and/or  may  involve  over-­‐consumpFon  of  fructose   •  Treated  with  avoidance  of  purine-­‐rich  foods   (seafood,  liver)  or  avoidance  of  fructose.   •  Also  treated  with  xanthine  oxidase  inhibitor   allopurinol  
  • 178. Many  chemotherapeu/c  agents   target  nucleo/de  biosynthesis   •  Glutamine  analogs:    azaserine,  acivicin   –  Inhibit  glutamine  amidotransferases   •  Fluorouracil   –  Converted  by  salvage  pathway  into  FdUMP,   which  inhibits  thymidylate  synthase   •  Methotrexate  and  aminopterin   –  Inhibit  dihydrofolate  reductase  (compeFFve   inhibitors)  
  • 179. An/bio/cs  also  target  nucleo/de     biosynthesis   •  Allopurinol,  etc.   –  Studied  against  African  sleeping  sickness   (trypanosomiasis)  because  the  trypanosomes   lack  enzymes  for  de  novo  nucleoFde  synthesis   •  Trimethoprim  –     –  Inhibits  bacterial  dihydrofolate  reductase  but   binds  human  enzyme  several  orders  of   magnitude  less  strongly  
  • 180. Azaserine  and  Acivicin,  Inhibitors  of   Glutamine  Amidotransferases  
  • 181. Chemotherapy  Targets―Thymidylate   Synthesis  and  Folate  Metabolism  
  • 182. fdUMP  Inhibi/on  of  dUMPàdTMP   Conversion