SlideShare a Scribd company logo
1 of 46
1
1
Linear Algebra & Ordinary Differential Equations
MATH-121
National University of Sciences & Technology (NUST)
School of Electrical Engineering and Computer Science (SEECS)
Department of Basic Sciences
Course Instructor: Dr Saira Zainab
Ph. # 03325193283
Email: saira.zainab@seecs.edu.pk
Office # 207, IAEC
Lecture # 37
Integral Transform
If f (x, y) is a function of two variables, then a definite integral of f with respect to one of
the variables leads to a function of the other variable.
A definite integral such as ( , ) ( )
b
a
K s t f t dt
 transforms a function f of the variable t into a
function F of the variable s.
We are particularly interested in an integral transform, where the interval of integration
is the unbounded interval  
0, . If f (t) is defined for 0
t  , then the improper integral is
defined as a limit ( , ) ( ) lim ( , ) ( )
b
b
a a
K s t f t dt K s t f t dt



  (1)
If the limit in (1) exists, then we say that the integral exists or is convergent; if the limit
does not exist, the integral does not exist and is divergent. The limit in (1) will, in
general, exist for only certain values of the variable s.
Laplace Transform
Given a function f (t) defined for values of the variable t > 0 then the
Laplace transform of f (t), denoted by:
is defined to be:
where s is a variable whose values are chosen so as to ensure that the semi-
infinite integral converges.
 
( )
L f t
 
0
( ) ( )
st
t
L f t e f t dt



 
Laplace Transform
Example 1: The Laplace transform of f (t) = 2 for t ≥ 0 is:
Laplace Transform
Example 2: Let f (t) = eat for t  0. Then the Laplace transform F(s) of f is
Laplace Transform
Example 3: Let f (t) = sin(at) for t  0. Using integration by parts twice, the
Laplace transform F(s) of f is found as follows:
Laplace Transform
Laplace Transform
Some Basic Functions and their Laplace Transforms
Laplace Transform
Some Basic Functions and their Laplace Transforms
Find the Laplace Transform of the function given in figure.
, 0 ,
( )
0, ,
k x c
f t
x c
 

 


The function given in figure can be written piecewise as:
0
0
0
0
( ) ( ) ( )
( ) ( )
0
(1 )
st
c
st st
c
c
c
st st
sc
F s L f e f t dt
e f t dt e f t dt
k
k e dt e
s
k e
s



 
 

 
 
   



 

Inverse Laplace Transform
 
( ) ( )
F s L f t

 
1
( ) ( )
f t L F s


Inverse Laplace Transform
Inverse Laplace Transforms of Some Functions
Properties of Laplace Transform
Linearity of Laplace and its Inverse
Properties of Laplace Transform
Example: Find the inverse Laplace Transform of
1
( 2)( 3)
s s
 
Solution:
As we know that using partial fractions, the given function can be written as
1 1 1 1
( )
( 2)( 3) 2 3 3 2
F s
s s s s
 
  
 
    
 
Taking inverse Laplace on both sides and using the linearity property of inverse
Laplace, we obtain
 
1 1 1
3 2
1 1 1
( )
2 3 3 2
1
( )
2 3
t t
L F s L L
s s
f t e e
  

 
   
 
 
   
  
 
 
 
 

Properties of Laplace Transform
First Shifting Theorem
If f(t) has the transform F(s) (where s > k for some k), then ( )
at
e f t has the
transform ( )
F s a
 (where s-a > k ). In other words,
( ( )) ( )
at
L e f t F s a
 
Or, if we take the inverse on both sides,
1
( ) ( ( ))
at
e f t L F s a

 
Applications of First Shifting Theorem
Example:
Find the transform of ( ) sinh cos
f t t t

Solution:
Recall sinh
2
t t
e e
t



Then
 
 
   
 
   
 
1 1
2 2 2 2
1 1
1
( ) cos cos cos
2 2
1
( ( )) cos cos
2
1
cos cos
2
1
cos cos
2
1
2 1 1
t t
t t
t t
t t
s s s s
s s s s
e e
f t t e t e t
L f t L e t e t
L e t L e t
L t L t
s s
s s




   
   
 

  
 
 
 
 
 
 
   
 
 
   
 
   
 
Now we can do the due substitution.
   
2 2
2 2
1 ( 1) ( 1)
2 1 1 1 1
s s
s s
 
 
 
 
 
   
 
 
Applications of First Shifting Theorem
Example:
Find the inverse transform of 2 2
( )
( )
( )
a s k b
F s
s k


 

 
.
Solution:
Rewriting the given function as
2 2 2 2 2 2
( ) ( )
( ) ( ) ( )
a s k b s k
a b
s k s k s k
 
  
  
 
     
Substituting S=s+k in the right hand side of the above expression to have,
Which clearly are the well-known transforms of cos( )
t
 and sin( )
t
 respectively.
Thus, 2 2 2 2
( )
cos( ) sin( )
S s k
S s k
S
L S L a b
S S
a t b t

 
 
 
 
 
 
 
 
 
 
And finally,  
2 2
( )
cos sin
( )
kt
a s k b
L e a t b t
s k

 


 
 
 
 
 
 
Properties of Laplace Transform
Laplace Transform of a derivative
Properties of Laplace Transform
Laplace Transform of higher derivatives
Solution of Initial Value Problems(Using Laplace Transform Method)
Solution of Initial Value Problems(Using Laplace Transform Method)
Advantages of Using Laplace Transform Method
1. The solution of non homogenous differential equations doesn’t require
the homogenous part to be solved first.
2. Initial conditions are automatically taken care of.
3. Complicated input (right hand side of the linear equation) can be handled very
efficiently.
Solution of Initial Value Problems(Using Laplace Transform Method)
Example: Solve the following IVP 4 3 6 8, (0) 0, (0) 0
y y y t y y
  
      .
Solution:
Step 1: Taking Laplace of the given differential equation
   
4 3 6 8
( ) 4 ( ) 3 ( ) 6 ( ) 8 (1)
L y y y L t
L y L y L y L t L
 
   
 
   
Step 2:
   
2
2
1 1
( ) (0) (0) 4 ( ) (0) 3( ( )) 6 8
s Y s sy y sY s y Y s
s s
   

      
   
   
Using initial conditions
   
2
2
2
2
2
2 2
1 1
( ) 4 ( ) 3( ( )) 6 8
1 1
( 4 3) ( ) 6 8
6 8 1
( )
( 1)( 3)
2(3 4 ) 2 3 4
( 1)( 3) ( 1)( 3)
s Y s sY s Y s
s s
s s Y s
s s
s
Y s X
s s s s
s s
s s s s s s
   
   
   
   
   
   
   
   


  
 
 
 
   
 
   
  
Solution of Initial Value Problems(Using Laplace Transform Method)
Step 3:
Now, we can do partial fraction method to write above expression as sum:
 
2
1 1
2
2 1 1
( 1) ( 3)
2 1 1
( )
( 1) ( 3)
s s s
L Y s L
s s s
 
  
 
 
  
 
 
 
Step 4:
Using inverse Laplace, we obtain the solution of given initial value problem
3
( ) 2 t t
y t t e e
  
Derivatives of a transform (Multiplying a Function By tn )
Statement of Theorem 7.4.1:
If , and n = 1,2,3, …, then
Example:
( ) ( ( ))
F s L f t

{ ( )} ( 1) ( )
n
n n
n
d
L t f t F s
ds
 
Derivatives of a transform (Multiplying a Function By tn )
The Laplace transform can be used to solve linear differential equations with
variable monomial coefficients
Example:
Solution:
Solve it for Y(s) and take inverse Laplace transform to find y(t).
2
2 , (0) 0
ty y t y
 
  
2
2
3
2
3
2
3
( ) ( ) (2 ), (0) 0
2
( 1) ( ( )) ( ( ))
2
2 ( ) ( ) ( )
2
( ) 3 ( )
L ty L y L t y
d
s Y s sY s
ds s
sY s s Y s sY s
s
s Y s sY s
s
 
  
  

   

  
Solution of Initial Value Problems(Using Laplace Transform Method)
Solution of Initial Value Problems(Using Laplace Transform Method)
Advantages of Using Laplace Transform Method
1. The solution of non homogenous differential equations doesn’t require
the homogenous part to be solved first.
2. Initial conditions are automatically taken care of.
3. Complicated input (right hand side of the linear equation) can be handled very
efficiently.
Solution of Initial Value Problems(Using Laplace Transform Method)
Example: Solve the following IVP 4 3 6 8, (0) 0, (0) 0
y y y t y y
  
      .
Solution:
Step 1: Taking Laplace of the given differential equation
   
4 3 6 8
( ) 4 ( ) 3 ( ) 6 ( ) 8 (1)
L y y y L t
L y L y L y L t L
 
   
 
   
Step 2:
   
2
2
1 1
( ) (0) (0) 4 ( ) (0) 3( ( )) 6 8
s Y s sy y sY s y Y s
s s
   

      
   
   
Using initial conditions
   
2
2
2
2
2
2 2
1 1
( ) 4 ( ) 3( ( )) 6 8
1 1
( 4 3) ( ) 6 8
6 8 1
( )
( 1)( 3)
2(3 4 ) 2 3 4
( 1)( 3) ( 1)( 3)
s Y s sY s Y s
s s
s s Y s
s s
s
Y s X
s s s s
s s
s s s s s s
   
   
   
   
   
   
   
   


  
 
 
 
   
 
   
  
Solution of Initial Value Problems(Using Laplace Transform Method)
Step 3:
Now, we can do partial fraction method to write above expression as sum:
 
2
1 1
2
2 1 1
( 1) ( 3)
2 1 1
( )
( 1) ( 3)
s s s
L Y s L
s s s
 
  
 
 
  
 
 
 
Step 4:
Using inverse Laplace, we obtain the solution of given initial value problem
3
( ) 2 t t
y t t e e
  
Solution of Initial Value Problems(Using Laplace Transform Method)
Example: Solve the following IVP 6 5 29cos2 , (0) 3.2, (0) 6.2
y y y t y y
  
     .
Solution:
Step 1: Taking Laplace of the given differential equation
   
6 5 29cos2
( ) 6 ( ) 5 ( ) 29 (cos2 )
L y y y L t
L y L y L y L t
 
  
 
  
Step 2:
   
2
2
( ) (0) (0) 6 ( ) (0) 5( ( )) 29
4
s
s Y s sy y sY s y Y s
s
 

       

 
Using initial conditions
   
2
2
2
2
2
( ) 3.2 6.2 6 ( ) 3.2 5( ( )) 29
4
( 6 5) ( ) 3.2 13 29
4
29 3.2 13
( )
( 4)( 1)( 5) ( 1)( 5)
s
s Y s s sY s Y s
s
s
s s Y s s
s
s s
Y s
s s s s s
 
       

 
 
      

 
   

 
   
    
   
Solution of Initial Value Problems(Using Laplace Transform Method)
Step 3:
Now, we can do partial fraction method to write above two terms as:
 
2
1 1
2
24 5 29 3 49
5( 4) 4( 5) 20( 1) 4( 5) 20( 1)
24 5 29 3 49
( )
5( 4) 4( 5) 20( 1) 4( 5) 20( 1)
s
s s s s s
s
L Y s L
s s s s s
 

    
    
 

    
 
    
 
Step 4:
Using inverse Laplace, we obtain the solution of given initial value problem
    5 5
1 12 5 29 49 3
( ) cos 2 sin 2
5 5 4 20 20 4
t t t t
y t t t e e e e
     
Solution of Shifted Data Problem(Using Laplace Transform Method)
This means initial value problems with initial conditions given at some time 0
t t

instead of 0
t  . For such a problem, set 0
t t t
  so that 0
t t
 gives 0
t  and the
Laplace transform can be applied.
Example: Solve the following IVP 2 5 50 100, (2) 4, (2) 14
y y y t y y
  
       .
Solution: We have 0 2
t  and we set 2
t t
  . Then the problem is
2 5 50( 2) 100, (0) 4, (0) 14
y y y t y y
  
       
Step 1: Taking Laplace of the given differential equation
   
2 5 50
( ) 2 ( ) 5 ( ) 50 ( )
L y y y L t
L y L y L y L t
 
  
 
  
Step 2:
   
2
2
1
( ) (0) (0) 2 ( ) (0) 5( ( )) 50
s Y s sy y sY s y Y s
s
 

       
 
Solution of Shifted Data Problem(Using Laplace Transform Method)
Using initial conditions
   
2
2
2
2
2 2 2
1
( ) 4 14 2 ( ) 4 5( ( )) 50
1
( 2 5) ( ) 4 6 50
50 6 4
( )
( )(( 1) 4) ( 1) 4
s Y s s sY s Y s
s
s s Y s s
s
s
Y s
s s s
 
       
 
 
      
 
   

 
   
   
   
Or
2
2 2
50 (6 4 )
( )
( )(( 1) 4)
s s
Y s
s s
 

 
Step 3:
Now, we can do partial fraction method to write above two terms as:
 
2 2
1 1
2 2
10 4 4
( 1) 4
10 4 4
( )
( 1) 4
s s s
L Y s L
s s s
 
  
 
 
  
 
 
 
Solution of Shifted Data Problem(Using Laplace Transform Method)
Step 4:
Using inverse Laplace, we obtain the solution of given initial value problem
 
( ) 10 5 2 sin2
t
y t t e t

  
Now, shifting back 2
t t
  to get
  ( 2)
( ) 10 2 5 2 sin2( 2)
t
y t t e t
 
    
Unit Step Function (Heaviside Function)
Definition: The unit step function or Heaviside function ( )
u t a
 has a jump of
size 1 at t a
 and is defined as
0,
( )
1,
if t a
u t a
if t a


  


The Laplace transform of ( )
u t a
 follows from the definition as an integral
0 0
( ( )) ( ) .1
st sa
st st
a
e e
L u t a e u t a dt e dt
s s

   
 
     
 
Second Shifting Theorem:
If ( )
f t has the transform ( )
F s then the shifted function
0,
( ) ( ) ( )
( ),
if t a
f f t a u t a
f t a if t a



    
 

has the transform ( )
as
e F s

. That is, if  
( ) ( )
L f t F s
 , then
 
( ) ( ) ( )
as
L f t a u t a e F s

  
If we take the inverse on both sides, we can write
 
1
( ) ( ) ( )
as
f t a u t a L e F s
 
  
Representation of a function in terms of Unit Step Function
One of the major applications of Unit step function is to write a piecewise
discontinuous function in terms of unit step.
But before going to this representation, we need to understand what we mean by
the difference of two unit step functions.
Example: Given two unit step functions
0, 1 0, 3
( 1) ( 3)
1, 1 1, 3
if t if t
u t and u t
if t if t
 
 
   
 
 
 
The difference function ( 1) ( 3)
u t u t
   is given as
0, 1
( 1) ( 3) 1, 1 3
0, 3
if t
u t u t if t
if t



     

 

.
More generally, if 0 a b
 
0,
( ) ( ) 1,
0,
if t a
u t a u t b if a t b
if t b



     

 

Representation of a function in terms of Unit Step Function
i.e. if ( )
g t is any function to be represented in terms of unit step function, then
 
0,
( ) ( ) ( ) ( ),
0,
if t a
g t u t a u t b g t if a t b
if t b



     

 

Example: Write the function defined as
2 , 0 1
4 2 , 1 2
( )
0, 2 3
1, 3.
t if t
t if t
f t
if t
if t
 

   

 
 

 

using unit step function.
Solution: It will be written as
    
   
( ) 2 ( 0) ( 1) 4 2 ( 1) ( 2)
0 ( 2) ( 3) 1 ( 3)
f t t u t u t t u t u t
u t u t u t
        
     
Laplace transform of a function
(represented in terms of Unit Step Function)
To find the Laplace transform of a function represented in terms of unit step
function, i,e, to use 2nd
Shifting Theorem, function must be written in the form
( ) ( )
f t a u t a
 
Example: Represent the function ( ) cos4 (0 )
f t t t 
   in terms of unit step
function. Then take its transform.
( ) cos4 ( ( 0) ( ))
cos4 ( ( )) cos4 ( ( ))
cos4 cos4 ( ( ))
f t t u t u t
t u t t u t
t t u t



   
  
  
Now, we apply Laplace transform on both sides to get
   
  2
( ) cos4 cos4 ( ( ))
(cos4 ) (cos4 ( ( ))
( ) (cos4 ( ( )) (*)
16
L f t L t t u t
L t L t u t
s
L f t L t u t
s



  
  
  

Laplace transform of a function
(represented in terms of Unit Step Function)
Now, we have to apply second shifting theorem on 2nd
part of (*). For that, we
must write it as
(cos4 ( ( )) ( ) ( )
t u t f t u t
  
   
On comparison, cos4 ( )
t f t 
  . So, substitute
t
t
 
 
 
 
.
Thus
2
cos 4( ) ( )
( ( )) (cos 4( )) (cos 4 )
( )
16
f
L f L L
s
F s
s
  
   
 
  
 

So finally, 2
(cos4 ( ( ))
16
s s
L t u t e
s

 
 

.
Put it in (*) to get
  2 2
2
( )
16 16
(1 )
16
s
s
s se
L f t
s s
s
e
s




 
 
 

Laplace transform of a function
(represented in terms of Unit Step Function)
Example: Represent the function 2
( ) (1 2)
f t t t
   in terms of unit step function.
Then take its transform.
2
2 2
( ) ( ( 1) ( 2))
( 1) ( 2)
f t t u t u t
t u t t u t
   
   
Now, we apply Laplace transform on both sides to get
   
2 2
2 2
( ) ( 1) ( 2)
( ( 1)) ( ( 2)) (*)
L f t L t u t t u t
L t u t L t u t
   
   
Now, we have to apply second shifting theorem on both the terms of (*). For that, we
must write them as
2 2
( ( 1)) ( 1) ( 1) ( ( 2)) ( 2) ( 2)
t u t f t u t and t u t f t u t
       
On comparison, 2 2
( 1) ( 2)
t f t and t f t
   
So, substitute
1
1
t
t


 
 
and
2
2
t
t


 
 
Laplace transform of a function
(represented in terms of Unit Step Function)
Thus 2 2
( 1) ( ) ( 2) ( )
f and f
   
   
So finally,
 
2
2
3 2
( ( )) ( 1)
( 2 1)
2 2 1
( )
L f L
L
F s
s s s
 
 
 
  
   
and
 
2
2
3 2
( ( )) ( 2)
( 4 4)
2 4 4
( )
L f L
L
F s
s s s
 
 
 
  
   
Put it in (*) to get
  2
3 2 3 2
2 2 1 2 4 4
( ) s s
L f t e e
s s s s s s
 
   
     
   
   
Inverse Laplace transform of a function
(Using 2nd Shifting Theorem)
Recall that if  
( ) ( )
L f t F s
 , then
 
( ) ( ) ( )
as
L f t a u t a e F s

  
If we take the inverse on both sides, we can write
 
1
( ) ( ) ( )
as
f t a u t a L e F s
 
  
Example: Find ( )
f t , if  
L f equals
(a).
3
2
2( )
4
s s
e e
s
 


(b).
 
2 ( 1)
2
(1 )( 1)
( 1) 1
s
e s
s

 
 
 
Inverse Laplace transform of a function
(Using 2nd Shifting Theorem)
(a). Using 2nd
Shifting theorem and inverse Laplace of sinh, we obtain
3
2
3
1 1
2 2
1 1 3
2 2
2( )
( )
4
2 2
4 4
2 2
4 4
sinh(2( 1))( ( 1)) sinh(2( 3))( ( 3))
s s
s s
s s
e e
L f
s
e e
f L L
s s
L e L e
s s
t u t t u t
 
 
 
   



   
 
   
 
   
   
 
   
 
   
     
Inverse Laplace transform of a function
(Using 2nd Shifting Theorem)
(b). Rewrite the given function as
2
2 2
( ) ,
1 1
S
S Se
G S
S S


 
 
where ( ) ( 1)
G S F s
 
Then using the inverse Laplace and 2nd
shifting theorem, we have
( ) cos( ) ( ) cos( 2 ) ( 2 )
cos( ) ( ) cos( ) ( 2 )
cos( )( ( ) ( 2 ))
g t t u t t u t
t u t t u t
t u t u t
 


   
  
  
Thus ( ) cos ( ( ) ( 2 ))
t
f t e t u t u t 

   .
Initial Value Problems (with discontinuous input function)
Example: Solve the given initial value problem
3 2 4 0 1 8 1
(0) 0, (0) 0
y y y t if t and if t
y y
 
     

 
Solution: Given differential equation can be re written as
3 2 ( )
( ) 4 0 1
8 1
y y y g t
where g t t if t
if t
 
  
  
 
Using Laplace to solve this problem, we apply it on both sides.
 
3 2 ( ( ))
L y y y L g t
 
  
We will use linearity of Laplace transform, transforms of derivative terms, initial
conditions on the LHS of the above equation and unit step function on the RHS
of the equation.
Initial Value Problems (with discontinuous input function)
 
 
 
2
2
( ) 3 ( ) 2 ( ) ( ( ))
( ) (0) (0) 3 ( ) (0) 2 ( )
4 ( ( 0) ( 1)) 8( ( 1))
( 3 2) ( ) 4 ( ) 4 ( 1) 8( ( 1))
4 ( ) (4 8) ( 1) *
L y L y L y L g t
s Y s sy y sY s y Y s
L t u t u t u t
s s Y s L tu t tu t u t
L tu t t u t
 
  

     
    
      
   
First solving the RHS of the above equation
2 2
(4 ( ) (4 8) ( 1)) 4 ( ) 8 ( ( 1)) 4 ( ( 1))
4 8 4
s s
L tu t t u t L t L u t L tu t
e e
s s s
 
       
  
Substitute it in * above to have
2
2 2
4 8 4
( 3 2) ( ) s s
s s Y s e e
s s s
 
    
Initial Value Problems (with discontinuous input function)
Which further can be simplified as
2 2 2 2
2 2
4 8 4
( )
( 3 2) ( 3 2)
4 8 4
( 1)( 2) ( 1)( 2)
s
s
s
Y s e
s s s s s s
s
e
s s s s s s



 
   

 
   
Time for partial fractions which can lead us to
2 2
2 4 1 3 2 12 5 7
( )
1 2 1 2
s
Y s e
s s s s s s s s

 
        
 
   
 
Taking inverse Laplace on both sides
 
2
( 1) 2( 1)
( ) 2 4 3
2( 1) 12 5 7 ( 1)
t t
t t
y t t e e
t e e u t
 
   
    
     

More Related Content

Similar to On Laplace Transform.ppt

transformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eañotransformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eaño
luis506251
 
The Laplace Transform of Modeling of a Spring-Mass-Damper System
The Laplace Transform of Modeling of a Spring-Mass-Damper System The Laplace Transform of Modeling of a Spring-Mass-Damper System
The Laplace Transform of Modeling of a Spring-Mass-Damper System
Mahmoud Farg
 

Similar to On Laplace Transform.ppt (20)

On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
 
transformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eañotransformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eaño
 
hsu-Chapter 6 Laplace transform.pdf
hsu-Chapter 6 Laplace transform.pdfhsu-Chapter 6 Laplace transform.pdf
hsu-Chapter 6 Laplace transform.pdf
 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transform
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Laplace
LaplaceLaplace
Laplace
 
TLT
TLTTLT
TLT
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Laplace quad
Laplace quadLaplace quad
Laplace quad
 
M 2 unit-5
M 2 unit-5M 2 unit-5
M 2 unit-5
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
The Laplace Transform of Modeling of a Spring-Mass-Damper System
The Laplace Transform of Modeling of a Spring-Mass-Damper System The Laplace Transform of Modeling of a Spring-Mass-Damper System
The Laplace Transform of Modeling of a Spring-Mass-Damper System
 
LaplaceTransformIIT.pdf
LaplaceTransformIIT.pdfLaplaceTransformIIT.pdf
LaplaceTransformIIT.pdf
 
Solution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationSolution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First Equation
 
Signals and Systems Assignment Help
Signals and Systems Assignment HelpSignals and Systems Assignment Help
Signals and Systems Assignment Help
 
Top ranking colleges in india
Top ranking colleges in indiaTop ranking colleges in india
Top ranking colleges in india
 
Signals and systems assignment help
Signals and systems assignment helpSignals and systems assignment help
Signals and systems assignment help
 
Ep 5512 lecture-02
Ep 5512 lecture-02Ep 5512 lecture-02
Ep 5512 lecture-02
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 

More from AwaisAsghar31 (9)

03 The Complex Forcing Function.pptx
03 The Complex Forcing Function.pptx03 The Complex Forcing Function.pptx
03 The Complex Forcing Function.pptx
 
27 Advanced Filters.pptx
27 Advanced Filters.pptx27 Advanced Filters.pptx
27 Advanced Filters.pptx
 
Teams & Groups.pptx
Teams & Groups.pptxTeams & Groups.pptx
Teams & Groups.pptx
 
09-10 RMS Values, Complex Power.pptx
09-10 RMS Values, Complex Power.pptx09-10 RMS Values, Complex Power.pptx
09-10 RMS Values, Complex Power.pptx
 
04 The Phasors.pptx
04 The Phasors.pptx04 The Phasors.pptx
04 The Phasors.pptx
 
Presentation.pptx
Presentation.pptxPresentation.pptx
Presentation.pptx
 
Presentation.pptx
Presentation.pptxPresentation.pptx
Presentation.pptx
 
Pong New U.pptx
Pong New U.pptxPong New U.pptx
Pong New U.pptx
 
AP.pptx
AP.pptxAP.pptx
AP.pptx
 

Recently uploaded

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 

On Laplace Transform.ppt

  • 1. 1 1 Linear Algebra & Ordinary Differential Equations MATH-121 National University of Sciences & Technology (NUST) School of Electrical Engineering and Computer Science (SEECS) Department of Basic Sciences Course Instructor: Dr Saira Zainab Ph. # 03325193283 Email: saira.zainab@seecs.edu.pk Office # 207, IAEC Lecture # 37
  • 2. Integral Transform If f (x, y) is a function of two variables, then a definite integral of f with respect to one of the variables leads to a function of the other variable. A definite integral such as ( , ) ( ) b a K s t f t dt  transforms a function f of the variable t into a function F of the variable s. We are particularly interested in an integral transform, where the interval of integration is the unbounded interval   0, . If f (t) is defined for 0 t  , then the improper integral is defined as a limit ( , ) ( ) lim ( , ) ( ) b b a a K s t f t dt K s t f t dt      (1) If the limit in (1) exists, then we say that the integral exists or is convergent; if the limit does not exist, the integral does not exist and is divergent. The limit in (1) will, in general, exist for only certain values of the variable s.
  • 3. Laplace Transform Given a function f (t) defined for values of the variable t > 0 then the Laplace transform of f (t), denoted by: is defined to be: where s is a variable whose values are chosen so as to ensure that the semi- infinite integral converges.   ( ) L f t   0 ( ) ( ) st t L f t e f t dt     
  • 5. Example 1: The Laplace transform of f (t) = 2 for t ≥ 0 is: Laplace Transform
  • 6. Example 2: Let f (t) = eat for t  0. Then the Laplace transform F(s) of f is Laplace Transform
  • 7. Example 3: Let f (t) = sin(at) for t  0. Using integration by parts twice, the Laplace transform F(s) of f is found as follows: Laplace Transform
  • 8. Laplace Transform Some Basic Functions and their Laplace Transforms
  • 9. Laplace Transform Some Basic Functions and their Laplace Transforms Find the Laplace Transform of the function given in figure. , 0 , ( ) 0, , k x c f t x c        The function given in figure can be written piecewise as: 0 0 0 0 ( ) ( ) ( ) ( ) ( ) 0 (1 ) st c st st c c c st st sc F s L f e f t dt e f t dt e f t dt k k e dt e s k e s                      
  • 10. Inverse Laplace Transform   ( ) ( ) F s L f t    1 ( ) ( ) f t L F s  
  • 11. Inverse Laplace Transform Inverse Laplace Transforms of Some Functions
  • 12. Properties of Laplace Transform Linearity of Laplace and its Inverse
  • 13. Properties of Laplace Transform Example: Find the inverse Laplace Transform of 1 ( 2)( 3) s s   Solution: As we know that using partial fractions, the given function can be written as 1 1 1 1 ( ) ( 2)( 3) 2 3 3 2 F s s s s s               Taking inverse Laplace on both sides and using the linearity property of inverse Laplace, we obtain   1 1 1 3 2 1 1 1 ( ) 2 3 3 2 1 ( ) 2 3 t t L F s L L s s f t e e                              
  • 14. Properties of Laplace Transform First Shifting Theorem If f(t) has the transform F(s) (where s > k for some k), then ( ) at e f t has the transform ( ) F s a  (where s-a > k ). In other words, ( ( )) ( ) at L e f t F s a   Or, if we take the inverse on both sides, 1 ( ) ( ( )) at e f t L F s a   
  • 15. Applications of First Shifting Theorem Example: Find the transform of ( ) sinh cos f t t t  Solution: Recall sinh 2 t t e e t    Then                 1 1 2 2 2 2 1 1 1 ( ) cos cos cos 2 2 1 ( ( )) cos cos 2 1 cos cos 2 1 cos cos 2 1 2 1 1 t t t t t t t t s s s s s s s s e e f t t e t e t L f t L e t e t L e t L e t L t L t s s s s                                                   Now we can do the due substitution.     2 2 2 2 1 ( 1) ( 1) 2 1 1 1 1 s s s s                  
  • 16. Applications of First Shifting Theorem Example: Find the inverse transform of 2 2 ( ) ( ) ( ) a s k b F s s k        . Solution: Rewriting the given function as 2 2 2 2 2 2 ( ) ( ) ( ) ( ) ( ) a s k b s k a b s k s k s k                 Substituting S=s+k in the right hand side of the above expression to have, Which clearly are the well-known transforms of cos( ) t  and sin( ) t  respectively. Thus, 2 2 2 2 ( ) cos( ) sin( ) S s k S s k S L S L a b S S a t b t                      And finally,   2 2 ( ) cos sin ( ) kt a s k b L e a t b t s k                 
  • 17. Properties of Laplace Transform Laplace Transform of a derivative
  • 18. Properties of Laplace Transform Laplace Transform of higher derivatives
  • 19. Solution of Initial Value Problems(Using Laplace Transform Method)
  • 20. Solution of Initial Value Problems(Using Laplace Transform Method) Advantages of Using Laplace Transform Method 1. The solution of non homogenous differential equations doesn’t require the homogenous part to be solved first. 2. Initial conditions are automatically taken care of. 3. Complicated input (right hand side of the linear equation) can be handled very efficiently.
  • 21. Solution of Initial Value Problems(Using Laplace Transform Method) Example: Solve the following IVP 4 3 6 8, (0) 0, (0) 0 y y y t y y          . Solution: Step 1: Taking Laplace of the given differential equation     4 3 6 8 ( ) 4 ( ) 3 ( ) 6 ( ) 8 (1) L y y y L t L y L y L y L t L             Step 2:     2 2 1 1 ( ) (0) (0) 4 ( ) (0) 3( ( )) 6 8 s Y s sy y sY s y Y s s s                     Using initial conditions     2 2 2 2 2 2 2 1 1 ( ) 4 ( ) 3( ( )) 6 8 1 1 ( 4 3) ( ) 6 8 6 8 1 ( ) ( 1)( 3) 2(3 4 ) 2 3 4 ( 1)( 3) ( 1)( 3) s Y s sY s Y s s s s s Y s s s s Y s X s s s s s s s s s s s s                                                        
  • 22. Solution of Initial Value Problems(Using Laplace Transform Method) Step 3: Now, we can do partial fraction method to write above expression as sum:   2 1 1 2 2 1 1 ( 1) ( 3) 2 1 1 ( ) ( 1) ( 3) s s s L Y s L s s s                   Step 4: Using inverse Laplace, we obtain the solution of given initial value problem 3 ( ) 2 t t y t t e e   
  • 23. Derivatives of a transform (Multiplying a Function By tn ) Statement of Theorem 7.4.1: If , and n = 1,2,3, …, then Example: ( ) ( ( )) F s L f t  { ( )} ( 1) ( ) n n n n d L t f t F s ds  
  • 24. Derivatives of a transform (Multiplying a Function By tn ) The Laplace transform can be used to solve linear differential equations with variable monomial coefficients Example: Solution: Solve it for Y(s) and take inverse Laplace transform to find y(t). 2 2 , (0) 0 ty y t y      2 2 3 2 3 2 3 ( ) ( ) (2 ), (0) 0 2 ( 1) ( ( )) ( ( )) 2 2 ( ) ( ) ( ) 2 ( ) 3 ( ) L ty L y L t y d s Y s sY s ds s sY s s Y s sY s s s Y s sY s s                 
  • 25. Solution of Initial Value Problems(Using Laplace Transform Method)
  • 26. Solution of Initial Value Problems(Using Laplace Transform Method) Advantages of Using Laplace Transform Method 1. The solution of non homogenous differential equations doesn’t require the homogenous part to be solved first. 2. Initial conditions are automatically taken care of. 3. Complicated input (right hand side of the linear equation) can be handled very efficiently.
  • 27. Solution of Initial Value Problems(Using Laplace Transform Method) Example: Solve the following IVP 4 3 6 8, (0) 0, (0) 0 y y y t y y          . Solution: Step 1: Taking Laplace of the given differential equation     4 3 6 8 ( ) 4 ( ) 3 ( ) 6 ( ) 8 (1) L y y y L t L y L y L y L t L             Step 2:     2 2 1 1 ( ) (0) (0) 4 ( ) (0) 3( ( )) 6 8 s Y s sy y sY s y Y s s s                     Using initial conditions     2 2 2 2 2 2 2 1 1 ( ) 4 ( ) 3( ( )) 6 8 1 1 ( 4 3) ( ) 6 8 6 8 1 ( ) ( 1)( 3) 2(3 4 ) 2 3 4 ( 1)( 3) ( 1)( 3) s Y s sY s Y s s s s s Y s s s s Y s X s s s s s s s s s s s s                                                        
  • 28. Solution of Initial Value Problems(Using Laplace Transform Method) Step 3: Now, we can do partial fraction method to write above expression as sum:   2 1 1 2 2 1 1 ( 1) ( 3) 2 1 1 ( ) ( 1) ( 3) s s s L Y s L s s s                   Step 4: Using inverse Laplace, we obtain the solution of given initial value problem 3 ( ) 2 t t y t t e e   
  • 29. Solution of Initial Value Problems(Using Laplace Transform Method) Example: Solve the following IVP 6 5 29cos2 , (0) 3.2, (0) 6.2 y y y t y y         . Solution: Step 1: Taking Laplace of the given differential equation     6 5 29cos2 ( ) 6 ( ) 5 ( ) 29 (cos2 ) L y y y L t L y L y L y L t           Step 2:     2 2 ( ) (0) (0) 6 ( ) (0) 5( ( )) 29 4 s s Y s sy y sY s y Y s s               Using initial conditions     2 2 2 2 2 ( ) 3.2 6.2 6 ( ) 3.2 5( ( )) 29 4 ( 6 5) ( ) 3.2 13 29 4 29 3.2 13 ( ) ( 4)( 1)( 5) ( 1)( 5) s s Y s s sY s Y s s s s s Y s s s s s Y s s s s s s                                             
  • 30. Solution of Initial Value Problems(Using Laplace Transform Method) Step 3: Now, we can do partial fraction method to write above two terms as:   2 1 1 2 24 5 29 3 49 5( 4) 4( 5) 20( 1) 4( 5) 20( 1) 24 5 29 3 49 ( ) 5( 4) 4( 5) 20( 1) 4( 5) 20( 1) s s s s s s s L Y s L s s s s s                               Step 4: Using inverse Laplace, we obtain the solution of given initial value problem     5 5 1 12 5 29 49 3 ( ) cos 2 sin 2 5 5 4 20 20 4 t t t t y t t t e e e e      
  • 31. Solution of Shifted Data Problem(Using Laplace Transform Method) This means initial value problems with initial conditions given at some time 0 t t  instead of 0 t  . For such a problem, set 0 t t t   so that 0 t t  gives 0 t  and the Laplace transform can be applied. Example: Solve the following IVP 2 5 50 100, (2) 4, (2) 14 y y y t y y           . Solution: We have 0 2 t  and we set 2 t t   . Then the problem is 2 5 50( 2) 100, (0) 4, (0) 14 y y y t y y            Step 1: Taking Laplace of the given differential equation     2 5 50 ( ) 2 ( ) 5 ( ) 50 ( ) L y y y L t L y L y L y L t           Step 2:     2 2 1 ( ) (0) (0) 2 ( ) (0) 5( ( )) 50 s Y s sy y sY s y Y s s             
  • 32. Solution of Shifted Data Problem(Using Laplace Transform Method) Using initial conditions     2 2 2 2 2 2 2 1 ( ) 4 14 2 ( ) 4 5( ( )) 50 1 ( 2 5) ( ) 4 6 50 50 6 4 ( ) ( )(( 1) 4) ( 1) 4 s Y s s sY s Y s s s s Y s s s s Y s s s s                                           Or 2 2 2 50 (6 4 ) ( ) ( )(( 1) 4) s s Y s s s      Step 3: Now, we can do partial fraction method to write above two terms as:   2 2 1 1 2 2 10 4 4 ( 1) 4 10 4 4 ( ) ( 1) 4 s s s L Y s L s s s                  
  • 33. Solution of Shifted Data Problem(Using Laplace Transform Method) Step 4: Using inverse Laplace, we obtain the solution of given initial value problem   ( ) 10 5 2 sin2 t y t t e t     Now, shifting back 2 t t   to get   ( 2) ( ) 10 2 5 2 sin2( 2) t y t t e t       
  • 34. Unit Step Function (Heaviside Function) Definition: The unit step function or Heaviside function ( ) u t a  has a jump of size 1 at t a  and is defined as 0, ( ) 1, if t a u t a if t a        The Laplace transform of ( ) u t a  follows from the definition as an integral 0 0 ( ( )) ( ) .1 st sa st st a e e L u t a e u t a dt e dt s s                Second Shifting Theorem: If ( ) f t has the transform ( ) F s then the shifted function 0, ( ) ( ) ( ) ( ), if t a f f t a u t a f t a if t a            has the transform ( ) as e F s  . That is, if   ( ) ( ) L f t F s  , then   ( ) ( ) ( ) as L f t a u t a e F s     If we take the inverse on both sides, we can write   1 ( ) ( ) ( ) as f t a u t a L e F s     
  • 35. Representation of a function in terms of Unit Step Function One of the major applications of Unit step function is to write a piecewise discontinuous function in terms of unit step. But before going to this representation, we need to understand what we mean by the difference of two unit step functions. Example: Given two unit step functions 0, 1 0, 3 ( 1) ( 3) 1, 1 1, 3 if t if t u t and u t if t if t               The difference function ( 1) ( 3) u t u t    is given as 0, 1 ( 1) ( 3) 1, 1 3 0, 3 if t u t u t if t if t              . More generally, if 0 a b   0, ( ) ( ) 1, 0, if t a u t a u t b if a t b if t b             
  • 36. Representation of a function in terms of Unit Step Function i.e. if ( ) g t is any function to be represented in terms of unit step function, then   0, ( ) ( ) ( ) ( ), 0, if t a g t u t a u t b g t if a t b if t b              Example: Write the function defined as 2 , 0 1 4 2 , 1 2 ( ) 0, 2 3 1, 3. t if t t if t f t if t if t                 using unit step function. Solution: It will be written as          ( ) 2 ( 0) ( 1) 4 2 ( 1) ( 2) 0 ( 2) ( 3) 1 ( 3) f t t u t u t t u t u t u t u t u t               
  • 37. Laplace transform of a function (represented in terms of Unit Step Function) To find the Laplace transform of a function represented in terms of unit step function, i,e, to use 2nd Shifting Theorem, function must be written in the form ( ) ( ) f t a u t a   Example: Represent the function ( ) cos4 (0 ) f t t t     in terms of unit step function. Then take its transform. ( ) cos4 ( ( 0) ( )) cos4 ( ( )) cos4 ( ( )) cos4 cos4 ( ( )) f t t u t u t t u t t u t t t u t              Now, we apply Laplace transform on both sides to get       2 ( ) cos4 cos4 ( ( )) (cos4 ) (cos4 ( ( )) ( ) (cos4 ( ( )) (*) 16 L f t L t t u t L t L t u t s L f t L t u t s             
  • 38. Laplace transform of a function (represented in terms of Unit Step Function) Now, we have to apply second shifting theorem on 2nd part of (*). For that, we must write it as (cos4 ( ( )) ( ) ( ) t u t f t u t        On comparison, cos4 ( ) t f t    . So, substitute t t         . Thus 2 cos 4( ) ( ) ( ( )) (cos 4( )) (cos 4 ) ( ) 16 f L f L L s F s s                So finally, 2 (cos4 ( ( )) 16 s s L t u t e s       . Put it in (*) to get   2 2 2 ( ) 16 16 (1 ) 16 s s s se L f t s s s e s           
  • 39. Laplace transform of a function (represented in terms of Unit Step Function) Example: Represent the function 2 ( ) (1 2) f t t t    in terms of unit step function. Then take its transform. 2 2 2 ( ) ( ( 1) ( 2)) ( 1) ( 2) f t t u t u t t u t t u t         Now, we apply Laplace transform on both sides to get     2 2 2 2 ( ) ( 1) ( 2) ( ( 1)) ( ( 2)) (*) L f t L t u t t u t L t u t L t u t         Now, we have to apply second shifting theorem on both the terms of (*). For that, we must write them as 2 2 ( ( 1)) ( 1) ( 1) ( ( 2)) ( 2) ( 2) t u t f t u t and t u t f t u t         On comparison, 2 2 ( 1) ( 2) t f t and t f t     So, substitute 1 1 t t       and 2 2 t t      
  • 40. Laplace transform of a function (represented in terms of Unit Step Function) Thus 2 2 ( 1) ( ) ( 2) ( ) f and f         So finally,   2 2 3 2 ( ( )) ( 1) ( 2 1) 2 2 1 ( ) L f L L F s s s s              and   2 2 3 2 ( ( )) ( 2) ( 4 4) 2 4 4 ( ) L f L L F s s s s              Put it in (*) to get   2 3 2 3 2 2 2 1 2 4 4 ( ) s s L f t e e s s s s s s                    
  • 41. Inverse Laplace transform of a function (Using 2nd Shifting Theorem) Recall that if   ( ) ( ) L f t F s  , then   ( ) ( ) ( ) as L f t a u t a e F s     If we take the inverse on both sides, we can write   1 ( ) ( ) ( ) as f t a u t a L e F s      Example: Find ( ) f t , if   L f equals (a). 3 2 2( ) 4 s s e e s     (b).   2 ( 1) 2 (1 )( 1) ( 1) 1 s e s s       
  • 42. Inverse Laplace transform of a function (Using 2nd Shifting Theorem) (a). Using 2nd Shifting theorem and inverse Laplace of sinh, we obtain 3 2 3 1 1 2 2 1 1 3 2 2 2( ) ( ) 4 2 2 4 4 2 2 4 4 sinh(2( 1))( ( 1)) sinh(2( 3))( ( 3)) s s s s s s e e L f s e e f L L s s L e L e s s t u t t u t                                                   
  • 43. Inverse Laplace transform of a function (Using 2nd Shifting Theorem) (b). Rewrite the given function as 2 2 2 ( ) , 1 1 S S Se G S S S       where ( ) ( 1) G S F s   Then using the inverse Laplace and 2nd shifting theorem, we have ( ) cos( ) ( ) cos( 2 ) ( 2 ) cos( ) ( ) cos( ) ( 2 ) cos( )( ( ) ( 2 )) g t t u t t u t t u t t u t t u t u t               Thus ( ) cos ( ( ) ( 2 )) t f t e t u t u t      .
  • 44. Initial Value Problems (with discontinuous input function) Example: Solve the given initial value problem 3 2 4 0 1 8 1 (0) 0, (0) 0 y y y t if t and if t y y            Solution: Given differential equation can be re written as 3 2 ( ) ( ) 4 0 1 8 1 y y y g t where g t t if t if t           Using Laplace to solve this problem, we apply it on both sides.   3 2 ( ( )) L y y y L g t      We will use linearity of Laplace transform, transforms of derivative terms, initial conditions on the LHS of the above equation and unit step function on the RHS of the equation.
  • 45. Initial Value Problems (with discontinuous input function)       2 2 ( ) 3 ( ) 2 ( ) ( ( )) ( ) (0) (0) 3 ( ) (0) 2 ( ) 4 ( ( 0) ( 1)) 8( ( 1)) ( 3 2) ( ) 4 ( ) 4 ( 1) 8( ( 1)) 4 ( ) (4 8) ( 1) * L y L y L y L g t s Y s sy y sY s y Y s L t u t u t u t s s Y s L tu t tu t u t L tu t t u t                             First solving the RHS of the above equation 2 2 (4 ( ) (4 8) ( 1)) 4 ( ) 8 ( ( 1)) 4 ( ( 1)) 4 8 4 s s L tu t t u t L t L u t L tu t e e s s s              Substitute it in * above to have 2 2 2 4 8 4 ( 3 2) ( ) s s s s Y s e e s s s       
  • 46. Initial Value Problems (with discontinuous input function) Which further can be simplified as 2 2 2 2 2 2 4 8 4 ( ) ( 3 2) ( 3 2) 4 8 4 ( 1)( 2) ( 1)( 2) s s s Y s e s s s s s s s e s s s s s s                 Time for partial fractions which can lead us to 2 2 2 4 1 3 2 12 5 7 ( ) 1 2 1 2 s Y s e s s s s s s s s                     Taking inverse Laplace on both sides   2 ( 1) 2( 1) ( ) 2 4 3 2( 1) 12 5 7 ( 1) t t t t y t t e e t e e u t                 