SlideShare a Scribd company logo
1 of 188
Download to read offline
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 
Solutions Manual Problem Solutions 
Chapter 1  
3 
Problem Solutions 
1.1  
(a) fcc: 8 corner atoms × 1/8 = 1 atom 
6 face atoms × ½ = 3 atoms 
Total of 4 atoms per unit cell 
(b) bcc: 8 corner atoms × 1/8 = 1 atom 
1 enclosed atom = 1 atom 
Total of 2 atoms per unit cell 
(c) Diamond: 8 corner atoms × 1/8 = 1 atom 
6 face atoms × ½ = 3 atoms 
4 enclosed atoms = 4 atoms 
Total of 8 atoms per unit cell 
1.2  
(a) 4 Ga atoms per unit cell 
Density = ⇒ 
− 
4 
5 65 10 8 3 
b . x g 
Density of Ga = − 2.22 1022 3 x cm 
4 As atoms per unit cell, so that 
Density of As = − 2.22 1022 3 x cm 
(b) 
8 Ge atoms per unit cell 
Density = ⇒ 
− 
8 
565 10 8 3 b . x g 
Density of Ge = − 4.44 1022 3 x cm 
J 
IK GFH 1.3  
(a) Simple cubic lattice; a = 2r 
Unit cell vol = a 3 = ( 2 r) 3 = 8 
r 3 4 
πr 
3 1 atom per cell, so atom vol. = ( 1 
)3 
Then 
Ratio 
r 
π 
= × ⇒ 
r 
FH G 
IK J 
4 
3 
8 
100% 
3 
3 
Ratio = 52.4% 
(b) Face-centered cubic lattice 
d 
d = 4r = a 2 ⇒ a 
= = r 
2 
2 2 
Unit cell vol = a = r = r 3 3 3 c2 2 h 16 2 
4 atoms per cell, so atom vol. = FH G 
IK J 
4 
3 πr 
4 
3 
Then 
Ratio 
r 
4 
3 
16 2 
= × ⇒ 
r 
FH G 
IK J 
4 
100% 
3 
3 
π 
Ratio = 74% 
(c) Body-centered cubic lattice 
d = 4r = a 3 ⇒ a = r 
4 
3 
Unit cell vol. = =FH 
IK 
3 4 
3 
a r 3 
2 atoms per cell, so atom vol. = FH G 
IK J2 
3 πr 
4 
3 
Then 
Ratio 
r 
= × ⇒ 
r 
FH G 
IK J 
FH 
IK 
2 
4 
3 
4 
3 
100% 
3 
3 
π 
Ratio = 68% 
(d) Diamond lattice 
Body diagonal = d = 8r = a 3 ⇒ a = r 
8 
3 
Unit cell vol. = =FH 
IK 
a 
3 8 
3 
r 3 
3 πr FH G 
8 atoms per cell, so atom vol. 8 
4 
3 
IK J 
Then 
Ratio 
r 
= × ⇒ 
r 
FH G 
IK J 
FH 
IK 
8 
4 
3 
8 
3 
100% 
3 
3 
π 
Ratio = 34% 
1.4  
From Problem 1.3, percent volume of fcc atoms 
is 74%; Therefore after coffee is ground, 
Volume = 0 74 3 . cm
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 
Solutions Manual Problem Solutions 
4 
  
1.5  
(a) a = A° 5.43 From 1.3d, a = r 
8 
3 
so that r 
( ) ° 3 
8 
a 
= = = A 
543 3 
8 
118 
. 
. 
Center of one silicon atom to center of nearest 
neighbor = 2r ⇒ 2.36 A° 
(b) Number density 
= ⇒ 
− 
8 
543 10 8 3 b . x g Density = − 5 1022 3 x cm 
(c) Mass density 
N ( AtWt 
. . ) ( . 
) 
= ρ 
= = ⇒ 
N 
x 
5 10 2809 
6 02 10 
. 
x A 
22 
23 
b g 
ρ = 2.33 3 grams / cm 
1.6  
(a) a r A A = = ( ) = ° 2 2 1.02 2.04 
Now 
2r 2r a 3 2r 2.04 3 2.04 A B B + = ⇒ = − 
so that r A B = ° 0.747 
(b) A-type; 1 atom per unit cell 
Density = ⇒ 
− 
1 
2.04 10 8 3 b x g 
Density(A) =118 1023 3 . x cm− 
B-type: 1 atom per unit cell, so 
Density(B) =118 1023 3 . x cm− 
1.7  
(b) 
a = 1.8 + 1.0⇒ a = A° 2.8 
(c) 
Na: Density = 
1 2 
b g = 2.28 x 1022 cm 
− 3 2.8 x 10 − 
8 3 Cl: Density (same as Na) = − 2.28 1022 3 x cm 
(d) 
Na: At.Wt. = 22.99 
Cl: At. Wt. = 35.45 
So, mass per unit cell 
= 
+ 
= 
( ) ( ) 
− 
1 
2 
22.99 
1 
2 
35 45 
6 02 10 
4.85 10 23 
23 
. 
. x 
x 
Then mass density is 
− 
ρ= ⇒ 
4.85 x 
10 
b 2.8 x 10 
− 
g 
ρ = 2.21 gm / cm 
3 23 
8 3 
1.8  
(a) a 3 = 2(2.2) + 2(18) = 8 A° . 
so that 
a = A° 4.62 
Density of A = ⇒ 
− 
1 
4.62 10 8 3 b x g 101 1022 3 . x cm− 
1 
4.62 10 8 b x g 101 1022 3 . x cm− 
Density of B = ⇒ − 
(b) Same as (a) 
(c) Same material 
1.9  
(a) Surface density 
= = ⇒ 
− 
1 
2 
1 
4.62 10 2 2 8 2 a b x g 
331 1014 2 . x cm− 
Same for A atoms and B atoms 
(b) Same as (a) 
(c) Same material 
1.10  
(a) Vol density = 
1 
3 ao 
Surface density = 
1 
2 2 ao 
(b) Same as (a) 
1.11  
Sketch 
1.12  
(a) 
1 
1 
1 
3 
1 
1 
, , FH 
IK 
⇒ (313) 
(b) 
1 
4 
1 
2 
1 
4 
, , FH 
IK 
⇒ (121)
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 
Solutions Manual Problem Solutions 
5 
1.13  
(a) Distance between nearest (100) planes is: 
d = a = A° 5.63 
(b)Distance between nearest (110) planes is: 
a 
d a 
1 
2 
= = = 
2 
2 
563 
. 
2 
or 
d = A° 3.98 
(c) Distance between nearest (111) planes is: 
a 
d a 
1 
3 
= = = 
3 
3 
563 
. 
3 
or 
d = A° 3.25 
1.14  
(a) 
Simple cubic: a = A° 4.50 
(i) (100) plane, surface density, 
= ⇒ 
1 
atom 
b g 4.94 x 1014 cm− 
2 4.50 x 10 − 
8 2 
(ii) (110) plane, surface density, 
= 
atom 
x − 
1 
2 4.50 10 8 2 
⇒ b g 3 49 1014 2 . x cm− 
(iii) (111) plane, surface density, 
1 
6 
1 
2 
= = 
⋅ ⋅ 
= 
FH 
IK 
( ) 
3 
2 
1 
2 
1 
2 
2 
3 
2 
1 
3 2 
atoms 
a x a 
c h a a 
= ⇒ 
− 
1 
3 4.50 10 8 2 b x g 2.85 1014 2 x cm− 
(b) 
Body-centered cubic 
(i) (100) plane, surface density, 
Same as (a),(i); surface density 4.94 1014 2 x cm− 
(ii) (110) plane, surface density, 
= ⇒ 
atoms 
b x g 6 99 1014 2 . x cm− 
2 
2 4.50 10 − 
8 2 
(iii) (111) plane, surface density, 
Same as (a),(iii), surface density 2.85 1014 2 x cm− 
(c) 
Face centered cubic 
(i) (100) plane, surface density 
2 
atoms 
b g 9.88 x 1014 cm− 
2 4.50 x 10 8 2 
= ⇒ 
− 
(ii) (110) plane, surface density, 
= ⇒ 
atoms 
b x g 6 99 1014 2 . x cm− 
2 
2 4.50 10 − 
8 2 
(iii) (111) plane, surface density, 
= 
⋅ + ⋅ 
= 
FH 
IK 
b a x − 
g 
3 
1 
6 
3 
1 
2 
3 
2 
4 
2 3 4.50 10 
8 2 
or 114 1015 2 . x cm− 
1.15  
(a) 
(100) plane of silicon – similar to a fcc, 
surface density = ⇒ 
atoms 
b . x g 
2 
543 10 − 
8 2 
6 78 1014 2 . x cm− 
(b) 
(110) plane, surface density, 
= ⇒ 
atoms 
b . x g 9.59 1014 2 x cm− 
4 
2 5 43 10 − 
8 2 
(c) 
(111) plane, surface density, 
= ⇒ 
atoms 
b . x g 7.83 1014 2 x cm− 
4 
3 5 43 10 − 
8 2 
1.16  
d = 4r = a 2 
then 
a 
4 
r 
4 ( 2.25 
) ° 2 
= = = A 
2 
6.364 
(a) 
Volume Density = ⇒ 
atoms 
b . x g 
4 
6 364 10 − 
8 3 
155 1022 3 . x cm− 
(b) 
Distance between (110) planes, 
= = = ⇒ 
1 
2 
2 
2 
6 364 
2 
a 
a . 
or
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 
Solutions Manual Problem Solutions 
6 
4.50 A° 
(c) 
Surface density 
= = 
atoms 
a b . x − 
g 
2 
2 
2 
2 6364 10 2 8 2 
or 
3 49 1014 2 . x cm− 
1.17  
Density of silicon atoms = − 5 1022 3 x cm and 4 
valence electrons per atom, so 
Density of valence electrons 2 1023 3 x cm− 
1.18  
Density of GaAs atoms 
= = 
22 3 atoms 
x 
8 
4.44 x 10 
cm 
− 565 10 
− 
8 3 
b . g 
An average of 4 valence electrons per atom, 
Density of valence electrons 1 77 1023 3 . x cm− 
1.19  
(a) Percentage = ⇒ 
2 10 
5 10 
100% 
16 
22 
x 
x 
x 
4 10 5 x − % 
1 10 
5 10 
(b) Percentage = 100 
⇒ 
15 
22 
x 
x 
x % 
2 10 6 x − % 
                   
  
1.20  
(a) Fraction by weight ≈ ⇒ 
b g 
b g 
( ) 
( ) 
16 
5 10 3098 
5 10 22 
2806 
x 
x 
. 
. 
110 10 6 . x − 
(b) Fraction by weight 
≈ 
b 18 
g 
10 10 . 
82 
b 16 g b 22 
g 
x . + 
x . 
7.71 x 10 − 
6 ⇒ 
( ) 
( ) ( ) 
5 10 30 98 5 10 28 06 
1.21  
Volume density = = − 1 
2 10 3 
15 3 
d 
x cm 
So 
d = x cm = A − ° 7.94 10 794 6 
We have a A O = ° 5.43 
So 
d 
aO 
794 
5.43 
= ⇒ 
d 
aO 
= 146
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
Chapter 2  
9 
Problem Solutions 
2.1  Computer plot 
2.2 Computer plot 
2.3 Computer plot 
2.4  
For problem 2.2; Phase = − = 
2π 
λ 
ω 
x 
t constant 
Then 
2 
0 
π 
λ 
dx 
dt 
⋅ −ω = 
or 
dx 
dt 
= v 
=p 
FH 
+ IK 
ω 
λ 
2π 
2π 
λ 
For problem 2.3; Phase = + ω 
= 
x 
t constant 
Then 
2 
0 
π 
λ 
dx 
dt 
⋅ +ω = 
or 
dx 
dt 
vp = =− FH 
IK 
ω 
λ 
2π 
2.5  
E h 
hc hc 
E 
= ν = ⇒ = 
λ 
λ 
Gold: E = 4 . 90 eV = ( 4 . 90 ) b 1 . 6 x 10 − 19 g 
J So 
b x − 
34 gb x 
10 
g 
λ= ⇒ 
6 625 10 3 10 
4.90 1 6 10 
b g 2.54 10 5 x cm − 
( ) − 
19 
. 
. 
x 
or 
λ = 0.254 μm 
Cesium: E = eV = ( ) x − J 190 190 16 10 19 . . b . g 
So 
λ= ⇒ 
b − 
gb g 
x cm − 6 625 10 3 10 
190 16 10 
5 . 
. . 
b g 
( ) − 
654 10 
34 10 
19 
. 
x x 
x 
or 
λ = 0.654 μm 
2.6  
(a) Electron: (i) K.E. = = = − T 1 eV 1 6x10 J 19 . 
p = mT = x x − − 2 2 9.11 10 1 6 10 b 31gb . 19 g 
or 
p = x kg − m s − 54 10 25 . / 
− 
λ= = ⇒ 
− 
h 
p 
x 
x 
6 625 10 
54 10 
34 
25 
. 
. 
or 
λ = ° 12.3 A 
(ii) K.E. = = = − T 100 eV 1 6x10 J 17 . 
p = 2mT ⇒ p = x kg − m s − 54 10 24 . / 
h 
p 
λ= ⇒ 
λ = ° 1.23 A 
(b) Proton: K.E. = = = − T 1 eV 1 6x10 J 19 . 
p = mT = x x − − 2 216710 1610 27 19 b . gb . g 
or 
p = x kg − m s − 2.31 10 23 / 
− 
λ= = ⇒ 
− 
h 
p 
x 
x 
6 625 10 
2.31 10 
34 
23 
. 
or 
λ = ° 0.287 A 
(c) Tungsten Atom: At. Wt. = 183.92 
For T = eV = x J − 1 161019 . 
p = 2mT 
= ( ) − − 2 18392 166 10 16 10 27 19 . b . x gb . x g 
or 
p = x kg = m s − 313 10 22 . / 
− 
λ= = ⇒ 
− 
h 
p 
x 
x 
6 625 10 
313 10 
34 
22 
. 
. 
or 
λ = ° 0.0212 A 
(d) A 2000 kg traveling at 20 m/s: 
p = mv = (2000)(20)⇒ 
or 
p = 4x10 kg − m s 4 / 
34 
h 
6 625 x 
10 
− p 
4 x 
10 
λ= = ⇒ 
4 
. 
or 
λ = − ° 166 10 28 . x A
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
10 
  
2.7  
Eavg = kT = ( )⇒ 3 
2 
3 
2 
0.0259 
or 
E eV avg = 0.01727 
Now 
p mE avg avg = 2 
= 2 9.11 10− (0 01727) 1 6 10− 31 19 b x g . b . x g 
or 
p x kg ms avg= − − 7.1 10 26 / 
Now 
− 
λ= = ⇒ 
− 
h 
p 
x 
x 
6 625 10 
7.1 10 
34 
26 
. 
or 
λ = ° 93 3 . A 
2.8  
E h 
hc 
p p 
p 
= ν = 
λ 
Now 
E 
2 
2 
p 
= e 
e 
m and p 
h 
e 
= ⇒ 
λ 
e 
E 
m 
h 
e 
e 
= FH G 
IK J 
1 
2 
2 
λ 
Set E E p e = and λ λ p e = 10 
Then 
hc 
1 
h 
= FH = 2 
G 
m 
10 2 2 
1 
2 
m 
h 
IK J 
FH G 
IK J 
p e p λ λ λ 
which yields 
λ p 
h 
mc 
= 
100 
2 
E E 
hc hc 
= = = ⋅ = 
h 
mc 
mc 
p 
λ 100 
p 
2 
2 
2 
100 
31 8 2 b x gb x g 
− 2 9.11 10 3 10 
= ⇒ 
100 
So 
E = x J = keV − 164 10 10 3 15 . . 
2.9  
(a) E = mv = x x − 1 
2 
9.11 10 2 10 2 b 31gb 4 g2 
1 
2 
or 
E = x J ⇒ − 1822 10 22 . E = x eV − 114 10 3 . 
Also 
p = mv = x x ⇒ − 9.11 10 2 10 b 31gb 4 g 
p = x kg − m s − 1822 10 26 . / 
Now 
− 
λ= = ⇒ 
− 
h 
p 
x 
x 
6 625 10 
1822 10 
34 
26 
. 
. 
λ = ° 364 A 
(b) 
p 
h x 
6 625 10 
125 10 
= = ⇒ 
x 
− 
− λ 
34 
10 
. 
p = x kg − m s − 53 10 26 . / 
Also 
v 
p 
m 
x 
x 
− 
4 . 
= = = x m s 
− 
53 10 
9.11 10 
582 10 
26 
31 
. / 
or 
v = 5 82x10 cm s 6 . / 
Now 
E = mv = x x − 1 
2 
9.11 10 582 10 2 b 31 gb . 4 g2 
1 
2 
or 
E = x J ⇒ − 154 10 21 . E = x eV − 9.64 10 3 
2.10  
(a) E h 
b . 34 gb 8 
g 
hc x x 
x 
= = = 
− 
− ν 
λ 
6 625 10 3 10 
1 10 
10 
or 
E = x J − 199 10 15 . 
Now 
E = e ⋅V ⇒ x = x V − − 199 10 16 10 15 19 . b . g 
so 
V = 12.4x10 V = 12.4 kV 3 
(b) p = mE = x x − − 2 2 9.11 10 199 10 b 31 gb . 15 g 
= − − 6 02 10 23 . x kg m / s 
Then 
− 
λ= = ⇒ 
− 
h 
p 
x 
x 
6 625 10 
6 02 10 
34 
23 
. 
. 
λ = ° 0.11 A
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
11 
2.11 
(a) Δ 
h 1054 10 
Δ 
p 
x 
x 
− 
= = ⇒ 
− 
10 
34 
6 
. 
Δp = x kg − m s − 1054 10 28 . / 
(b) 
E 
FH 
hc 
= = hc 
= pc p 
h 
IK 
λ 
So 
ΔE = c(Δp) = x x − ⇒ 3 10 1054 10 b 8 gb . 28 g 
or 
ΔE = x J ⇒ − 316 10 20 . ΔE = 0.198 eV 
2.12  
(a) Δ 
h 1054 10 
Δ 
p 
x 
x 
x 
− 
= = ⇒ 
− 
12 10 
34 
10 
. 
Δp = x kg − m s − 8 78 10 26 . / 
(b) 
Δ 
b . g 
2 26 2 
( Δ 
) − 
E 
p 
m 
x 
x 
= ⋅ = ⋅ ⇒ 
− 
1 
2 
1 
2 
8 78 10 
5 10 
29 
ΔE = x J ⇒ − 7.71 10 23 ΔE = x eV − 4.82 10 4 
2.13  
(a) Same as 2.12 (a), Δp = x kg − m s − 8 78 10 26 . / 
(b) 
Δ 
b . g 
2 26 2 
( Δ 
) − 
E 
p 
m 
x 
x 
= ⋅ = ⋅ ⇒ 
− 
1 
2 
1 
2 
8 78 10 
5 10 
26 
ΔE = x J ⇒ − 7.71 10 26 ΔE = x eV − 4.82 10 7 
2.14  
Δ 
− h 1054 10 
Δ 
p 
x 
x 
− 
32 . 
= = = x 
− 
10 
1054 10 
34 
2 
. 
p mv v 
p 
m 
. 
x 
32 − 
Δ 
Δ 1054 10 
= ⇒ = = ⇒ 
1500 
or 
Δv = x m s − 7 10 36 / 
2.15  
(a) Δ 
h 1054 10 
Δ 
p 
x 
x 
− 
= = ⇒ 
− 
10 
34 
10 
. 
Δp = x kg − m s − 1054 10 24 . / 
(b) Δt 
x 
x 
− 
1054 10 
1 16 10 
34 
. 
b . g 
= ⇒ 
( ) − 
19 
or 
Δt = x s − 6 6 10 16 . 
2.16  
(a) If Ψ1 (x, t) and Ψ2 (x, t) are solutions to 
Schrodinger’s wave equation, then 
− 
h ∂ 
( ) ⋅ 
( ) ( ) ( ) 
∂ 
+ = 
∂Ψ 
∂ 
h 
2 2 
1 
2 1 
1 
2m 
x t 
x 
V x x t j 
x t 
t 
Ψ 
Ψ 
, 
, 
, 
and 
− 
h ∂ 
( ) ⋅ 
( ) ( ) ( ) 
∂ 
+ = 
∂Ψ 
∂ 
h 
2 2 
2 
2 2 
2 
2m 
x t 
x 
V x x t j 
x t 
t 
Ψ 
Ψ 
, 
, 
, 
Adding the two equations, we obtain 
− 
h2 2 
⋅ 
( ) + ( ) ∂ 
∂ 
Ψ x, t Ψ x, t 
+V(x) Ψ (x t) + Ψ (x t) 1 2 , , 
2 1 2 2m x 
= 
∂ 
∂ 
j ( ) + ( ) 
h Ψ x t Ψ x t 1 2 , , 
t 
which is Schrodinger’s wave equation. So 
Ψ Ψ 1 2 (x, t) + (x, t) is also a solution. 
(b) 
If Ψ Ψ 1 2 ⋅ were a solution to Schrodinger’s wave 
equation, then we could write 
− ∂ 
⋅ + ( ) ⋅ h2 2 
2m ∂ 
x 
2 1 2 1 2 aΨ Ψ f V x aΨ Ψ f 
= 
h Ψ Ψ 1 2 a f 
∂ 
∂ 
j ⋅ 
t 
which can be written as 
− ∂ 
∂ 
+ 
∂ 
∂ 
+ 
∂Ψ 
∂ 
⋅ 
∂Ψ 
∂ 
LN M 
OQ P 
h2 
Ψ 
1 
2 
Ψ 
Ψ 
2 
2 2 
2 
Ψ 
1 
2 
1 2 
2 
2 
m x x x x 
+ ⋅ = 
∂Ψ 
∂ 
+ 
∂Ψ 
∂ 
( ) LNM 
OQP 
V x j 
Ψ Ψ Ψ Ψ 1 2 1 
h 
2 
1 2 
t t 
Dividing by Ψ Ψ 1 2 ⋅ we find 
− 
⋅ 
∂ 
∂ 
+ ⋅ 
∂ 
∂ 
+ 
∂Ψ 
∂ 
∂Ψ 
∂ 
LN M 
OQ P 
h2 
2 
2 
Ψ 
2 
2 
1 
2 
1 
2 
1 2 
1 2 
2 
1 1 1 
m Ψ x Ψ 
x x x 
Ψ 
ΨΨ 
+ = 
∂Ψ 
∂ 
+ 
∂Ψ 
∂ 
( ) LN M 
OQ P 
V x j 
t x 
h 
1 1 
2 
2 
1 
1 
Ψ Ψ
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
12 
Since Ψ1 is a solution, then 
− 
⋅ ⋅ 
∂ 
∂ 
+ = ⋅ ⋅ 
∂Ψ 
∂ 
Ψ 
( ) h 
h 
2 
1 
2 
1 
2 
1 
1 
2 
1 1 
m x 
V x j 
Ψ Ψ 
t 
Subtracting these last two equations, we are left 
with 
− ∂ 
∂ 
+ 
∂Ψ 
∂ 
∂Ψ 
∂ 
LN M 
OQ P 
h2 
2 
2 
Ψ 
2 
2 
1 2 
1 2 
2 
1 2 
m Ψ x ΨΨ 
x x 
= 
∂Ψ 
∂ 
j 
t 
h 
1 
2 
2 
Ψ 
Since Ψ2 is also a solution, we may write 
− ∂ 
∂ 
+ = 
∂Ψ 
∂ 
Ψ 
( ) h 
h 
2 
2 
2 
2 
2 
2 
2 
2 
1 1 
m x 
V x j 
Ψ Ψ 
t 
Subtracting these last two equations, we obtain 
− 
h2 
⋅ ⋅ 
− ( ) = ∂Ψ 
∂ 
⋅ 
∂Ψ 
∂ 
1 2 
1 2 
2 
2 
0 
m x x 
V x 
ΨΨ 
This equation is not necessarily valid, which 
means that ΨΨ 1 2 is, in general, not a solution to 
Schrodinger’s wave equation. 
  
2.17  
Ψ(x, t) = A sin(πx) exp(− jωt) 
+ z = = z 2 
1 
1 
Ψ(x, t) dx A sin ( x)dx 
+ 
− 
1 π 
− 
1 
2 2 
1 
or 
+ 
LNM 
⋅ − (2 ) = 1 1 1 
2 
A x x 2 
1 
1 
4 
OQP 
− 
π 
sin π 
which yields 
A2 = 1 or A = +1, − 1, + j , − j 
2.18  
Ψ(x, t) = A sin(nπx) exp(− jωt) 
+ + z = = z 2 
0 
1 
Ψ(x, t) dx A sin (n x)dx 
1 
2 2 
1 π 
0 
or 
⋅ − (2 ) = 1 LNM 
1 1 
2 
n x 2 
A x 
n 
0 
1 
4 
OQP 
+ 
π 
sin π 
which yields 
A 2 = 2 or 
A = + 2 , − 2 , + j 2 , − j 2 
2.19  
Note that Ψ⋅Ψ = 
∞z * 
0 
dx 1 
Function has been normalized 
(a) Now 
P 
a 
x 
a 
dx 
o o 
ao 
= 
− FH G 
IK J 
LN M 
OQ P 
z 2 
2 
0 
4 
exp 
= 
− FH G 
IK J 
2 ao 
z 2 
exp 
0 
4 
a 
x 
a 
dx 
o o 
= 
− − FH 
IK 
FH G 
IK J 
2 
2 
2 
0 
4 
a 
a x 
o 
a o 
o 
ao 
exp 
or 
P 
a 
o 
− a 
G 
FH o 
= − 
− 
IK J 
LN M 
OQ P 
1 
2 
4 
exp 1 = − 
− FH 
IK 
1 
1 
2 
exp 
which yields 
P = 0.393 
(b) 
P 
IK Jz 2 
IK JFH G 
a 
x 
a 
dx 
a 
o 
= 
2 
a o o 
o 
− FH G 
2 
4 
exp 
= 
− FH GIK J 
2 z 2 
o 
2 
exp 
4 
a 
x 
a 
dx 
a 
o a o 
o 
= 
FH G 
− − FHIK 
IK J 
2 
2 
2 
2 
4 
a 
a x 
o 
a o 
a 
o a 
o 
o 
exp 
or 
P = − − − 
− ( ) FH 
IK 
LNM 
OQP 
1 1 
1 
2 
exp exp 
which yields 
P = 0.239 
(c) 
P 
a 
x 
a 
dx 
o o 
ao 
= 
− FH G 
IK J 
FH G 
IK J 
z 2 
2 
0 
exp 
= 
− FH G 
IK J 
2 z 2 
ao 
exp = 
0 a 
x 
a 
dx 
o o 
− − FH 
IK 
FH G 
IK J 
2 
a x 
2 
2 
o 
a 
a o 
o 
0 ao 
exp 
or 
P = −1 exp(−2) − 1 
which yields 
P = 0.865
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
13 
2.20  
(a) kx −ωt = constant 
Then 
k 
dx 
dt 
−ω = 0⇒ 
dx 
dt 
+ = v 
=ω 
p k or 
v 
x 
x 
15 10 
15 10 
4 . 
. 
= = 
10 
m s p13 
9 
/ 
v cms p = 106 / 
(b) 
k 
2 2 2 
= ⇒ = = 
15 109 
k x 
π 
λ 
λ 
π π 
. 
or 
λ = ° 41 9 . A 
Also 
p 
h x 
6 625 10 
419 10 
= = ⇒ 
x 
− 
− λ 
34 
10 
. 
. 
or 
p = x kg − m s − 158 10 25 . / 
Now 
E h 
b 34 gb 8 
g 
hc x x 
x 
= = = 
− 
− ν 
λ 
6 625 10 3 10 
419 10 
10 
. 
. 
or 
E = x J ⇒ − 4.74 10 17 E = 2.96x10 eV 2 
2.21  
ψ (x) = Aexp − jbkx +ωtg 
where 
k 
mE 
= 
2 
h 
= 
b g . b . g 
2 9.11 10 (0 015) 1 6 10 
− − 
31 19 
x x 
− 
1054 10 
34 
x 
. 
or 
k = x m− 6 27 108 1 . 
Now 
ω= = 
b g 
( ) − 
− 
E x 
h x 
0 015 16 10 
1054 10 
19 
34 
. . 
. 
or 
ω = 2.28 1013 x rad / s 
  
2.22  
E 
π b . g π 
n 
ma 
x n 
x x 
= = 
− 
1054 10 
b − gb − 
g 
h2 2 2 
2 
34 2 2 2 
31 10 2 2 
2 9.11 10 100 10 
so 
E = x n J 6 018 10− ( ) 22 2 . 
or 
E = x n eV 3 76 10− ( ) 3 2 . 
Then 
3 = 3 76 10− . 
n = 1⇒ E x eV 1 
2 = 150 10− . 
n = 2 ⇒ E x eV 2 
2 = 3 38 10− . 
n = 3⇒ E x eV 3 
2.23  
(a) E 
n 
ma 
= 
h2 2 2 
π 
2 2 
= 
b 1054 . x 10 
− 
34 g 
2 π 
2 n 
2 
b x gb x 
g 
31 10 2 
− − 
2 9.11 10 12 10 
= 4.81 10− ( ) 20 2 x n J 
So 
E x J 1 
= 4.18 10 − 20 ⇒ E = 0.261 
eV 1 E = 1 . 67 x 10− 19 J ⇒ E = 1.04 
eV 2 
2 (b) 
E E h 
hc hc 
− = ν = ⇒ λ 
= 
2 1 λ 
Δ 
E or 
λ = 
b 34 gb 8 
g 
6 625 10 3 10 
167 10 − 
4.18 10 
⇒ 
− 
− − 
19 20 
. 
. 
x x 
x x 
λ = − 159 10 6 . x m 
or 
λ = 1.59 μm 
2.24  
(a) For the infinite potential well 
E 
n 
ma 
π 2 
n 
ma E 
h 
= ⇒ = 
h 
2 2 2 
2 
2 
2 
2 
2 π 
2 so 
n 
b − 5 gb − 2 g 2 b − 
2 
g 
b . g 
56 2 10 10 10 
1054 10 
x 2 
= = 182 10 
x 
34 2 2 
− 
. 
π 
or
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
14 
n = 1 35x1028 . 
(b) 
ΔE 
= (n + ) − n h2 2 
ma 
2 
2 2 
2 
1 
π 
= ( + ) h2 2 
2 2 
2 1 
π 
ma 
n 
or 
ΔE 
b 1 . 054 x 10 34 g 2 2 (2) b 1 . 35 x 
10 
28 
g 
= 
− 
π 
b gb g 
5 2 2 
− − 
2 10 10 
ΔE = x J − 148 10 30 . 
Energy in the (n+1) state is 1 48 10 30 . x − Joules 
larger than 10 mJ. 
(c) 
Quantum effects would not be observable. 
2.25  
For a neutron and n = 1: 
E 
b g 
b gb g 
x 
x 1 
h 2 π 2 
. π 
ma 
2 
34 2 
1054 10 
27 14 2 2 
2 1 66 10 10 
= = 
− 
− − 
. 
or 
6 = 2.06 10 
E x eV 1 
For an electron in the same potential well: 
E 
b . g 
b gb g 
x 
x 1 
34 2 2 
π 
1054 10 
2 9.11 10 10 
31 14 2 
= 
− 
− − 
or 
9 = 3.76 10 
E x eV 1 
2.26  
Schrodinger’s wave equation 
∂ 
∂ 
( ) 2 
( ( )) ( ) 
+ − = 
2 
2 2 
0 
ψ 
ψ 
x 
x 
m 
E V x x 
h 
We know that 
ψ (x) = 0 for x 
a 
≥ 
2 
and x 
a 
≤ 
− 
2 
V(x) = 0 for 
− 
a + 
x 
≤ ≤ 
a 
2 2 
so in this region 
∂ 
∂ 
( ) 2 
( ) 
+ = 
2 
2 2 
0 
ψ 
ψ 
x 
x 
mE 
x 
h 
Solution is of the form 
ψ (x) = Acos Kx + B sin Kx 
where K 
mE 
= 
2 
2 h 
Boundary conditions: 
ψ (x) = 0 at x 
a 
x 
a 
= 
+ 
= 
− 
, 
2 2 
So, first mode: 
ψ 1 (x) = Acos Kx 
where K 
a 
= 
π 
so E 
2 2 
ma 1 
2 2 
= 
π h 
Second mode: 
ψ 2 (x) = B sin Kx 
where K 
a 
= 
2π 
so E 
2 2 
ma 2 
2 
4 
2 
= 
π h 
Third mode: 
ψ 3 (x) = Acos Kx 
where K 
a 
= 
3π 
so E 
2 2 
ma 3 
2 
9 
2 
= 
π h 
Fourth mode: 
ψ 4 (x) = B sin Kx 
where K 
a 
= 
4π 
so E 
2 2 
ma 4 
2 
16 
2 
= 
π h 
2.27  
The 3-D wave equation in cartesian coordinates, 
for V(x,y,z) = 0 
∂ 
2 ( ) ( ) ( ) 
ψ x y z ψ ψ 
∂ 
+ 
∂ 
∂ 
+ 
∂ 
∂ 
2 
2 
2 
2 
2 
x 
x y z 
y 
x y z 
z 
, , , , , , 
mE 
2 
+ ( x y z 
) = 0 2 
h 
ψ , , 
Use separation of variables, so let 
ψ (x, y, z) = X(x)Y(y)Z(z) 
Substituting into the wave equation, we get 
YZ 
X 
x 
XZ 
Y 
y 
XY 
Z 
z 
mE 
XYZ 
∂ 
∂ 
+ 
∂ 
∂ 
+ 
∂ 
∂ 
2 
+ = 
2 
2 
2 
2 
2 
2 2 
0 
h 
Dividing by XYZ and letting k 
mE 2 
2 
2 
= 
h 
, we 
obtain 
(1) 
∂ 
∂ 
1 1 1 
0 
2 
2 
2 
2 
2 
2 
2 
X 
X 
x Y 
Y 
y Z 
Z 
z 
⋅ + ⋅ 
k 
∂ 
∂ 
+ ⋅ 
∂ 
∂ 
+ = 
We may set
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
15 
1 2 
2 
2 
X 
X 
x 
∂ 
∂ 
kx ⋅ 
= − so 
∂ 
∂ 
+ = 
2 
2 
2 0 
X 
x 
k X x 
Solution is of the form 
X(x) = Asinakx xf+ B cosakx xf 
Boundary conditions: X(0) = 0⇒ B = 0 
and X x a k 
n 
a x 
π 
( = ) = 0⇒ = x 
where nx = 1, 2 , 3,... 
Similarly, let 
1 2 
2 
2 
Y 
Y 
y 
∂ 
∂ 
ky ⋅ 
= − and 
1 2 
2 
2 
Z 
Z 
z 
∂ 
∂ 
⋅ 
= − 
kz Applying the boundary conditions, we find 
k 
n 
a 
π 
, 1, 2 , 3,... 
y 
n y 
y = = 
k 
n 
a 
π 
, 1, 2 , 3,... 
n z 
= z 
= 
z From Equation (1) above, we have 
−k 2 − k 2 − k 2 + k 2 = 0 
x y z 
or 
k k k k 
mE 
2 2 2 2 
x y z 
2 
2 
+ + = =h 
so that 
E E 
h2 2 
nxnynz nx ny nz ⇒ = + + 
ma 
2 
2 2 2 
2 
πb g 
2.28  
For the 2-dimensional infinite potential well: 
( ) ( ) ( ) 
∂ 
∂ 
+ 
∂ 
∂ 
2 
+ = 
2 
2 
2 
2 2 
0 
ψ ψ 
ψ 
x y 
x 
x y 
y 
mE 
x y 
, , 
, 
h 
Let ψ (x, y) = X(x)Y(y) 
Then substituting, 
Y 
X 
x 
X 
Y 
y 
mE 
XY 
∂ 
∂ 
+ 
∂ 
∂ 
2 
+ = 
2 
2 
2 
2 2 
0 
h 
Divide by XY 
So 
X 
x Y 
Y 
y 
∂ 
∂ 
∂ 
∂ 
1 1 2 
0 
2 
2 
2 
mE 
⋅ 
+ ⋅ 
+ = 
X 
2 h 
2 Let 
1 2 
2 
2 
X 
X 
x 
∂ 
∂ 
⋅ 
= − 
kx or 
∂ 
∂ 
+ = 
2 
2 
2 0 
X 
x 
k X x 
Solution is of the form: 
X A kx B kx x x = sina f+ cosa f 
But X(x = 0) = 0⇒ B = 0 
So 
X A kxx = sina f 
Also, X x a k a n x x ( = ) = 0⇒ = π 
Where nx = 1, 2 , 3, . . . 
So that k 
n 
a x 
π 
= x 
We can also define 
1 2 
2 
2 
Y 
Y 
y 
∂ 
∂ 
⋅ 
= − 
ky Solution is of the form 
Y C k y D k y y y = sinb g+ cosb g 
But 
Y(y = 0) = 0⇒ D = 0 
and 
Y y b k b n y y ( = ) = 0⇒ = π 
so that 
k 
n 
b y 
π 
y = 
Now 
mE 
−k 2 − k 2 
+ = 
x y 
2 
2 
0 
h 
which yields 
x y ⇒ = + FH G 
E E 
π 
n 
n 
nxny 
m 
a 
b IK J 
h2 2 2 
2 
2 
2 2 
Similarities: energy is quantized 
Difference: now a function of 2 integers 
2.29  
(a) Derivation of energy levels exactly the same 
as in the text. 
(b) ΔE 
h2 2 
2 
= n − n 
ma 
2 2 
2 
1 
2 
π b g 
For n = 2 , n = 1 
2 1 Then 
h π 
ΔE 
ma 
= 
3 
2 
2 2 
2
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
16 
(i) a = A° 4 
ΔE 
b x 
− 
34 g 
2 2 
b gb g 
3 1054 10 
2 1 67 10 4 10 
= ⇒ 
27 10 2 
− − 
x x 
. 
. 
π 
ΔE = x eV − 385 10 3 . 
(ii) a = 0.5 cm 
ΔE 
b x 
− 
34 g 
2 2 
b gb g 
3 1054 . 
10 
2 167 . 10 0 . 
5 10 
= ⇒ 
27 2 2 
− − 
x x 
π 
ΔE = x eV − 2.46 10 17 
2.30  
(a) For region II, x > 0 
∂ 
∂ 
( ) 2 
( ) 
+ − = 
2 
2 
2 2 2 
0 
ψ 
ψ 
x 
x 
m 
E V x O 
h 
a f 
General form of the solution is 
ψ(x) = A expajK xf+ B expa− jK xf 
2 2 2 2 2 where 
2 
m 
K 
= E − 
V2 2 O 
h 
a f 
Term with B2 represents incident wave, and 
term with A2 represents the reflected wave. 
Region I, x < 0 
∂ 
∂ 
( ) 2 
( ) 
+ = 
2 
1 
2 2 1 
0 
ψ 
ψ 
x 
x 
mE 
x 
h 
The general solution is of the form 
ψ(x) = A expa jK xf+ B expa− jK xf 
1 1 1 1 1 where 
2 
mE 
K 
= 
1 2 
h 
Term involving B1 represents the transmitted 
wave, and the term involving A1 represents the 
reflected wave; but if a particle is transmitted 
into region I, it will not be reflected so that 
A1 = 0 . 
Then 
ψ1 1 1 (x) = B expa− jK xf 
ψ2 2 2 2 2 (x) = A expajK xf+ B expa− jK xf 
(b) 
Boundary conditions: 
(1) ψ ψ 1 2 (x = 0) = (x = 0) 
(2) 
∂ 
∂ 
( ) ( ) 
ψ ψ 1 
= 
∂ 
∂ 
= = 
0 
2 
0 
x 
x 
x 
x x x 
Applying the boundary conditions to the 
solutions, we find 
B A B 1 2 2 = + 
K A K B K B 2 2 2 2 1 1 − =− 
Combining these two equations, we find 
A 
K − 
K 
K + 
K 
B 2 
= 
2 1 
2 2 1 
FH G 
IK J 
and B 
K 
K K 
2 
B 1 
2 1 
2 
2 
= 
+ 
FH G 
IK J 
The reflection coefficient is 
R 
A A 
B B 
* 
* R 
= 2 2 ⇒ 
2 2 
K K 
K K 
= 
− 
+ 
FH G 
IK J 
2 1 
2 1 
2 
The transmission coefficient is 
T = 1− R ⇒ T 
K K 
K K 
= 
4 1 2 
a + 
f2 
1 2 
2.31  
In region II, x > 0 , we have 
ψ2 2 2 (x) = A expa−K xf 
where 
K 
a − f 
h 
m V E O 
2 
= 
2 2 
For V eV O = 2.4 and E = 2.1 eV 
K 
b x |W| 
UV 31 g ( RS |T| ) b x 
19 
g 
b g 
x 2 
34 2 
1 2 
2 9.11 10 2.4 2.1 16 10 
1054 10 
= 
− − − 
− 
. 
. 
/ 
or 
K x m 2 
9 1 = 2.81 10 − 
Probability at x compared to x = 0, given by 
P 
( x 
) 
( ) 
ψ 
ψ 
expa 2 f 
= 2 
= − K x 
2 
2 
2 0 
(a) For x = A° 12 
P = − x x ⇒ − exp 2 2.81 10 12 10 b 9 gb 10 g 
P = x = − 118 10 0118 3 . . % 
(b) For x = 48 A° 
P = − x x ⇒ − exp 2 2.81 10 48 10 b 9 gb 10 g 
P = x − 19 10 10 . % 
2.32  
For V eV E eV O= 6 , = 2.2 
We have that
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
17 
T 
E 
E 
= − − V 
V 
G 
FH K a 
IK J 
FH G 
O O 
IK J 
16 1 2 2 expa f 
where 
K 
a − f 
h 
m V E O 
2 
= 
2 2 
= 
( ) RS |T| 
b − 31 g − b − 
19 
g 
b − 
g 
UV |W| 
2 9.11 10 6 2.2 16 10 
1054 10 
34 2 
1 2 
x x 
x 
. 
. 
/ 
or 
9 1 = 9.98 10 − 
K x m 2 
For a = m − 10 10 
T = − − x FH 
IK 
FH 
IK 
2.2 
6 
16 
1 
− 2.2 
6 
2 9.98 10 10 9 10 exp b gb g 
or 
T = 0.50 
For a = m − 10 9 
T = x − 7.97 10 9 
2.33  
Assume that Equation [2.62] is valid: 
T 
E 
E 
= − − V 
V 
G 
FH K a 
IK J 
FH G 
O O 
IK J 
16 1 2 2 expa f 
(a) For m mo = (0.067) 
K 
a − f 
h 
m V E O 
2 
= 
2 2 
= 
− ( ) ( ) RS |T| 
UV |W| 
b − 31 g b − 
19 
g 
b g 
2 0067 9.11 10 08 02 16 10 
− 
1054 10 
34 2 
1 2 
. . . . 
. 
/ 
x x 
x 
or 
9 1 = 1 027 10 − . 
K x m 2 
Then 
T = − − x x FH 
IK 
FH 
IK 
0 2 
08 
16 
1 
− 0 2 
08 
. 
. 
2 1027 10 9 15 10 10 . 
. 
exp b . gb g 
or 
T = 0.138 
(b) For m mo = (1.08) 
K 
b / x 31 g b x 
19 
g 
b g 
. . . . 
x 2 
34 2 
1 2 
2 1 08 9.11 10 0 8 0 2 1 6 10 
1054 10 
= 
− ( ) ( ) RS |T| 
UV |W| 
− − 
− 
. 
or 
9 1 = 4.124 10 − 
K x m 2 
Then 
T = − x x − 3 2 4.124 10 15 10 9 10 exp b gb g 
or 
T = x − 127 10 5 . 
2.34  
V x eV E x eV a m O= = = − 10 10 3 10 10 6 6 14 , , 
and m = x kg − 167 10 27 . 
Now 
K 
a − f 
h 
m V E O 
2 
= 
2 2 
= 
b − 27 g − b 6 gb − 
19 
g 
b − 
g 
( ) RS |T| 
UV |W| 
2 167 10 10 3 10 16 10 
1054 10 
34 2 
1 2 
. . 
. 
/ 
x x 
x 
or 
14 1 = 5 80 10 − . 
K x m 2 
So 
T = − − x FH 
IK 
FH 
IK 
3 
10 
16 
1 
− 3 
10 
2 580 10 10 14 14 exp b . gb g 
or 
T = x − 306 10 5 . 
2.35  
Region I, V = 0 (x < 0) ; Region II, 
V V x a O = (0 < < ) ; Region III, V = 0 (x > a) . 
(a) Region I; 
ψ1 1 1 1 1 (x) = A expa jK xf+ B expa− jK xf 
(incident) (reflected) 
Region II; 
ψ2 2 2 2 2 (x) = A expaK xf+ B expa−K xf 
Region III; 
ψ3 3 1 3 1 (x) = A expajK xf+ B expa− jK xf 
(b) 
In region III, the B3 term represents a reflected 
wave. However, once a particle is transmitted 
into region III, there will not be a reflected wave 
which means that B3 = 0 . 
(c) 
Boundary conditions: 
For x = 0 = ⇒ A + B = A + B 1 2 1 1 2 2 :ψ ψ 
d 
ψ ψ 1 2 
dx 
d 
dx 
jK A jK B K A K B 
1 1 1 2 2 2 2 2 = ⇒ − = − 
For x = a:ψ =ψ ⇒ 2 3 
A Ka B Ka A jKa 2 2 2 2 3 1 expa f+ expa− f = expa f 
And also
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
18 
d 
dx 
d 
dx 
ψ ψ 2 = 3 ⇒ 
K A K a K B K a 2 2 2 2 2 2 expa f− expa− f 
= jK A jK a 1 3 1 expa f 
Transmission coefficient is defined as 
T 
A A 
A A 
* 
= 3 3 
* 
1 1 
so from the boundary conditions, we want to 
solve for A3 in terms of A1 . Solving for A1 in 
terms of A3 , we find 
A 
jA 
K K 
2 
2 
3 
K K Ka Ka 1 
2 2 4 
1 2 
2 
1 
= 
+ 
lb − g expa f− expa− f 
−2 + − 1 2 2 2 2 jK K expaK af expa K af sexpa jK af 
We then find that 
A A 
A A 
= a f lb 2 
− 2 
g expa f 
K K 
−exp a −K a f 2 
2 
3 3 
K K Ka 1 1 
2 4 
1 2 
2 2 
1 
* 
* 
K 2 
K 2 
expaK af expa K af 2 r 
+4 + − 1 
2 
2 2 
We have 
K 
a − f 
h 
m V E O 
2 
2 
2 = 
and since V E O >> , then K a 2 will be large so 
that 
exp K a exp K a 2 2 a f >> a− f 
Then we can write 
A A 
A A 
= a f lb 2 
− 2 
g expa f 
K K 
3 3 
K K Ka 1 1 
1 2 
2 2 
1 
2 
2 
4 
* 
* 
K 2 
K expaK af 2 r 
+4 1 
2 
2 
2 
which becomes 
A A 
A A 
= a f b + gexpa f 
K K 
* 
2 
2 
2 3 3 
K K Ka 1 1 
2 4 
1 2 
2 2 
1 
* 
Substituting the expressions for Kand K, we 
1 2 find 
mVK 2 
K 
O 
1 
2 
2 
2 
2 
+ = 
h 
and 
K K 
m V E mE O 
2 
1 
2 
2 
2 2 
2 2 
= 
− LNM 
OQP 
LNM 
OQP 
a f 
h h 
= = FH 
IK 
m 
( ) 2 
2 
V E E O 
h 
a f 
or 
K K 
2 
m 
2 FH 
= V 
1− E 
V 
E O 
O 
2 
1 
2 
2 
2 
IK 
FH G 
IK J 
( ) 
h 
Then 
A A 
A A 
mV 
K a 
m 
E 
V 
( E 
) LN M 
V 
O 
O 
O 
1 1 
3 3 2 
2 
2 
2 
2 
2 
2 
16 
2 
1 
* 
* exp 
= 
− 
FH 
IK 
FH 
IK 
FH G 
IK J 
OQ P 
h 
h 
a f 
= 
IK J 
FH G 
A A 
IK J 
3 3 
E 
E 
− − V 
FH G 
V 
K a 
2 16 1 2 
O O 
* 
expa f 
or finally 
T 
A A 
= = − − A A 
G 
FH * expa f 
E 
V 
E 
V 
K a 
IK J 
FH G 
O O 
IK J 
3 3 
1 1 
2 16 1 2 
* 
2.36  
Region I: V = 0 
∂ 
∂ 
2 
+ = ⇒ 
2 
1 
2 2 1 
0 
ψ 
ψ 
x 
mE 
h 
ψ1 1 1 1 1 = A expa jK xf+ B expa− jK xf 
(incident wave) (reflected wave) 
where K 
mE 
2 
= 
1 2 
h 
Region II: V = V1 
∂ 
∂ 
+ 
− 
= 
2 
2 
2 
1 
2 2 
2 
0 
ψ 
ψ 
x 
maE V f 
h 
⇒ 
ψ2 2 2 2 2 = A expa jK xf+ B expa− jK xf 
(transmitted (reflected 
wave) wave) 
where K 
m E V 
2 
1 
2 
2 
= 
a − f 
h 
Region III: V = V2 
∂ 
∂ 
+ 
− 
= 
2 
3 
2 
2 
2 3 
2 
0 
ψ 
ψ 
x 
maE V f 
h 
⇒ 
ψ3 3 3 = A expajK xf 
(transmitted wave) 
where K 
m E V 
3 
2 
2 
2 
= 
a − f 
h 
There is no reflected wave in region III.
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
19 
The transmission coefficient is defined as 
T 
v 
v 
A A 
A A 
K 
K 
A A 
A A 
= 3 ⋅ = ⋅ 
1 
3 3 
1 1 
3 
1 
3 3 
1 1 
* 
* 
* 
* 
From boundary conditions, solve for A3 in terms 
of A1 . The boundary conditions are: 
x = 0: ψ ψ 1 2 = ⇒ A B A B 1 1 2 2 + = + 
∂ 
∂ 
ψ ∂ 
ψ 1 = 
2 
⇒ 
x ∂ 
x 
K A K B K A K B 1 1 1 1 2 2 2 2 − = − 
x = a: ψ ψ 2 3 = ⇒ 
A jK a B jK a 2 2 2 2 expa f+ expa− f 
=A jKa 3 3 expa f 
∂ 
∂ 
ψ ∂ 
ψ 2 = 
3 
⇒ 
x ∂ 
x 
K A jK a K B jK a 2 2 2 2 2 2 expa f− expa− f 
= K A jK a 3 3 3 expa f 
But K a n 2 = 2 π ⇒ 
exp jK a exp jK a 2 2 a f = a− f = 1 
Then, eliminating B A B 1 2 2 , , from the above 
equations, we have 
T 
K 
K 
K 
2 
4 
a f T 
3 ⇒ 
K K 
1 
= ⋅ 
+ 
1 
1 3 
2 
K K 
K K 
= 
4 1 3 
a + 
f2 
1 3 
2.37  
(a) Region I: Since V E O > , we can write 
∂ 
∂ 
− 
− 
= 
2 
2 
1 
2 2 1 
0 
ψ 
ψ 
x 
m V E O a f 
h 
Region II: V = 0 , so 
∂ 
∂ 
2 
+ = 
2 
2 
2 2 2 
0 
ψ 
ψ 
x 
mE 
h 
Region III: V → ∞ ⇒ψ = 3 0 
The general solutions can be written, keeping in 
mind that ψ 1 must remain finite for x < 0 , as 
ψ1 1 1 = B expa+K xf 
ψ2 2 2 2 2 = A sinaK xf+ B cosaK xf 
ψ 3 = 0 
where 
K 
a − f 
h 
m V E O 
2 
= 
1 2 
and K 
mE 
2 
= 
2 2 
h 
(b) 
Boundary conditions: 
x = 0: ψ ψ 1 2 = ⇒ B B 1 2 = 
∂ 
∂ 
ψ ∂ 
ψ 1 = 
2 
⇒ 
x ∂ 
x 
K B K A 1 1 2 2 = 
x = a: ψ ψ 2 3 = ⇒ 
A Ka B Ka 2 2 2 2 sin + cos = 0 
or 
B A Ka 2 2 2 = − tan 
(c) 
K B K A 1 1 2 2 = ⇒ A 
FH = G 
K 
K 
1 1 
B 2 
2 
IK J 
and since B B 1 2 = , then 
A 
FH = G 
K 
K 
2 1 
B 2 
2 
IK J 
From B A Ka 2 2 2 = − tan , we can write 
B 
= −G 
FH K 
K 
2 2 1 
B Ka 2 
2 
IK J 
tan 
which gives 
1 1 
2 = −FH G 
2 
IK J 
K 
K 
tan K a 
In turn, this equation can be written as 
1 
LN M 
2 
⋅ − 
2 = − 
OQ P 
V E 
E 
mE 
O tan a 
h 
or 
E 
V E 
mE 
a 
O − 
= − ⋅ LN M 
OQ P 
tan 
2 
2 h 
This last equation is valid only for specific 
values of the total energy E . The energy levels 
are quantized. 
2.38  
m e 
E 
J n 
n 
o 
o 
= 
− 
∈ 
( ) 
4 
2 2 2 a4π f 2h 
= 
( ) m e 
o eV 
o 
∈ 
n 
3 
2 2 2 a4π f 2h 
= 
− 
b gb g 
b g b g 
⇒ 
31 19 3 
− − 
x x 
x x n 
9.11 10 16 . 
10 
12 2 34 2 2 
− − 
π . . 
E 
4 8 85 10 2 1054 10 
− 13 . 
58 
( ) eV n = 
n 
2 
Then
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 
Solutions Manual Problem Solutions 
20 
n = 1⇒ E eV 1 = −13.58 
n = 2 ⇒ E eV 2 = −3.395 
n = 3⇒ E eV 3 = −1.51 
n = 4 ⇒ E eV 4 = −0.849 
  
2.39  
We have 
ψ 
3 2 1 1 
= ⋅ 
π 100 
− FH G 
IK J 
FH G 
IK J 
a 
/ 
exp 
r 
a o o 
and 
P r r 
1 1 2 2 
* exp 
a 
r 
a o o 
= = ⋅ ⋅ 
− FH G 
IK J 
FH G 
IK J 
4 4 
100 100 
2 
3 
π ψ ψ π 
π 
or 
P 
a f 2 exp 
a 
r 
r 
a o o 
= ⋅ 
− FH G 
IK J 
4 2 
3 
To find the maximum probability 
dP r 
( ) 
dr 
= 0 
= 
− FH G 
− − 
r 
a f exp + 
exp 
a o o o o IK J 
FH G 
IK J 
FH G 
IK J 
RST 
UVW 
4 2 22 
2 
3 
2 
a 
r 
a 
r 
a 
r 
which gives 
− 
0 = 1 
+ ⇒ 
r 
ao 
r ao = 
or r ao = is the radius that gives the greatest 
probability. 
2.40  
ψ 100 is independent of θ and φ , so the wave 
equation in spherical coordinates reduces to 
1 2 
FH 
r 
2 
+ − = ∂ 
∂ 
∂ 
∂ 
IK 
( ( )) ψ 
0 2 
r r 
r 
2 m 
⋅ o E V r 
ψ 
h 
where 
V r 
− 2 2 
e 
r mar o o o 
( ) = 
− 
∈ 
= 
4π 
h 
For 
ψ 
⇒ FH G 
3 2 1 1 
= ⋅ 
π 100 
− 
IK J FH G 
IK J 
a 
/ 
exp 
r 
a o o 
d 
dr a a 
r 
a o o o 
ψ 
π 
100 
3 2 1 1 1 
= ⋅ 
− − FH G 
IK J 
FH G 
IK J 
FH G 
IK J 
/ 
exp 
Then 
r 
d 
dr a 
r 
r 
a o o 
2 100 
5 2 
2 ψ 1 1 
π 
= 
− 
⋅ 
− FH G 
IK J 
FH G 
IK J 
/ 
exp 
so that 
d 
dr 
ψ r 
FH 
2 100 d 
dr 
IK 
= 
− 
⋅ 
5 2 2 
FH G 
− − 
r 
− 
a o o o o 
IK J 
FH G 
IK J 
FH G 
IK J 
FH G 
IK J 
LN M 
OQ P 
1 1 
2 
π a 
r 
r 
a 
r 
a 
/ 
exp exp 
Substituting into the wave equation, we have 
− 
r 
⋅ 
π 
a o o o o 5 2 − 
2 
− FH G 
− 
IK J 
FH G 
IK J 
FH G 
IK J 
LN M 
OQ P 
1 1 
2 2 
r a 
r 
r 
a 
r 
a 
/ 
exp exp 
= LN M 
2 3 2 m 
E 
h 
+ + ⋅ ⋅ 
− 
OQ P 
FH 
IK 
FH G 
IK J 
FH G 
IK J 
2 1 1 
/ 
exp 
0 2 
m a r a 
r 
a 
o 
π 
o o o o h 
where 
E E 
m e o 
a4π f 2 2h 
2 o 
= = 
4 
− 
∈ ⋅ 
⇒ 1 
E 
m a o o 
1 
2 
2 2 
= 
−h 
Then the above equation becomes 
FH G 
3 2 
− r 
a o o o o 
1 1 12 
2 
2 
π 
⋅ 
− − 
IK J 
FH G 
IK JLN M 
OQ PRSTLN M 
OQ P 
a 
r 
a ra r 
/ 
exp 
+ 
+ = FH G 
m 
− 
2 2 IK J 
UVW 
2 
h h 
0 2 
2 
m a m a r 
o 
o o o o h 
or 
1 1 3 2 
⋅ 
π 
− FH G 
IK J 
FH G 
IK J 
LN M 
OQ P 
a 
/ 
exp 
r 
a o o 
× 
− 
+ + 
− 
+ = FH G 
IK J 
RST 
UVW 
2 1 1 2 
0 2 2 a r a a a r o o o o 
which gives 0 = 0, and shows that ψ 100 is indeed 
a solution of the wave equation. 
2.41  
All elements from Group I column of the 
periodic table. All have one valence electron in 
the outer shell.
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
Chapter 3  
  
23 
Problem Solutions 
3.1  If ao were to increase, the bandgap energy 
would decrease and the material would 
begin to behave less like a semiconductor 
and more like a metal. If ao were to 
decrease, the bandgap energy would 
increase and the material would begin to 
behave more like an insulator. 
3.2  
Schrodinger’s wave equation 
− 
h ( ) ( ) ( ) ( ) 
⋅ 
x t 
x 
∂ 
∂ 
+ ⋅ = 
∂Ψ 
∂ 
h 
2 2 
2 2m 
V x x t j 
x t 
t 
Ψ 
Ψ 
, 
, 
, 
Let the solution be of the form 
Ψ x t u x j kx 
FH 
( , ) ( )E 
exp t IK 
FH 
IK 
LNM 
OQP 
= − 
h 
Region I, V(x) = 0 , so substituting the proposed 
solution into the wave equation, we obtain 
− 
⋅ 
∂ 
∂ 
( ) − FH 
IK 
FH 
IK 
LNM 
OQP 
h 
h 
2 
2m x 
jku x j kx 
E 
{ exp t 
+ 
( ) FH 
∂ 
∂ 
− 
IK 
FH 
IK 
LNM 
OQP 
UVW 
u x 
x 
j kx 
E 
exp t 
h 
= 
FH 
− 
⋅ − IK 
( ) FH 
IK 
FH 
IK 
LNM 
OQP 
j 
jE 
u x j kx 
E 
h exp 
t 
h h 
which becomes 
− 
( ) ( ) − FH 
IK 
FH 
IK 
LNM 
OQP 
h 
h 
2 
2 
2m 
jk u x j kx 
E 
{ exp t 
+ 
( ) FH 
∂ 
∂ 
− 
IK 
FH 
IK 
LNM 
OQP 
2 jk 
u x 
x 
j kx 
E 
exp t 
h 
+ 
u x 
x 
∂ 
∂ 
( ) FH 
− 
IK 
FH 
IK 
LNM 
OQPUVW 
2 
2 
j kx 
E 
exp t 
h 
= + ( ) − FHIK 
FH 
IK 
LNM 
OQP 
Eu x j kx 
E 
exp t 
h 
This equation can then be written as 
− + 
( ) + ⋅ = ( ) ( ) ( ) k u x jk 
∂ 
∂ 
+ 
2 
∂ 
∂ 
u x 
x 
u x 
x 
mE 
2 
u x 2 
2 2 2 
0 
h 
Setting u(x) = u (x) 1 for region I, this equation 
becomes 
( ) ( ) ( ) + − b −α g = 
d u x 
dx 
jk 
du x 
dx 
k ux 
2 
1 
2 
1 2 2 
1 2 0 
where 
α 2 
2 
2 
= 
mE 
h 
Q.E.D. 
( ) = . Assume the same form 
In region II, V x VO 
of the solution 
Ψ x t u x j kx 
FH 
( , ) ( )E 
exp t IK 
FH 
IK 
LNM 
OQP 
= − 
h 
Substituting into Schrodinger’s wave equation, 
we obtain 
− 
( ) ( ) − FH 
IK 
FH 
IK 
LNM 
OQP 
h 
h 
2 
2 
2m 
jk u x j kx 
E 
{ exp t 
+ 
( ) FH 
∂ 
∂ 
IKIKFH 
LNM 
− 
OQP 
2 jk 
u x 
x 
j kx 
E 
exp t 
h 
+ 
u x 
x 
∂ 
∂ 
( ) FH 
FHIK 
− 
IK 
LNM 
OQP 
UVW 
2 
2 
j kx 
E 
exp t 
h 
+ ( ) − FH 
IK 
FH 
IK 
LNM 
OQP 
V u x j kx 
E 
t O exp 
h 
= ( ) − FH 
IK 
FH 
IK 
LNM 
OQP 
Eu x j kx 
E 
exp t 
h 
This equation can be written as 
− + 
( ) ( ) ( ) 
∂ 
∂ 
+ 
∂ 
∂ 
k u x jk 
u x 
x 
u x 
x 
2 
2 
2 2 
mV 
mE 
2 2 
− O u ( x 
) + u ( x 
) = 0 2 2 
h h 
Setting u(x) = u (x) 2 for region II, this equation 
becomes 
d u x 
dx 
( ) ( ) 
jk 
du x 
dx 
2 
2 
2 
2 2 
+ 
− − + = FH 
IK 
mV 
k 2 2 O u ( x 
) 
2 2 
2 
α 0 
h 
where 
α 2 
2 
2 
= 
mE 
h 
Q.E.D.
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
2 ( ) ( ) ( ) = α − exp α − 
24 
3.3  
We have 
d u x 
( ) ( ) + − b −α g ( ) = 
dx 
jk 
du x 
dx 
k ux 
2 
1 
2 
1 2 2 
1 2 0 
The proposed solution is 
u x A j k x B j k x 1( ) = exp (α − ) + exp − (α + ) 
The first derivative is 
du x 
1 j k A j k x ( ) ( ) ( ) = α − exp α − 
dx 
− j(α + k)B exp − j(α + k)x 
and the second derivative becomes 
d u x 
dx 
j k A j kx 
2 
1 
2 
+ j(α + k ) B − j(α + k )x 2 exp 
Substituting these equations into the differential 
equation, we find 
−(α − k ) A j(α − k )x 2 exp 
−(α + k ) B − j(α + k)x 2 exp 
+2 jk{ j(α − k )Aexp j(α − k )x 
− j(α + k )B exp − j(α + k )x } 
− k − {A j( − k)x 2 2 b α g exp α 
+B exp − j(α + k )x } = 0 
Combining terms, we have 
− α − α + − (α − ) 2 2 l b 2 k k g 2k k 
− k − A j( − k)x 2 2 b α gq exp α 
+m−cα 2 + 2αk + k 2 h+ 2kaα + kf 
− k − B − j( + k)x = 2 2 b α gq exp α 0 
We find that 
0 = 0 Q.E.D. 
For the differential equation in u x 2( ) and the 
proposed solution, the procedure is exactly the 
same as above. 
3.4  
We have the solutions 
u x A j k x B j k x 1( ) = exp (α − ) + exp − (α + ) 
for 0 < x < a 
u x C j k x D j k x 2( ) = exp (β − ) + exp − (β + ) 
for −b < x < 0 
The boundary conditions: 
u u 1 2 (0) = (0) 
which yields 
A + B − C − D = 0 
Also 
du 
= 
1 2 
dx 
du 
x dx x 
=0 =0 
which yields 
(α − k)A − (α + k )B − (β − k)C + (β + k)D = 0 
The third boundary condition is 
u a u b 1 2 ( ) = (− ) 
which gives 
Aexp j(α − k )a + B exp − j(α + k)a 
= C exp j(β − k )(−b) + Dexp − j(β + k )(−b) 
This becomes 
Aexp j(α − k )a + B exp − j(α + k)a 
−C exp − j(β − k)b − Dexp j(β + k )b = 0 
The last boundary condition is 
du 
= 
1 2 
dx 
du 
x = a dx x =− 
b 
which gives 
j(α − k )Aexp j(α − k)a 
− j(α + k)B exp − j(α + k)a 
= j(β − k)C exp j(β − k)(−b) 
− j(β + k)Dexp − j(β + k)(−b) 
This becomes 
(α − k)Aexp j(α − k )a 
−(α + k)B exp − j(α + k )a 
−(β − k )C exp − j(β − k )b 
+(β + k)Dexp j(β + k )b = 0 
3.5  Computer plot 
3.6  Computer plot 
3.7  
P′ + = 
a 
a 
a ka 
sin 
cos cos 
α 
α 
α 
Let ka = y ,αa = x 
Then 
P′ + = 
x 
x 
x y 
sin 
cos cos 
Consider 
d 
dy 
of this function
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
25 
d 
dy 
P′ ⋅ x ⋅ x + x y − { b g 1 } = − sin cos sin 
We obtain 
′ (− )( ) + ( ) RST 
UVW 
dx 
dy 
− − P x x 
x x 
dx 
dy 
1 2 1 sin cos 
dx 
dy 
− sin x = − sin 
y 
Then 
dx 
dy 
P 
− 
+ LNM 
− =− x 
x 
x 
x 
OQP 
′ x y 
RST 
UVW 
1 
2 sin 
cos 
sin sin 
For y = ka = nπ , n = 0 , 1, 2 , . . . 
⇒ sin y = 0 
So that, in general, then 
dx 
dy 
( ) 
( ) 
d a 
d ka 
d 
dk 
= = = 
0 
α α 
And 
α 
α 
FH 
= ⇒ = IK 
FH 
IK 
− 2 1 
2 
/ 
2 2 
2 2 
1 2 
2 
mE d 
dk 
mE m dE 
h h h dk 
This implies that 
d 
dk 
dE 
dk 
α 
= 0 = for k 
n 
a 
= 
π 
3.8  
sin 
( ) = 9 + α = 
f a 
a 
a 
α 
α 
α cos a cos 
ka 
(a) ka = π ⇒ cos ka = −1 
1st point: αa = π : 2nd point: αa = 1.66π 
(2nd point by trial and error) 
Now 
α 
α 
FH 
= ⇒ = ⋅ a a 
mE 
E 
IK 
2 2 
a 
a m 
2 
2 2 
h 
h 
So 
E 
( ) 
a 
x 
b 1054 . 
x 
10 
g 
b x 
g 
= ⋅ ⇒ 
b − 
g 2 9.11 10 
− 
− 
α 2 
10 2 
34 2 
31 5 10 
E = ( a) x − (J) α 2 20 2.439 10 
or 
E = (αa) ( ) (eV ) 2 0.1524 
So 
αa = π ⇒ E = eV 1 1.504 
αa = 1 66π ⇒ E = 4.145 eV 2 . 
Then 
ΔE = 2.64 eV 
(b) 
ka = 2π ⇒ cos ka = +1 
1st point: αa = 2π 
2nd point: αa = 2.54π 
Then 
E eV 3 = 6.0165 
E eV 4 = 9.704 
so 
ΔE = 3.69 eV 
(c) 
ka = 3π ⇒ cos ka = −1 
1st point: αa = 3π 
2nd point: αa = 3.44π 
Then 
E eV 5 = 13.537 
E eV 6 = 17.799 
so 
ΔE = 4.26 eV 
(d) 
ka = 4π ⇒ cos ka = +1 
1st point: αa = 4π 
2nd point: αa = 4.37π 
Then 
E eV 7 = 24.066 
E eV 8 = 28.724 
so 
ΔE = 4.66 eV 
3.9  
(a) 0 < ka < π 
For ka = 0⇒ cos ka = +1 
By trial and error: 1st point: αa = 0.822π 
2nd point: αa = π 
From Problem 3.8, E = (αa) ( ) (eV ) 2 0.1524 
Then 
E eV 1 = 1.0163 
E eV 2 = 1.5041 
so 
ΔE = 0.488 eV 
(b) 
π < ka < 2π 
Using results of Problem 3.8 
1st point: αa = 1.66π 
2nd point: αa = 2π 
Then
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
26 
E3 = 4.145 eV 
E eV 4 = 6.0165 
so 
ΔE = 1.87 eV 
(c) 
2π < ka < 3π 
1st point: αa = 2.54π 
2nd point: αa = 3π 
Then 
E eV 5 = 9.704 
E eV 6 = 13.537 
so 
ΔE = 3.83 eV 
(d) 
3π < ka < 4π 
1st point: αa = 3.44π 
2nd point: αa = 4π 
Then 
E7 = 17.799 eV 
E8 = 24.066 eV 
so 
ΔE = 6.27 eV 
3.10  
6 
sin 
cos cos 
α 
α 
α 
a 
a 
+ a = ka 
Forbidden energy bands 
(a) ka = π ⇒ cos ka = −1 
1st point: αa = π 
2nd point: αa = 1.56π (By trial and error) 
From Problem 3.8, E = (αa) ( ) eV 2 0.1524 
Then 
E eV 1 = 1.504 
E eV 2 = 3.660 
so 
ΔE = 2.16 eV 
(b) 
ka = 2π ⇒ cos ka = +1 
1st point: αa = 2π 
2nd point: αa = 2.42π 
Then 
E eV 3 = 6.0165 
E eV 4 = 8.809 
so 
ΔE = 2.79 eV 
(c) 
ka = 3π ⇒ cos ka = −1 
1st point: αa = 3π 
2nd point: αa = 3.33π 
Then 
E eV 5 = 13.537 
E eV 6 = 16.679 
so 
ΔE = 3.14 eV 
(d) 
ka = 4π ⇒ cos ka = +1 
1st point: αa = 4π 
2nd point: αa = 4.26π 
Then 
E eV 7 = 24.066 
E eV 8 = 27.296 
so 
ΔE = 3.23 eV 
3.11  
Allowed energy bands 
Use results from Problem 3.10. 
(a) 
0 < ka < π 
1st point: αa = 0.759π (By trial and error) 
2nd point: αa = π 
We have 
E = (αa) ( ) eV 2 0.1524 
Then 
E eV 1 = 0.8665 
E eV 2 = 1.504 
so 
ΔE = 0.638 eV 
(b) 
π < ka < 2π 
1st point: αa = 1.56π 
2nd point: αa = 2π 
Then 
E eV 3 = 3.660 
E eV 4 = 6.0165 
so 
ΔE = 2.36 eV 
(c) 
2π < ka < 3π 
1st point: αa = 2.42π 
2nd point: αa = 3π
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
27 
Then 
E5 = 8.809 eV 
E eV 6 = 13.537 
so 
ΔE = 4.73 eV 
(d) 
3π < ka < 4π 
1st point: αa = 3.33π 
2nd point: αa = 4π 
Then 
E eV 7 = 16.679 
E eV 8 = 24.066 
so 
ΔE = 7.39 eV 
3.12  
T = 100K ; E 
x 
g= − 
4 2 
+ 
⇒ 
− ( ) 
1170 
4.73 10 100 
636 100 
. 
b g 
E eV g = 1.164 
T = 200K ⇒ E eV g = 1.147 
T = 300K ⇒ E eV g = 1.125 
T = 400K ⇒ E eV g = 1.097 
T = 500K ⇒ E eV g = 1.066 
T = 600K ⇒ E eV g = 1.032 
3.13  
The effective mass is given by 
m 
d E 
dk 
*= ⋅ FH G 
IK J 
1 
2 
− 2 
2 
1 
h 
We have that 
d E 
dk 
a curve A 
f > a f 
2 d E 
dk 
curve B 
2 
2 
2 
so that 
m curve A m curveB *a f < *a f 
3.14  
The effective mass for a hole is given by 
m 
*= ⋅ FH G 
d E 
dk p 
IK J 
1 
2 
− 2 
2 
1 
h 
We have that 
d E 
dk 
a curve A 
f > a f 
2 d E 
dk 
curve B 
2 
2 
2 
so that 
* a f < * a f 
m curve A m curveB p p 
3.15  
Points A, B: 
∂ 
∂ 
< ⇒ 
E 
k 
0 velocity in –x direction; 
Points C, D: 
∂ 
∂ 
> 
E 
x 
0 ⇒ velocity in +x direction; 
Points A, D; 
E 
k 
∂ 
∂ 
< ⇒ 
2 
2 0 
negative effective 
mass; 
Points B, C; 
E 
k 
∂ 
∂ 
> ⇒ 
2 
2 0 
positive effective 
mass; 
3.16  
E E 
2 2 
2 
k 
h 
− = 
C m At k = A ⇒ ° − 01 1 . b g 
1 
10 10 9 
k 
= A = m ° − 
So 
k = m + − 109 1 
For A: 
b g b g b g 
0 07 16 10 
10 1054 10 
2 
19 
9 2 34 2 
. . 
. 
( ) − 
− 
x = 
x 
m 
which yields 
m = x kg − 4.96 10 31 
so 
curve A 
m 
mo 
; = 0.544 
For B: 
b g b gb g 
0 7 16 10 
10 1054 10 
2 
19 
9 34 2 
. . 
. 
( ) − 
− 
x = 
x 
m 
which yields 
m = x kg − 4.96 10 32 
so 
Curve B 
m 
mo 
: = 0.0544 
3.17  
E E 
2 2 
2 
k 
h 
− = 
Vm
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
28 
k = A ⇒ m − − 01 10 1 9 1 . b * g 
For Curve A: 
b g b g b g 
0 08 16 10 
10 1054 10 
2 
19 
9 2 34 2 
. . 
. 
( ) − 
− 
x = 
x 
m 
which yields 
m = x kg ⇒ − 4.34 10 31 
m 
mo 
= 0.476 
For Curve B: 
b g b g b g 
0 4 16 10 
10 1054 10 
2 
19 
9 2 34 2 
. . 
. 
( ) − 
− 
x = 
x 
m 
which yields 
m = x kg ⇒ − 8 68 10 32 . 
m 
mo 
= 0.0953 
3.18  
(a) E = hν 
Then 
ν= = ⇒ 
b g 
b g 
( ) − 
− 
E 
h 
x 
x 
142 16 10 
6 625 10 
19 
34 
. . 
. 
ν = 343 1014 . x Hz 
(b) 
λ 
= = = − c x 
ν 
x 
x m 
3 10 
343 10 
8 75 10 
8 
14 
7 
. 
. 
or 
λ = 0.875 μm 
3.19 
(c) Curve A: Effective mass is a constant 
Curve B: Effective mass is positive around 
k = 0 , and is negative around k = ± 
π 
2 
. 
3.20  
E E E k k O O = − − 1 cos αa f 
dE 
dk 
E k kO = − (− ) − 1 a f α sin αa f 
= + − E k kO 
1α sin αa f 
So 
d E 
dk 
= E α 2 cos αa k − kf 
O 
2 
2 1 
Then 
d E 
dk 
E 
k kO 
2 
2 1 
2 
= 
= α 
We have 
1 1 
*= ⋅ = 
2 
2 
d E 
dk 
2 
α 
1 
2 
E 
m 
h h 
2 or 
m 
E 
* = 
h2 
2 α 
1 
3.21  
For the 3-dimensional infinite potential well, 
V(x) = 0 when 0 < x < a , 0 < y < a , and 
0 < z < a . In this region, the wave equation is 
∂ 
2 ( ) ( ) ( ) 
ψ x y z ψ ψ 
∂ 
+ 
∂ 
∂ 
+ 
∂ 
∂ 
2 
2 
2 
2 
2 
x 
x y z 
y 
x y z 
z 
, , , , , , 
mE 
2 
+ ( x y z 
) = 0 2 
h 
ψ , , 
Use separation of variables technique, so let 
ψ (x, y, z) = X(x)Y(y)Z(z) 
Substituting into the wave equation, we have 
YZ 
X 
x 
XZ 
Y 
y 
XY 
Z 
z 
∂ 
∂ 
+ 
∂ 
∂ 
+ 
∂ 
∂ 
2 
2 
2 
2 
2 
2 
2 
mE 
XYZ 
+ ⋅ = 
0 2 
h 
Dividing by XYZ , we obtain 
X 
x Y 
Y 
y Z 
Z 
z 
∂ 
∂ 
∂ 
∂ 
∂ 
∂ 
1 1 1 2 
0 
2 
2 
2 
2 
2 
mE 
⋅ 
+ ⋅ 
+ ⋅ 
+ = 
X 
2 h 
2 Let 
1 
0 
2 
2 
2 
2 
2 
2 
X 
X 
x 
k 
X 
x 
∂ 
∂ 
⋅ 
= − ⇒ 
k X x x ∂ 
∂ 
+ = 
The solution is of the form 
X x A k x B k x x x ( ) = sin + cos 
Since ψ (x, y, z) = 0 at x = 0 , then X(0) = 0 so 
that B ≡ 0 . 
Also, ψ (x, y, z) = 0 at x = a , then X(a) = 0 so 
we must have k a n x x = π , where 
nx = 1, 2 , 3, . . 
Similarly, we have 
1 2 
2 
2 
Y 
Y 
y 
∂ 
∂ 
ky ⋅ 
= − and 
1 2 
2 
2 
Z 
Z 
z 
∂ 
∂ 
⋅ 
= − 
kz From the boundary conditions, we find
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
29 
k a = n π and k a = n π 
y y z z where n= 1, 2 , 3, . . . and n= 1, 2 , 3, . . . 
y z From the wave equation, we have 
mE 
−k 2 − k 2 − k 2 
+ = 
x y z 
2 
2 
0 
h 
The energy can then be written as 
E 
FH 
= n + n + n 
m 
x y z a IK 
h2 
2 2 2 
2 
2 
b g π 
3.22  
The total number of quantum states in the 3- 
dimensional potential well is given (in k-space) 
by 
k 2 
dk 
g k dk 
π 
π 
a T( ) = ⋅ 
3 
3 
where 
k 
mE 2 
2 
2 
= 
h 
We can then write 
1 
k = ⋅ 2 
mE 
h 
Taking the differential, we obtain 
dk m 
E 
dE 
m 
E 
1 
= ⋅ 2 
⋅ ⋅ ⋅ = ⋅ ⋅ dE 
1 
2 
1 1 
h h 2 
Substituting these expressions into the density of 
states function, we obtain 
g E dE 
3 
( ) a FH 
mE m 
dE TE 
IK 
π 
π 
2 1 
h h 2 
= ⋅ ⋅ ⋅ 
3 2 
Noting that 
h = 
h 
2m 
this density of states function can be simplified 
and written as 
g E dE 
a 
h 
3 2 π / 
4 
( ) = ( 2 
m ) ⋅ EdE ⋅ 
T3 
3 
Dividing by a3 will yield the density of states, 
so that 
( ) E ( ) 
g E 
4 π 2 3 / 
2 
m 
h 
= ⋅ 
3 
3.23  
g E 
π b * g / 
4 2 3 2 
m 
h 
( )= n 
− 
C E E C 
3 
Now 
g 
π b * g / 
+ 4 2 z 3 2 
m 
h 
n 
E kT 
E E dE T 
C 
E 
C 
C 
= − ⋅ 
3 
= − FH 
IK 
* / E kT 
4 π 2 m 
2 + 
3 2 3 
3 2 
3 
h 
E E n 
C 
C 
C 
E 
/ b g a f 
/ b g 
= FH 
IK 
* / 
3 2 π m 
( ) 
4 2 2 
3 
3 2 
3 
h 
kT n 
Then 
g 
b g / 
b g 
( ) FH 
x 
4 2 0 067 9.11 10 
x T = 
IK 
− 
− 
6 625 10 
2 
3 
31 3 2 
34 3 
π . 
. 
×( ) − 0 0259 16 10 19 3 2 . . / b x g 
or 
g x m x cm T= =− − 3 28 10 3 28 10 23 3 17 3 . . 
3.24  
g E 
π b * g / 
4 2 3 2 
m 
h 
( )= p 
− 
V E E V 
3 
Now 
g 
π b * g / 
4 2 3 2 
m 
h 
p 
− z 
E 
E E dE T 
V 
E kT 
V 
V 
= − ⋅ 
3 
= 
− FH 
* / E 
π m 
− 
3 2 IK 
− 
4 2 2 
3 
3 2 
3 
h 
E E p 
V 
V 
V 
E kT 
/ b g a f 
/ b g 
= FH 
IK 
* / 
3 2 π m 
( ) 
4 2 2 
3 
3 2 
3 
h 
kT p 
g 
b g / 
b g 
( ) FH 
x 
4 2 048 9.11 10 
x T = 
IK 
− 
− 
6 625 10 
2 
3 
31 3 2 
34 3 
π . 
. 
×( ) − 0 0259 16 10 19 3 2 . . / b x g 
or 
g x m x cm T= = − − 6 29 10 6 29 10 24 3 18 3 . . 
3.25  
(a) g E 
π b * g / 
4 2 3 2 
m 
h 
( )= n 
− 
C E E C 
3 
b g 
b g b g 
( ) − 
π . 19 1 2 
− 4 2108 9.11 10 
= − 
− 
6 625 10 
16 10 
31 3 2 
34 3 
. 
. 
/ 
x / 
x 
x E EC 
= − − − 4.77 1046 3 1 x E E mJ C
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
30 
or 
g E x E E cm eV C C ( )= − − − 7.63 1021 3 1 
Then 
E   gC   
EC + 0.05 eV 
E eV C + 0.10 
E eV C + 0.15 
E eV C + 0.20 
171 1021 3 1 . x cmeV − − 
2.41 1021 x 
2.96 1021 x 
341 1021 . x 
π b * g / 
4 2 3 2 
V ( )= − 
(b) g E 
m 
h 
p 
E E V 
3 
( ) b − 
g 
b g b g 
= 178 . x 1046 E − E mJ − 3 − 1 V 
g ( E )= 2.85 x 1021 E − E cm − 3 eV − 1 
V V π . 19 1 2 
− 4 2 056 9.11 10 
= − 
− 
6 625 10 
16 10 
31 3 2 
34 3 
. 
. 
/ 
x / 
x 
x E E V 
E g E V( ) 
E eV V − 0.05 
E eV V − 0.10 
E eV V − 0.15 
E eV V − 0.20 
0 637 1021 3 1 . x cm eV − − 
0 901 1021 . x 
110 1021 . x 
127 1021 . x 
  
3.26  
g 
g 
b m 
g 
b m 
g 
C 
V 
* / 
n 
= ⇒ 
* / 
p 
3 2 
3 2 
g 
g 
m 
m 
C 
V 
n 
p 
= 
FH G 
IK J 
* 
* 
3/2 
3.27  
Computer Plot 
3.28  
g 
10 
a i 
f ( − ) 
! 
N g N 
! ! 
i i i 
! 
= 
− 8 ! 10 8 
! 
( )( )( ) 
( )( ) 
( )( ) 
( )( ) 
10 9 8 
8 2 
10 9 
2 1 
! 
= = ⇒ 
! ! 
= 45 
3.29  
(a) f E 
1 
1 expa f 
E kT E 
C C 
kT 
( ) LNM 
OQP 
= 
+ 
+ − 
= 
+ 
⇒ 
( ) 
1 
1 exp 1 
f (E) = 0.269 
(b) 
1 1 
1 
1 
− = − 
+ 
a − f 
− 
exp V V ( ) LNM 
OQP 
f E 
E kT E 
kT 
= − 
+ − 
⇒ 
( ) 
1 
1 
1 exp 1 
1− f (E) = 0.269 
3.30  
f E 
E E 
kT 
F 
( ) FH 
IK 
= 
+ 
− 
1 
1 exp 
(a) E E kT F − = , f (E) 
( ) 
= 
+ 
⇒ 
1 
1 exp 1 
f (E) = 0.269 
(b) E E kT F − = 5 , f (E) 
( ) 
= 
+ 
⇒ 
1 
1 exp 5 
f (E) = x − 6 69 10 3 . 
(c) E E kT F − = 10 , f (E) 
( ) 
= 
+ 
⇒ 
1 
1 exp 10 
f (E) = x − 4.54 10 5 
3.31  
1 1 
1 
1 
− = − 
+ 
− 
( ) FH 
IK 
f E 
E E 
kT 
exp F 
or 
1 
1 
1 
− = 
+ 
− 
( ) FH 
IK 
f E 
E E 
kT 
exp F 
(a) E E kT F− = , 1− f (E) = 0.269 
(b) E E kT F− =5 , 1 6 69 10 3 − ( ) = − f E . x 
(c) E E kT F− =10 , 1 4.54 10 5 − ( ) = − f E x 
3.32  
(a) T = 300K ⇒ kT = 0.0259 eV 
f E 
LNM 
1 − − 
F ( ) FH 
E E 
kT 
E E 
IK 
F kT 
OQP 
= 
+ 
− 
≈ 
1 exp 
exp a f
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
31 
E f bE g 
EC 
EC + (1 2)kT 
E kT C + 
EC + (3 2)kT 
E kT C +2 
6 43 10 5 . x − 
390 10 5 . x − 
2.36 10 5 x − 
143 10 5 . x − 
087 10 5 . x − 
(b) T = 400K ⇒ kT = 0.03453 
E f (E) 
EC 
EC + (1 2)kT 
E kT C + 
EC + (3 2)kT 
E kT C +2 
7.17 10 4 x − 
4.35 10 4 x − 
2.64 10 4 x − 
160 10 4 . x − 
0 971 10 4 . x − 
3.33  
E 
h2 2 2 
n 
ma n = 
π 
2 2 
= 
b 1054 . x 10 
− 
34 g 
2 n 
2 π 
2 
b x gb x 
g 
31 10 2 
− − 
2 9.11 10 10 10 
or 
E = 6 . 018 x 10 − 20 nJ 2 = 0 . 
376 neV 2 nFor n = 4 ⇒ E = 6 . 02 eV , 
4 For n = 5⇒ E = 9.40 eV . 
5 As a 1st approximation for T > 0 , assume the 
probability of n = 5 state being occupied is the 
same as the probability of n = 4 state being 
empty. Then 
1 
1 
1 
1 
IKexp exp 
− 4 1 5 
FH 
− 
+ 
− 
= 
+ 
IK 
FH 
E E 
kT 
E E 
kT 
F F 
⇒ 
+ 
− FH 
E − 
E 
kT 
= 
+ 
IK 
FHIK 
1 
1 
1 
E E 
kT 
exp 4 1 exp 5 
F F 
or 
E E E E E 
E E 
F F F − = − ⇒ = 
+ 
4 5 
4 5 
2 
Then 
EF = 
+ 
⇒ 
6 02 9.40 
2 
. 
E eV F = 7.71 
    
3.34  
(a) For 3-Dimensional infinite potential well, 
h2 2 
E 
n n n x y z = + + 
ma 
2 
2 2 2 
2 
πb g 
b . x 
− 
34 g 
2 π 
2 
b gb g b 2 2 2 g x 
1054 10 
2 9.11 10 10 
= ++ 
31 9 2 
− − 
n n n x y z 
= 0 376 + + 2 2 2 . n n n eV x y z b g 
For 5 electrons, energy state corresponding to 
n n n x y z= 221 = 122 contains both an electron 
and an empty state, so 
EF= (0 376) 2 + 2 + 1 ⇒ 2 2 2 . b g 
E eV F = 3.384 
(b) For 13 electrons, energy state corresponding 
to n n n x y z= 323 = 233 contains both an 
electron and an empty state, so 
EF= (0 376) 2 + 3 + 3 ⇒ 2 2 2 . b g 
E eV F = 8.272 
3.35   
The probability of a state at E E E 1 F = +Δ 
being occupied is 
f E 
+ FH 
E E 
kT 
E 
kT 
F 
1 1 
1 
1 
1 
1 1 
a f = 
+ 
− 
= 
IK 
FH 
IK 
exp exp 
Δ 
The probability of a state at E = E −Δ 
E 2 F being empty is 
1 
1 1 
1 
2 2 
2 
− =− 
+ 
− FH 
IK 
f E 
E E 
kT 
F 
a f 
exp 
= − 
+ 
E 
kT 
= 
− 
FH 
− − 
+ 
IK 
FH 
IK 
FH 
IK 
1 
1 
1 exp 1 
exp 
exp 
Δ 
Δ 
E Δ 
kT 
E 
kT 
or 
1 
1 
1 
2 2 − = 
+ 
+ FH 
IK 
f E 
E 
kT 
a f 
exp 
Δ 
Hence, we have that 
f E f E 1 1 2 2 a f = 1− a f Q.E.D.
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
32 
3.36  
(a) At energy E1 , we want 
1 1 
exp exp 
1 
1 
1 
0 01 
F F 
1 1 
1 
exp 
. 
E E 
kT 
E E 
kT 
E E 
kT 
F 
− 
− 
+ 
− 
+ 
− 
= 
FH 
IK 
FH 
IK 
FH 
IK 
This expression can be written as 
1 
1 001 
1 
1 
+ 
− 
− 
− = 
FH 
IK 
FH 
IK 
exp 
exp 
. 
E E 
kT 
E E 
kT 
F 
F 
⇒ = 
− ( ) FH 
IK 
E E 
kT 
1 0.01 exp 1 
F 
or 
E E kT 1 F = + ln(100) 
Then 
E E kT 1 F = + 4.6 
(b) 
At E E kT 1 F = + 4.6 , 
f E 
4.6 a f = 
+ FH 
E E 
kT 
kT 
kT 
F 
1 
1 
1 
1 
1 
1 
+ 
− 
= 
IK 
FH 
IK 
exp exp 
which yields 
f E1 a f = 0.00990 ≈ 0.01 
3.37  
(a) E eVT K F= 6.25 , = 300 , At E = 6.50 eV 
= − 1 
f E x ( ) FH 
IK 
= 
+ 
− 
1 
650 6 25 
0 0259 
6 43 10 5 
exp 
. . 
. 
. 
or 
6 43 10 3 . x % − 
(b) 
T = K ⇒ kT = ( )FH 
IK 
950 0 0259 
950 
300 
. 
or 
kT = 0.0820 eV 
Then 
f E ( ) FH 
IK 
= 
+ 
− 
= 
1 
1 
650 6 25 
0 0820 
0 0453 
exp 
. . 
. 
. 
or 4.53% 
= FH 
− = 0 99 
(c) 1 001 
1 
1 
0 30 
+ 
− 
IK 
. 
exp 
. 
. 
kT 
Then 
1 
0 30 1 
= = FH 
+ 1 0101 
0 99 
− 
IK 
exp 
. 
. 
. 
kT 
which can be written as 
exp 
FH 
. 
= = . 
+ 
IK 
0 30 1 
0 0101 
99 
kT 
Then 
0 30 
99 
0 30 
99 
0 06529 
. 
ln 
. 
ln 
. 
kT 
= ( )⇒ kT = = 
( ) 
So 
T = 756K 
3.38  
(a) 
f E ( ) FH 
IK 
= 
+ 
− 
= 
1 
1 
7.15 7.0 
0 0259 
0 00304 
exp 
. 
. 
or 
0.304% 
(b) 
At T = 1000K ⇒ kT = 0.08633 eV 
Then 
f E ( ) FH 
IK 
= 
+ 
− 
= 
1 
1 
7.15 7.0 
0 08633 
01496 
exp 
. 
. 
or14.96% 
(c) 
f E ( ) FH 
IK 
= 
+ 
− 
= 
1 
1 
685 7.0 
0 0259 
0 997 
exp 
. 
. 
. 
or 
99.7% 
(d) 
At E EF = , f (E) = 
1 
2 
for all temperatures. 
3.39  
For E = E1 , 
f E 
LNM 
1 − − 
F ( ) FH 
E E 
kT 
E E 
IK 
F kT 
OQP 
= 
+ 
− 
≈ 
1 1 
1 
exp 
exp a f 
Then
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
33 
f E1 
⇒ FH 
0 30 
0 0259 
a f= 
− 
IK 
exp 
. 
. 
f E x 1 
a f = 9.3 10 6 − 
For E = E, E − E = 1.12 − 0.3 = 0.82 
eV 2 F2 1 
1 1 
1 
082 
0 0259 
− = − 
+ 
− 
( ) FH 
IK 
f E 
exp 
. 
. 
or 
1 1 1 
− ( ) FH 
082 
0 0259 
− ≈ − − 
IK 
LNM 
OQP 
f E exp 
. 
. 
= 
FH 
− 
⇒ IK 
exp 
082 
. 
0 . 
0259 
1 1 78 10 14 − ( ) = − f E . x 
(b) 
For E E E E eV F F − = ⇒ − = 2 1 0.4 0.72 
At E = E1 , 
( ) F LNM 
f E 
E E 
kT 
OQP 
FH 
IK 
= 
− − 
= 
− 
exp exp 
. 
. 
1 0 72 
0 0259 
a f 
so 
f (E) = x − 8 45 10 13 . 
At E = E2 , 
1 
− ( ) LNM 
0 4 
0 0259 
− − 
− = 2 
= 
OQP 
FH 
IK 
f E 
E E 
kT 
exp F exp 
. 
. 
a f 
so 
1 1 96 10 7 − ( ) = − f E . x 
3.40  
(a) At E = E1 , 
a f 0 30 
( ) F LNM 
f E 
E E 
kT 
OQP 
FH 
IK 
= 
− − 
= 
− 
exp exp 
. 
. 
0 0259 
or 
f (E) = x − 9.3 10 6 
At E = E2 , then 
E E eV F− = − = 2 1.42 0.3 1.12 , 
So 
1 
OQPFH 
− ( ) LNM 
112 
0 0259 
− − 
− = 2 
= 
IK 
f E 
E E 
kT 
exp F exp 
. 
. 
a f 
or 
1 1 66 10 19 − ( ) = − f E . x 
(b) 
For E E E E eV F F − = ⇒ − = 2 1 0.4 1.02 , 
At E = E1 , 
( ) F LNM 
f E 
E E 
kT 
OQP 
FH 
IK 
= 
− − 
= 
− 
exp exp 
. 
. 
1 102 
0 0259 
a f 
or 
f (E) = x − 7.88 10 18 
At E = E2 , 
1 
− ( ) LNM 
0 4 
0 0259 
− − 
− = 2 
= 
OQP 
FH 
IK 
f E 
E E 
kT 
exp F exp 
. 
. 
a f 
or 
1 1 96 10 7 − ( ) = − f E . x 
3.41  
( ) F FH 
f E 
E E 
kT 
IK 
LNM 
OQP 
= + 
− − 
1 
1 
exp 
so 
df E 
F ( ) ( ) FH 
dE 
E E 
kT 
IK 
LNM 
OQP 
= − + 
− − 
1 1 
2 
exp 
× 
− FH 
IK 
FH 
IK 
1 
kT 
E E 
kT 
exp F 
or 
df E 
dE 
kT 
E E 
kT 
E E 
kT 
F 
F 
( ) 
FH 
IK 
FHIK 
LNM 
OQP 
= 
− − 
+ 
− 
1 
1 
2 
exp 
exp 
(a) T = 0 , For 
df 
E < E 
⇒ exp(−∞) = 0⇒ = 0 
F dE E E 
df 
dE F > ⇒ exp(+∞) = +∞ ⇒ = 0 
At E E 
df 
dE F = ⇒ →−∞ 
3.42  
(a) At E Emidgap = , 
f E 
E E 
kT 
E 
kT 
F g 
( ) FH 
IK 
FH G 
IK J 
= 
+ 
− 
= 
+ 
1 
1 
1 
1 
2 
exp exp 
Si: E eV g = 1.12 , 
f (E) 
( ) 
LN M 
OQ P 
= 
+ 
1 
1 
112 
2 0 0259 
exp 
. 
. 
or 
f (E) = x − 4.07 10 10 
Ge: E eV g = 0.66 ,
Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 
Solutions Manual Problem Solutions 
34 
f (E) 
( ) 
LN M 
OQ P 
= 
+ 
1 
1 
0 66 
2 0 0259 
exp 
. 
. 
or 
f (E) = x − 2.93 10 6 
GaAs: E eV g = 1.42 , 
f (E) 
( ) 
LN M 
OQ P 
= 
+ 
1 
1 
142 
2 0 0259 
exp 
. 
. 
or 
f (E) = x − 124 10 12 . 
(b) 
Using results of Problem 3.35, the answers to 
part (b) are exactly the same as those given in 
part (a). 
3.43  
f E 
kT 
( ) FH 
IK 
= = 
+ 
− 10 
1 
1 
055 
6 
exp 
. 
Then 
1 
055 1 
FH 
+ exp 
= = + 6 ⇒ 10 
10 6 
IK 
− 
. 
kT 
exp 
. . 
ln 
055 
10 
055 
10 6 6 
kT kT 
FH 
IK 
FH 
IK 
≈ ⇒ = + b g 
or 
kT= ⇒ 
055 
106 
. 
lnb g T K = 461 
                   
  
3.44  
At E = E, f a Ef = 0.05 
2 2 So 
1 
0 05 
1 2 
. 
exp 
= 
+ 
− FH 
IK 
E E 
kT 
F 
Then 
E − 
E 
kT 
= ln( ) 
2 F 19 
By symmetry, at E = E − f E = 1 1 , 1 a f 0.05 , 
So 
E E 
kT 
F − 
1 = ln(19) 
Then 
E − 
E 
kT 
= ln( ) 
2 1 2 19 
(a) 
At T = 300K , kT = 0.0259 eV 
E E E 2 1 − = Δ = (0.0259)(2)ln(19)⇒ 
ΔE = 0.1525 eV 
(b) 
At T = 500K , kT = 0.04317 eV 
E E E 2 1 − = Δ = (0.04317)(2)ln(19)⇒ 
ΔE = 0.254 eV
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
Chapter 4  
  
Problem Solutions  
  
4.1  
    n N N 
− FH G 
E 
kT i C V 
2 g = 
IK J 
exp   
                                                       (a) Silicon  
T(° K)   kT (eV )   n cm i 
b −3 g  
200   
400   
600   
0.01727   
0.03453   
0.0518   
7.68 104 x   
2.38 1012 x   
9.74 1014 x   
  
                          (b) Germanium    (c) GaAs  
T(° K)   n cm i 
b −3 g  n cm i 
b −3 g  
200   
400   
600   
2.16 1010 x   
8 60 1014 . x   
382 1016 . x   
1.38   
328 109 . x   
572 1012 . x   
  
  
4.2  
   n N N 
− FH G 
E 
kT i C V 
2 g = 
IK J 
exp   
− FH 
IK 
3 b g = b gb g 
FH 
T 
112 12 2 19 19 
x x 
10 2.8 10 104 10 
. exp 
300 
IK 
. 
kT 
Then  
     exp 
FH 
1.12 
T =b 2.912 x 
10 
g   
300 
14 
3 
kT 
IK 
FH 
IK 
By trial and error  
                              T = 381K   
  
4.3  
Computer Plot  
  
4.4  
    n N N T 
( ) FH G IK J 
E 
kT i CO VO 
2 3 g = ⋅ ⋅ − 
exp   
So  
     
2 
a f 1 1 
a f= − − FH GIK JFH G 
n T 
n T 
T 
T 
E 
exp   
kT kT 
i 
2 
i 
g 
2 
1 
2 
1 
3 
2 1 
IK J 
LN M 
OQ P 
At  T K kT eV 2 = 300 ⇒ = 0.0259   
At  T K kT eV 1 = 200 ⇒ = 0.01727   
Then  
  37  
    
2 3 . 
. 
583 10 
182 10 
300 
200 
1 
0 0259 
1 
0 01727 
7 
2 
exp 
. . 
x 
x 
Eg 
FH G 
IK J 
FH 
IK 
FH 
IK 
LNM 
OQP 
= − − 
or  
    1026 10 3 375 19.29 11 . x . exp Eg = ( )   
which yields  
              E eV g = 1.25   
For  T = 300K ,  
     583 10 300 
− ( ) FH 
125 
0 0259 
7 2 3 . exp 
. 
. 
x NNCO VO b g = a f 
IK 
  
or  
              N N x CO VO = 115 1029 .   
  
4.5  
(a)  g f E E 
exp a f   
− − LNM 
E E 
kT C F C 
∝ − F 
OQP 
∝ − 
exp C exp C F a f a f 
− − − − LNM 
OQP 
LNM 
OQP 
E E 
E E 
E E 
C 
kT 
kT Let E E x C − ≡   
Then  
    g f x 
− FH 
x 
kT C F ∝ 
IK 
exp   
Now, to find the maximum value  
     
d g f 
dx 
x 
x 
kT 
C F a f ∝ 
− − FH 
IK 
1 
2 
1/2 exp   
                                    − ⋅ 
FH 
− 
= IK 
1 
0 1 2 
kT 
x 
x 
kT 
/ exp   
This yields  
     
1 2 
1 
2 x 
1 2 
2 x 
kT 
x 
kT 
/ 
/ 
= ⇒ =   
Then the maximum value occurs at  
kT 
         E E 
C = + 
2 
  
(b)  
    g f E E 
a f a f exp   
− − LNM 
E E 
1− ∝ − F 
V F V 
kT OQP 
exp F V exp V a f a f 
E E 
kT V 
∝ − 
− − − − LNM 
OQP 
LNM 
OQP 
E E 
E E 
kT 
Let E E x V− ≡
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
  
Then  
    g f x 
− FH 
a f exp   
x 
kT V F 1− ∝ 
IK 
To find the maximum value  
     
a f exp   
d g − 
f 
V F 1 
dx 
d 
dx 
x 
= FH 
x 
kT 
0 
∝ 
− 
IK 
LNM 
OQP 
Same as part (a).  Maximum occurs at  
kT 
     x 
E E V = = − 
2 
  
or  
         E E 
kT 
V = − 
2 
  
  
4.6  
     
a f 
a f 
n E 
n E 
E E 
a f 
E E 
kT 
1 
− 
− − 
LNM 
exp 
= a f 
E E 
C 
1 
E E 
kT 
C 
C 
C 
1 
2 
2 
− − 
2 
− 
OQP 
LNM 
OQP 
exp 
  
where  
    E E kT 1 C = + 4   and   E E 
kT 
= +   
2 C 2 
Then  
     
a f 
a f 
n E 
n E 
a f = 
kT 
kT 
− − LNM 
E E 
kT 
1 
2 
1 2 4 
2 
OQP 
exp   
         = − − = − FH 
IK 
LNM 
OQP 
1 
2 
2 2 4 ( ) 
exp 2 2 exp 3.5   
or  
               
0 0854 a f 
a f = .   
n E 
n E 
1 
2 
  
4.7  
Computer Plot  
  
4.8  
   
2 
( ) 
( ) 
n A 
n B 
E 
kT 
E 
kT 
exp b g  
E E 
kT 
i 
2 
i 
− 
FH GIK JLN M 
gA 
gB 
− − 
gA gB 
FH G 
IK J 
OQ P 
= 
− 
= 
exp 
exp 
or  
     
exp b g 
LN M 
gA gB ( ) 
( ) 
n A 
n B 
E E 
kT 
i 
i 
OQ P 
= 
− − 
2 
  
  
  38  
   
     = 
( ) + 
( ) 
− − 
= 
LN M 
OQ P 
( ) 
LN M 
OQ P 
exp 
. 
. 
exp 
. 
. 
1 12 
2 0 0259 
0 20 
2 0 0259 
  
or  
               
n A 
i 
n B 
i 
( ) 
( ) 
= 47.5   
  
4.9  
Computer Plot  
  
4.10  
    E E kT 
m 
m Fi midgap 
p 
n 
− = FH G 
IK J 
3 
4 
ln 
* 
*   
* * = 0.56 , = 1.08   
Silicon: m m m m p O n O 
         E E eV Fi midgap − = −0.0128   
Germanium: m m m m p O n O 
* * = 0.37 , = 0.55   
         E E eV Fi midgap − = −0.0077   
Gallium Arsenide: m m m m p O n O 
* * = 0.48 , = 0.067   
         E E eV Fi midgap − = +0.038   
  
4.11  
(a)  E E kT 
m 
m Fi midgap 
p 
n 
− = FH G 
IK J 
3 
4 
ln 
* 
*   
          = ( ) ⇒ FH 
IK 
3 
4 
. ln . 
0 0259 
14 
0 . 
62 
  
         E E eV Fi midgap − = +0.0158   
(b)  
    E E Fi midgap − = ( ) ⇒ FH 
IK 
3 
4 
. ln . 
0 0259 
0 25 
110 
. 
  
         E E eV Fi midgap − = −0.0288   
  
4.12  
    E E kT 
N 
N Fi midgap 
V 
C 
− = ( ) FH G 
IK J 
1 
2 
ln   
          = ( ) = − FH G 
IK J 
x 
x 
. 
1 
104 10 
ln 0 495 
( kT 
) 2 
2.8 10 
19 
19 kT 
.
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
   
T(° K)   kT (eV )   E E eV Fi midgap − ( ) 
  
200   
400   
600   
0.01727   
0.03453   
0.0518   
−0.0085   
−0.017   
−0.0256   
  
  
4.13  
Computer Plot  
  
4.14  
Let  g E K C( )= =constant  
Then,  
    n g Ef EdE O C 
∞z ( ) ( )   
F = 
EC 
          = 
+ 
1 
− FH 
IK 
∞K z 
E E 
kT 
dE 
1 exp 
E F C 
  
          ≈ 
exp a f   
− − LNM 
OQP 
∞K z 
E E 
kT 
F dE 
EC 
Let  
    η = 
E − E 
kT 
F   so that   dE = kT ⋅ dη   
We can write  
    E E E E E E F C F C − = a − f− a − f   
so that  
exp exp exp 
F C F a f a f η 
⋅ − LNM 
( ) E E 
kT 
− − 
= 
E E 
kT 
− − 
OQP 
LNM 
OQP 
The integral can then be written as  
  n K kT 
∞exp zexp a f η η 
− LNM 
E E 
kT 
− − 
OQP 
( ) 
= ⋅ ⋅ C F 
d O 
0 
  
which becomes  
         n K kT 
exp a f   
− − LNM 
E E 
kT O 
= ⋅ ⋅ C F 
OQP 
  
4.15  
Let g E C E E C C ( )= − 1a f  for E EC ≥   
    n g Ef EdE O C F 
∞z   
= ( ) ( ) 
EC 
   
  39  
   
          = 
a − 
f 
exp 
+ 
− FH 
IK 
∞C z 
E E 
C dE 
E E 
kT 
1 
1 
E F C 
  
or  
    n C E E 
1 a f a f exp   
∞ − − z LNM 
E E 
kT 
≈ − 
F 
dE O C 
EC 
OQP 
Let  
    η = 
E − E 
kT 
C  so that  dE = kT ⋅ dη   
We can write  
     E E E E E E F C C F a − f = a − f+ a − f   
Then  
    n C 
1 exp a f   
− − LNM 
E E 
kT O 
= C F 
OQP 
− − ∞z LNM 
                     × − 
OQP 
E E 
E E 
kT 
C 
dE C 
EC 
a f a f exp   
or  
          = 
1 exp a f  
− − LNM 
OQP 
C 
E E 
kT 
C F 
∞z kT kT d 
0 
                      × ( ) (− ) ( ) 
η exp η η   
We find that  
    η η η η 
∞ e 
− 
η 
∞ z0 
exp(− ) = (− − ) = + 
d 1 1 
0 1 
  
So  
         n C kT 
− − ( ) LNM 
E E 
kT O 
= C F 
OQP 
1 
2 exp a f  
  
4.16  
We have   
1 =∈ O FH 
r 
a 
m 
r 
m O 
IK 
*   
For Germanium, ∈ = = r O 16 , m 0.55m *   
Then  
    r a1 O 16 
= ( ) = 29 0 53 FH 
1 
055 
IK 
( ) 
. 
.   
so  
              r A 1 = 15 4 ° .   
The ionization energy can be written as  
     E 
m 
m 
2 
13 6 eV 
  
O 
O 
S 
= 
∈ 
∈ 
FH G 
IK J 
FH G 
IK J 
( ) 
* 
.
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
   
055 
. 
( ) 16 
.    E = 0.029 eV   
    = ⇒ 
( ) 
13 6 2 
  
4.17  
We have   
1 =∈ O FH 
r 
a 
m 
r 
m O 
IK 
*   
For GaAs,  ∈ = = r O 13.1, m 0.067m *   
Then  
     r1 131 
= ( ) 0 53 FH 
1 
0 067 
IK 
. ( ) 
. 
.   
or  
              r A 1 = 104 °   
The ionization energy is  
     E 
FH G 
* 
= m 
mO 
∈ 
∈ 
O 
S 
= 
IK J 
FH G 
IK J 
( ) 
0 . 
067 
131 
. 
2 13 6 
( ) 
( ) 
. 
13 . 
6   
2 
or  
               E = 0.0053 eV   
  
4.18  
(a)  p 
b . g   
2 10 2 
n 
x 
O 
n 
x 15 10 
5 10 
= i 
= ⇒ 
O 
4 
    p x cm O = − 4.5 1015 3   ,  p n O O > ⇒ p-type  
(b)  
    E E kT 
− = FH G 
p 
n Fi F 
ln O 
  
i 
IK J 
                    =( ) FH G 
IK J 
0 0259 
x 
x 
4.5 10 
15 10 
15 
10 . ln. 
  
or  
              E − E = 0.3266 eV   
Fi F   
4.19  
a f    p N 
exp   
− − LNM 
E E 
kT O V 
= F V 
OQP 
           = 
− FHIK 
19 . exp . 
x   
104 10 
0 22 
0 . 
0259 
so  
         p x cm O = − 2.13 1015 3   
Assuming  
    E E eV C F − = 1.12 − 0.22 = 0.90   
Then  
  40  
   
exp a f   
− − LNM 
E E 
kT O C 
    n N 
= C F 
OQP 
          = 
− FH 
IK 
2.8 10 
0 90 
0 0259 
18 x exp 
. 
. 
  
or  
              n x cm O = − 2.27 104 3  
  
4.20  
(a)  T = 400K ⇒ kT = 0.03453 eV   
    N x x cm C= = FH 
IK 
400 
300 
3 2 
4.7 10 
17 
7.24 10 − 17 3 
/ 
  
Then  
    n N 
exp a f   
− − LNM 
E E 
kT O C 
= C F 
OQP 
          = 
− FH 
IK 
7.24 10 
0 25 
0 03453 
17 x exp 
. 
. 
  
or  
              n x cm O = − 519 1014 3 .   
Also  
    N x x cm V= = FHIK 
400 
300 
3 2 
7 10 
18 
108 10 − 19 3 
/ 
.   
and  
    E E eV F V − = 1.42 − 0.25 = 1.17   
Then  
    p x O = 
− FH 
IK 
19 . exp . 
108 10 
117 
0 . 
03453 
  
or  
              p x cm O = − 2.08 104 3  
(b)  
    E E kT 
N 
n C F 
C 
O 
− = FH G 
IK J 
ln   
                    =( ) FH G 
IK J 
0 0259 
17 
x 
x 
4.7 10 
519 10 
14 . ln. 
  
or   E E eV C F − = 0.176   
Then  
    E E eV F V − = 1.42 − 0.176 = 1.244   
and  
    p x O = 
− FH 
IK 
7 10 
1244 
0 0259 
b 18 gexp 
. 
. 
  
or   p x cm O = − − 9.67 103 3
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
  
4.21  
    p N 
exp a f   
− − LNM 
E E 
kT O V 
= F V 
OQP 
or  
    E E kT 
− = FH G 
N 
p F V 
ln V 
  
O 
IK J 
               = ( ) = FH G 
IK J 
x 
15 . ln . 
0 0259 
104 10 
10 
0 24 
19 
. 
eV   
Then  
    E − E = 1.12 − 0.24 = 0.88 eV   
C F So  
a f     n N 
exp   
− − LNM 
E E 
kT O C 
= C F 
OQP 
          = 
− FH 
IK 
19 x exp 
2.8 10 
088 
. 
0 . 
0259 
  
or  
              n x cm O = − 4.9 104 3  
  
4.22  
(a)  p n 
− FH 
E E 
kT O i 
= Fi F 
IK 
exp   
x FH 
10 . exp . 
    15 10 
0 35 
0 . 
0259 
IK 
  
or  
              p x cm O = − 111 1016 3 .   
(b)  
From Problem 4.1, n K x cm i 400 2.38 10( ) = 12 3 −   
     kT = ( ) = eV FH 
IK 
0 0259 
400 
300 
. 0.03453   
Then  
    E E kT 
− = FH G 
p 
n Fi F 
ln O 
  
i 
IK J 
               =( ) FH G 
IK J 
x 
x 
12 . ln . 
0 03453 
16 
111 10 
2.38 10 
  
or  
              E E eV Fi F − = 0.292   
(c)    
From (a)  
     n 
b g   
2 10 2 
n 
x 
= i 
= 
O 
p 
x O 
15 10 
111 10 
16 
. 
. 
or  
  41  
                
              n x cm O = − 2.03 104 3  
From (b)  
     n 
b g 
. 
2 12 2 
n 
x 
= i 
= 
O 
p 
x O 
16 
2.38 10 
111 10 
  
or  
              n x cm O = − 510 108 3 .   
  
4.23  
(a)  p n 
− FH 
E E 
kT O i 
= Fi F 
IK 
exp   
             = FH 
IK 
p b 18 . x 10 
6 g ex  
. 
0 35 
0 . 
0259 
or  
              p x cm O = − 133 1012 3 .   
(b)  From Problem 4.1,   
  n K x cm i 400 3 28 10( ) = 9 3 − .    , kT = 0.03453 eV   
Then  
    E E kT 
p 
n Fi F 
O 
i 
− = FH G 
IK Jln   
                     =( ) FH G 
IK J 
9 . ln . 
0 03453 
12 
133 10 
328 . 
10 
x 
x 
  
or  
              E E eV Fi F − = 0.207   
(c)  From (a)  
     n 
b g   
2 6 2 
n 
x 
= i 
= 
O 
p 
x O 
18 10 
133 10 
12 
. 
. 
or  
              n cm O = − 2.44 3   
From (b)  
     n 
b g   
x 
x O = 
9 2 
328 10 
133 10 
12 
. 
. 
or  
              n x cm O = − 8 09 106 3 .   
  
4.24  
For silicon, T KE E F V = 300 , =   
     ′ = 
E − 
E 
kT 
η = ⇒ (η′) = 
V F 0 F 0 60 1/ 2 .   
We can write
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
π / b . g .   
2    pO = NV F ( η 
′) 2 
= 104 x 10 19 
( 0 60 ) 1 2 
π 
or  
              p = 7.04 x 1018 cm − 3   
O   
4.25  
Silicon, T = 300 Kn , = 5 x 1019 cm − 3   
O We have  
2 
    n = 
NF O C F η / a f  
1 2 π 
or  
    5 10 
2 
b g aη f /   
2.8 10 19 19 
1 2 x x F F = 
π 
which gives  
     F 1 2 F 158 / aη f = .   
Then  
    η F 
F C E E 
kT 
= = 
− 
13 .    
or   E E F C − = (1.3)(0.0259) ⇒  
              E E eV C F − = −0.034   
  
4.26  
For the electron concentration  
    n E g E f E C F ( ) = ( ) ( )   
The Boltzmann approximation applies so  
b g a f  
( ) F LNM 
n E 
π * / 
4 2 − − 3 2 
m 
h 
E E 
E E 
kT 
n 
C 
OQP 
= − 
3 
exp 
or  
b g a f  
( ) n C F LNM 
    n E 
π * / 
4 2 − − 3 2 
m 
h 
E E 
kT 
OQP 
= 
3 
exp 
                     × 
C exp C a f  
− − − LNM 
OQP 
kT 
E E 
kT 
E E 
kT 
Define  
     x 
E − 
E 
kT 
= C 
  
Then  
     n(E)→ n(x) = K x exp(−x)   
To find maximum  n(E)→ n(x) , set  
dn x 
dx 
( ) ( ) ( ) ( ) LNM 
1 
2 
= 0 
= − 1/ 2 exp − + 1/ 2 − 1 exp 
− K x x x x 
OQP 
or  
  42  
     0 
1 2 = − − − ( )LNM 
1 
2 
OQP 
Kx x x / exp   
which yields  
     x 
E − 
E 
kT 
= = C 
⇒ 
1 
2 
1 
2 
  E E kT C = + 
  
For the hole concentration  
     p E g E f E V F ( ) = ( ) 1− ( )   
From the text, using the Maxwell-Boltzmann  
approximation, we can write  
b g a f  
( ) F LNM 
p E 
π * / 
4 2 − − 3 2 
m 
h 
E E 
E E 
kT 
p 
V 
OQP 
= − 
3 
exp 
or  
b g a f  
( ) p F V LNM 
     p E 
π * / 
m 
h 
E E 
kT 
OQP 
= 
4 2 − − 3 2 
3 
exp 
                       × 
V exp V a f  
− − − LNM 
OQP 
kT 
E E 
kT 
E E 
kT 
Define  ′ = 
− 
x 
E E 
kT 
V   
Then  
     p(x′) = K′ x′ exp(−x′)   
To find the maximum of  p(E)→ p(x′) , set  
dp ( x 
′ 
) 
= 
dx 
′ 
0 . Using the results from above, we  
find the maximum at  
              E E kT V = − 
1 
2 
  
  
4.27  
(a)  Silicon:  We have  
    n N 
exp a f   
− − LNM 
E E 
kT O C 
= C F 
OQP 
We can write  
    E E E E E E C F C d d F − = a − f+ a − f   
For  
     E E eV E E kT C d d F − = 0.045 , − = 3   
    n x O = 
− LNM 
b − 
19 gexp 
3 OQP 
2.8 10 
0 . 
045 
0 . 
0259 
  
          = 2.8 10 (−4.737) 19 b x gexp   
or  
              n x cm O = − 2.45 1017 3   
We also have
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
exp a f   
− − LNM 
E E 
kT O V 
    p N 
= F V 
OQP 
Again, we can write  
    E E E E E E F V F a a V − = a − f+ a − f  
For  
     E E kT E E eV F a a V − = 3 , − = 0.045   
Then  
    p x O= −− LNM 
OQP 
b 104 p . 10 19 g ex3 
  
. 
0 045 
0 . 
0259 
          = 104 10 (−4.737) 19 b . x gexp   
or  
              p x cm O = − 9.12 1016 3   
(b)  
GaAs:  Assume E E eV C d − = 0.0058   
Then  
    n x O = 
− LNM 
b − 
17 gexp 
3 OQP 
4.7 10 
0 . 
0058 
0 . 
0259 
  
          = 4.7 10 (−3 224) 17 b x gexp .   
or  
              n x cm O = − 187 1016 3 .   
Assume  E E eV a V − = 0.0345   
Then  
    p x O = 
− LNM 
b − 
18 gexp 
3 OQP 
7 10 
0 . 
0345 
0 . 
0259 
  
          = 7 10 (−4.332) 18 b x gexp   
or  
              p x cm O = − 9.20 1016 3   
  
4.28  
Computer Plot  
  
4.29  
(a)  Ge:  
     p 
+ FH 
N − 
N N − 
N 
IK 
2 
n O 
2   
= 
a d + 
a d 
i 2 2 
Then  
  
10 
13 10 
13 2 
    p = + + x O2 
2 
IK J 
FH Gb 2.4 10 
13 g2   
or  
              p x cm O = − 2.95 1013 3   
and  
  43  
     n 
b g   
2 13 2 
n 
x 
O 
p 
x = i 
= ⇒ 
O 
13 
2.4 10 
2.95 10 
              n x cm O = − 195 1013 3 .   
(b)  
     n 
+ FH 
N − 
N N − 
N 
n O 
= 
d a + 
d a 
i IK 
2 2 
2 
2   
Then  
     n 
x x 
= + + x OG 
FH IK J 
5 10 
2 
5 10 
2 
2.4 10 
15 15 2 
b 13 g2   
or  
              n x cm O ≈ − 5 1015 3   
and  
     p 
b g   
2 13 2 
n 
x 
O 
n 
x 2.4 10 
5 10 
= i 
= ⇒ 
O 
15 
              p x cm O = − 115 1011 3 .   
  
4.30  
For the donor level  
     
n 
1 
N E E 
− FHIK 
kT 
d 
= 
+ 
1 
1 
2 
exp 
d d F 
  
             = 
+ FH 
IK 
1 
1 
1 
2 
0 20 
0 0259 
exp 
. 
. 
  
or  
               
n 
N 
= − 885 10 4 .   
d x 
d 
And  
    f E 
E E 
kT 
F 
F 
( ) FH 
IK 
= 
+ 
− 
1 
1 exp 
  
Now  
    E E E E E E F C C F − = a − f+ a − f  
or  
    E E kT F − = + 0.245   
Then  
    f E F( ) FH 
IK 
= 
+ + 
⇒ 
1 
1 1 
0 245 
0 0259 
exp 
. 
. 
  
              f E x F( )= − 2.87 10 5
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
  
4.31  
(a)  n N x cm O d = = − 2 1015 3   
     p 
b . g   
2 10 2 
n 
x 
O 
n 
x 15 10 
2 10 
= i 
= ⇒ 
O 
15 
              p x cm O = − 1125 105 3 .   
(b)  
    p N cm O a = = − 1016 3   
     n 
n 
p 
b . g   
2 10 2 
x 
O 
15 10 
10 
= i 
= ⇒ 
O 
16 
              n x cm O = − 2.25 104 3  
(c)  
              n p n x cm O O i = = = − 15 1010 3 .   
(d)  
     T = 400K ⇒ kT = 0.03453 eV   
n x x i 
b gb . g exp 
2 19 19 
FH 
3 
− 2.8 10 1 04 10 
400 
300 
112 
0 03453 
= 
IK 
FH 
IK 
. 
. 
or  
    n x cm i = − 2.38 1012 3   
     p 
N N 
= + + i FH 
IK 
2 
a a 
n O 
2 2 
2   
          = 5 10 + 5 10 + 2.38 10 13 13 2 12 2 x b x g b x g   
or  
              p x cm O = − 10 1014 3 .   
Also  
     n 
n 
p 
b g   
2 12 2 
x 
O 
2.38 10 
10 
= i 
= ⇒ 
O 
14 
              n x cm O = − 566 1010 3 .   
(e)  
     T = 500K ⇒ kT = 0.04317 eV   
n x x i 
b gb . g exp 
2 19 19 
IK 
3 
− FH2.8 10 1 04 10 
500 
300 
112 
0 04317 
= 
FH 
IK 
. 
. 
or  
  
    n x cm i = − 854 1013 3 .   
Now  
     n 
N N 
= + + i FH 
IK 
2 
d d 
n O 
2 2 
2   
  44  
          = 5 10 + 5 10 + 8 54 10 13 13 2 13 2 x b x g b . x g   
or  
              n x cm O = − 149 1014 3 .   
Also  
     p 
b g   
2 13 2 
n 
x 
O 
n 
x = i 
= ⇒ 
O 
14 
854 . 
10 
149 . 
10 
              p x cm O = − 4.89 1013 3   
  
4.32  
(a)  n N x cm O d = = − 2 1015 3   
     p 
b . g   
2 6 2 
n 
x 
O 
n 
x 18 10 
2 10 
= i 
= ⇒ 
O 
15 
              p x cm O = − − 162 103 3 .   
(b)  
              p N cm O a = = − 1016 3   
     n 
n 
p 
b . g 
2 6 2 
x 
O 
18 10 
10 
= i 
= ⇒ 
O 
16 
  
              n = 324 . x 10− 4 cm − 3   
O (c)  
              n = p = n = 18 . x 106 cm − 3   
O O i (d)  
     kT = 0.03453 eV   
3 
n 2 4.7 x 10 17 7 x 10 
18 
i 
400 
300 
142 
0 03453 
= 
− FH 
IK 
FH 
IK 
b gb g exp 
. 
. 
  
or  
    n x cm i = − 328 109 3 .   
Now  
              p N cm O a = = − 1014 3   
and  
     n 
n 
p 
b . g   
2 9 2 
x 
O 
328 10 
10 
= i 
= ⇒ 
O 
14 
  
              n = 108 . x 105 cm − 3   
O (e)  
     kT = 0.04317 eV   
n 2 x 17 x 18 
i 
3 
4.7 10 7 10 
500 
300 
142 
0 04317 
= 
− FH 
IK 
FH 
IK 
b gb g exp 
. 
. 
  
or
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
    n x cm i = − 2.81 1011 3   
Now  
              n N cm O d = = − 1014 3   
Also  
     p 
n 
n 
b g   
2 11 2 
x 
O 
2.81 10 
10 
= i 
= ⇒ 
O 
14 
              p x cm O = − 7.90 108 3  
  
4.33  
(a)  N N a d > ⇒ p-type  
(b)  Si:  
     pO = Na − Nd = 2.5x10 − 1x10 13 13   
or  
              p x cm O = − 15 1013 3 .   
Then  
     n 
b g   
2 10 2 
n 
x 
O 
p 
x 15 . 
10 
15 . 
10 
= i 
= ⇒ 
O 
13 
              n x cm O = − 15 107 3 .   
Ge:  
     p 
+ FH 
N − 
N N − 
N 
IK 
2 
n O 
2   
= 
a d + 
a d 
i 2 2 
      = + + FH G 
IK J 
FH G 
IK J 
13 13 2 
b x g   
. x . x 13 2 
15 10 
2 
15 10 
2 
2.4 10 
or  
              p x cm O = − 326 1013 3 .   
Then  
     n 
b g 
. 
2 13 2 
n 
x 
O 
p 
x 2.4 10 
326 10 
= i 
= ⇒ 
O 
13 
  
              n x cm O = − 177 1013 3 .   
GaAs:  
              p x cm O = − 15 1013 3 .   
And  
     n 
b g   
2 6 2 
n 
x 
O 
p 
x 18 . 
10 
15 . 
10 
= i 
= ⇒ 
O 
13 
              n cm O = − 0 216 3 .   
     
  45  
4.34  
For  T = 450K   
    n x x i 
2 19 19 
3 
2.8 10 104 10 
450 
300 
= FH 
IK 
b gb . g   
                                  × 
− 
( ) 
LN M 
OQ P 
exp 
. 
. 
112 
0 0259 a450 300f   
or  
              n x cm i = − 172 1013 3 .   
(a)  
    N N a d > ⇒ p-type  
(b)  
     p 
+ FH 
N − 
N N − 
N 
n O 
= 
a d + 
a d 
i IK 
2 2 
2 
2   
        = 
15 14 .x x 
15 10 − 8 10 
2 
  
            + 
FH G 
− 
+ IK J 
15 10 8 10 
2 
172 10 
15 14 2 
. 13 2 
. 
x x 
b x g   
or  
              p N N x cm O a d ≈ − = − 7 1014 3   
Then  
     n 
b . g   
2 13 2 
n 
x 
O 
p 
x 172 10 
7 10 
= i 
= ⇒ 
O 
14 
              n = 4.23 x 1011 cm − 3   
O (c)  
Total ionized impurity concentration  
    N = N + N = 15 . x 10 15 + 8 x 10 14   
I a d or  
              N = 2.3 x 1015 cm − 3   
I   
4.35  
b . 10 g 
2 
2      n 
n 
x 
O 
p 
x = i 
= ⇒ 
O 
5 
15 10 
2 10 
  
              n x cm O = − 1125 1015 3 .   
              n p O O > ⇒  n-type
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
4.36  
     kT = ( ) = eV FH 
IK 
0 0259 
200 
300 
. 0.01727   
= FH 
b gb g   
2 17 18 
    n x x i 
3 
4.7 10 7 10 
200 
300 
IK 
                                          × 
− LNM 
OQP 
exp 
142 
. 
0 . 
01727 
  
or  
              n = 138 . cm − 3   
i Now  
    n p = n 2 ⇒ 5 p 2 = n 2   
O O i O i or  
n 
     p 
O 
= i ⇒ 
5 
  p cm O = − 0 617 3 .   
And  
    n p O O = 5 ⇒   n cm O = − 309 3 .   
  
4.37  
Computer Plot  
  
4.38  
Computer Plot  
  
4.39  
Computer Plot  
  
4.40  
n-type, so majority carrier = electrons  
     n 
N N 
= + + i FH 
IK 
2 
d d 
n O 
2 2 
2   
          = 10 + 10 + 2 10 13 b 13 g2 b x 13 g2   
or  
              n x cm O = − 324 1013 3 .   
Then  
     p 
b g 
. 
2 13 2 
n 
x 
O 
n 
x 2 10 
324 10 
= i 
= ⇒ 
O 
13 
  
              p x cm O = − 123 1013 3 .   
  
4.41  
(a)  N N d a > ⇒ n-type  
    n N N x x O d a = − = 2 10 − 1 10 16 16   
or  
  46  
              n x cm O = − 1 1016 3   
Then  
     p 
n 
n 
b . g   
2 10 2 
x 
O 
15 10 
10 
= i 
= ⇒ 
O 
16 
              p x cm O = − 2.25 104 3  
(b)  
    N N a d > ⇒  p-type  
    p N N x x O a d = − = 3 10 − 2 10 16 15   
or  
              p x cm O = − 2.8 1016 3   
Then  
     n 
b . g   
2 10 2 
n 
x 
O 
p 
x = i 
= ⇒ 
O 
16 
15 10 
2.8 10 
              n x cm O = − 8 04 103 3 .   
  
4.42  
(a)  n n O i < ⇒  p-type  
(b) n x cm O= ⇒− 4.5 104 3  electrons: minority  
carrier  
     p 
b . g   
2 10 2 
n 
x 
O 
n 
x = i 
= ⇒ 
O 
4 
15 10 
4.5 10 
    p x cm O= ⇒ − 5 1015 3  holes: majority carrier  
(c)  
    p N N O a d = −   
so  
    5 10 5 10 15 15 x N x a = − ⇒ N cm a = − 1016 3      
    Acceptor impurity concentration,  
    N x cm d = − 5 1015 3   Donor impurity   
    concentration  
   
4.43  
    E E kT 
p 
n Fi F 
O 
i 
− = FH G 
IK J 
ln   
For Germanium:  
T(° K)   kT(eV )   n cm i 
b −3 g  
200   
400   
600   
0.01727   
0.03454   
0.0518   
2.16 1010 x   
8 6 1014 . x   
382 1016 . x
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
   p 
N N 
= + + i FH 
IK 
2 
a a 
n O 
2 2 
2  and N cm a = − 1015 3   
  
T(° K)   p cm O 
b −3 g  E E eV Fi F − ( )   
200   
400   
600   
10 1015 . x   
149 1015 . x   
387 1016 . x   
0.1855   
0.01898   
0.000674   
  
  
4.44  
    E E kT 
− = FH G 
n 
n F Fi 
ln O 
  
i 
IK J 
For Germanium,   
    T K n x cm i = ⇒ = − 300 2.4 1013 3   
     n 
N N 
= + + i FH 
IK 
2 
d d 
n O 
2 2 
2   
  
N b cm −3 g  n b cm −3 g  E − E ( eV )   
d 
O 
F Fi 1014   
105 . x 1014   
0.0382   
1016   
1016   
0.156   
1018   
1018   
0.2755   
  
  
4.45  
     n 
N N 
= + + i FH 
IK 
2 
d d 
n O 
2 2 
2   
Now  
     n n i O = 0.05   
so  
    n x x n O O = 15 10 + 15 10 + (0 05) 15 15 2 2 . b . g .   
which yields  
  
    n x cm O = − 30075 1015 3 .   
Then  
    n x cm i = − 1504 1014 3 .   
We have  
     n N N 
− FH G 
E 
kT i C V 
2 g = 
IK J 
exp   
so  
    
  47  
1504 10 4.7 10 7 10 
300 
14 2 17 18 
3 
. x x x 
b g b gb g T = FH 
IK 
  
                                     × 
− 
( ) 
LN M 
OQ P 
exp 
. 
. 
142 
0 0259 aT 300f   
By trial and error  
                                 T ≈ 762K   
  
4.46  
Computer Plot  
  
4.47  
Computer Plot  
  
4.48  
(a)  E E kT 
m 
m Fi midgap 
p 
n 
− = FH G 
IK J 
3 
4 
ln 
* 
*   
                            = ( ) ( )⇒ 3 
4 
0.0259 ln 10   
              E E eV Fi midgap − = +0.0447   
(b)  
Impurity atoms to be added so  
    E E eV midgap F − = 0.45   
(i)  p-type, so add acceptor impurities  
(ii)  E E eV Fi F − = 0.0447 + 0.45 = 0.4947   
    p n 
= FH 
E − 
E 
O i 
kT = Fi F 
IK 
FH 
IK 
exp exp 
. 
. 
10 
0 4947 
0 0259 
5   
or  
              p N x cm O a = = − 197 1013 3 .   
  
4.49  
    n N N N 
exp a f   
− − LNM 
E E 
kT O d a C 
= − = C F 
OQP 
so  
    N x x d= + 
− FH 
IK 
5 10 2.8 10 
0 215 
0 0259 
15 19 exp 
. 
. 
  
       = 5 10 + 6 95 10 15 15 x . x   
so  
              N x cm d = − 12 1016 3 .   
  
4.50  
(a)  p N N 
exp a f   
− − LNM 
E E 
kT O a V 
= = F V 
OQP 
or
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
     exp 
a f 104 10 
OQP 
= = LNM 
E E 
kT 
N 
N 
+ − . 
x 
x 
F V V 
a 
7 10 
19 
15   
                                                          = 149 103 . x   
Then  
    E E x F V − = (0 0259) 149 103 . lnb . g  
or  
              E E eV F V − = 0.189   
(b)  
If  E E eV F V − = 0.1892 − 0.0259 = 0.1633   
Then  
    N x a = 
− FH 
IK 
19 . exp . 
104 10 
01633 
0 . 
0259 
  
                                              = − 190 1016 3 . x cm   
so that  
     ΔN x x a= 1 90 10 − 7 10 ⇒ 16 15 .   
               ΔN x cm a = − 12 1016 3 .   
    Acceptor impurities to be added  
  
4.51  
(a)  E E kT 
− = = FH G 
IK J 
( ) FH G 
N 
ln d 
. ln 
F Fi 
n x i 
IK J 
15 
10 
15 . 
10 
0 0259 
10 
  
or  
              E E eV F Fi − = 0.2877   
(b)  
    E E kT 
N 
− = = n 
G 
FH IK J 
eV Fi F 
ln a 
0.2877   
i 
(c)  
    For (a),  n N cm O d = = − 1015 3   
For (b)  
     n 
n 
p 
b . g   
2 10 2 
x 
O 
15 10 
10 
= i 
= ⇒ 
O 
15 
              n x cm O = − 2.25 105 3  
  
4.52  
    E E kT 
− = FH G IK J 
p 
n Fi F 
ln O 
  
i 
                    = ( ) = FH G 
IK J 
p 
n 
O eV 
i 
0.0259 ln 0.45 
  
Then  
  48  
    p x O= ⇒ FH 
IK 
p b 18 . 10 
6 . 
g ex  
0 45 
0 . 
0259 
              p x cm O = − 6 32 1013 3 .   
Now  
    p N O a < , Donors must be added  
    p N N N N p O a d d a O = − ⇒ = −   
so  
    N x d= 10 − 6 32 10 ⇒ 15 13 .   
              N x cm d = − 9.368 1014 3   
  
4.53  
(a)  E E kT 
N 
n F Fi 
d 
i 
− = FH G 
IK J 
ln   
                        = ( ) ⇒ FH G 
IK J 
0 0259 
15 
x 
x 
2 10 
15 10 
10 . ln. 
  
              E E eV F Fi − = 0.3056   
(b)  
    E E kT 
N 
n Fi F 
a 
i 
− = FH G 
IK Jln   
                    = ( ) ⇒ FH G 
IK J 
0 0259 
16 
10 
15 10 
10 . ln. 
x 
  
              E E eV Fi F − = 0.3473   
(c)  
              E E F Fi =   
(d)  
     kT eV n x cm i = = − 0 03453 2.38 1012 3 . ,   
    E E kT 
p 
n Fi F 
O 
i 
− = FH G 
IK J 
ln   
                    = ( ) ⇒ FH G 
IK J 
0 03453 
14 
10 
2.38 10 
12 . lnx 
  
              E E eV Fi F − = 0.1291   
(e)  
     kT eV n x cm i = = − 0 04317 8 54 1013 3 . , .   
    E E kT 
n 
n F Fi 
O 
i 
− = FH G 
IK J 
ln   
                     = ( ) ⇒ FH G 
IK J 
13 . ln . 
0 04317 
14 
149 10 
854 . 
10 
x 
x 
  
              E E eV F Fi − = 0.0024
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
4.54  
(a)  E E kT 
− = FH G 
N 
n F Fi 
ln d 
  
i 
IK J 
                        = ( ) ⇒ FH G 
IK J 
0 0259 
15 
x 
x 
2 10 
18 10 
6 . ln. 
  
              E E eV F Fi − = 0.5395   
(b)  
    E E kT 
− = FH G 
N 
n Fi F 
ln a 
  
i 
IK J 
                    = ( ) ⇒ FH G 
IK J 
0 0259 
16 
10 
18 10 
6 . ln. 
x 
  
              E E eV Fi F − = 0.5811   
(c)  
              E E F Fi = EFi −   
(d)  
     kT eV n x cm i = = − 0 03453 3 28 109 3 . , .   
    E E 
x Fi F − = ( ) ⇒ FH G 
IK J 
0 03453 
14 
10 
328 10 
9 . ln. 
  
              E E eV Fi F − = 0.3565   
                             
  49  
(e)  
     kT eV n x cm i = = − 0 04317 2.81 1011 3 . ,   
E E kT 
n 
n F Fi 
O 
i 
− = FH G 
IK J 
ln   
                     = ( ) ⇒ FH G 
IK J 
0 04317 
14 
10 
2.81 10 
11 . lnx 
  
              E E eV F Fi − = 0.2536   
  
4.55  
p-type  
    E E kT 
p 
n Fi F 
O 
i 
− = FH G 
IK J 
ln   
                    = ( ) ⇒ FH G 
IK J 
0 0259 
15 
x 
x 
5 10 
15 10 
10 . ln. 
  
              E E eV Fi F − = 0.3294
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 4  
Solutions Manual                                                                                                                  Problem Solutions  
  
    
                      (page left blank)  
  50
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 5  
Solutions Manual                                                                                                                  Problem Solutions  
  
Chapter 5  
  
Problem Solutions  
  
5.1  
(a) n cm O = − 1016 3   
and  
     p 
n 
n 
b . g   
2 6 2 
x 
O 
18 10 
10 
= i 
= ⇒ 
O 
16 
              p x cm O = − − 324 104 3 .   
(b)  
    J e nn O = μ Ε   
For GaAs doped at N cm d = − 1016 3 ,  
    μ n ≈ 7500 cm V − s 2/   
Then  
     J = x 16 10− (7500) 10 (10) 19 16 b . g b g   
or  
               J = 120 A cm2 /   
(b)  (i) p cm O = − 1016 3 , n x cm O = − − 324 104 3 .   
(ii)  For GaAs doped at N cm a = − 1016 3 ,  
    μ p ≈ 310 cm V − s 2 /   
    J e p p O = μ Ε   
        = ⇒ 16 10− (310) 10 (10) 19 16 b . x g b g   
               J = 4.96 A cm2 /   
  
5.2  
(a)  V = IR ⇒10 = (0.1R)⇒  
               R = 100 Ω   
(b)  
     R 
L 
A 
L 
RA 
σ   
= ⇒ = ⇒ 
σ 
− 
3 
b 3 g   
10 
100 10 
    σ= ⇒ 
( ) − 
              σ = ( − )− 0 01 1 . Ω cm   
(c)  
    σ ≈ eμ N n d  
or  
    0 01 16 10 1350 19 . = . x − ( )Nd b g   
or  
  53  
              N x cm d = − 4.63 1013 3   
(d)  
    σ ≈ eμ p ⇒ p O   
    0 01 16 10 480 19 . = . x − ( )pO b g   
or  
    p x cm N N N O a d a = = − = − − 130 10 10 14 3 15 .   
or  
              N x cm a = − 113 1015 3 .   
Note: For the doping concentrations obtained,  
the assumed mobility values are valid.  
  
5.3  
(a)  R 
L 
A 
L 
A 
ρ 
= = 
σ 
  and  σ ≈ eμ N n d  
For N = 5 x 1016 cm − 3 , μ ≈ 1100 cm 2/ V − s   
d n Then  
01 
. 
     R 
b   
16 . x 10 19 g 1100 b 5 x 
10 16 g 100 b 10 4 g 2 
= 
− ( ) ( ) − 
or  
               R = 1136x104 . Ω   
Then  
     I 
V 
5 
R x 
= = ⇒ 
1136 104 . 
   I = 0.44 mA   
(b)  
In this case  
               R = 1136x103 . Ω  
Then  
     I 
V 
5 
R x 
= = ⇒ 
1136 103 . 
   I = 4.4 mA   
(c)  
    Ε = 
V 
L 
  
5 
010 
For (a),   Ε = = 
50 
. 
V / cm  
And  
   vd n = μ Ε = (1100)(50)  or  v x cm s d = 55 104 . /   
For (b),   Ε = = = 
V 
L 
V cm 
5 
0 01 
500 
. 
/   
And  
   vd= (1100)(500)⇒ v x cm s d = 55 105 . /
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 5  
Solutions Manual                                                                                                                  Problem Solutions  
  
   
5.4  
(a)  GaAs:  
     R 
L 
A 
V 
I 
k 
L 
A 
ρ 
10 
20 
05 . Ω   
= = = = = 
σ 
Now  
    σ ≈ eμ N p a  
For N cm a = − 1017 3 , μ p ≈ 210 cm V − s 2 /   
Then  
    σ= = − − − 1 6 10 (210) 10 3 36 ( ) 19 17 1 b . x g b g . Ω cm   
So  
     L = R A = ( )( ) x − σ 500 3 36 85 10 8 . b g  
or  
               L = 14.3 μm  
(b)  Silicon  
For N cm a = − 1017 3 , μ p ≈ 310 cm V − s 2 /   
Then  
    σ= = − − − 1 6 10 (310) 10 4.96 ( ) 19 17 1 b . x g b g Ω cm   
So  
     L = R A = ( )( ) x − σ 500 4.96 85 10 b 8 g  
or  
               L = 21.1 μm   
  
5.5  
(a)  Ε = = = 
V 
L 
V cm 
3 
1 
3 /   
     v 
v 
= μ Ε ⇒ μ = d = 
d n n 
Ε 
10 
3 
4 
  
or  
              μ n = 3333 cm V − s 2 /   
(b)  
     vd n = μ Ε = (800)(3)   
or  
              v x cms d = 2.4 103 /   
  
5.6  
(a)  Silicon: For  Ε = 1 kV / cm ,  
v x cms d = 12 106 . /   
Then  
     t 
− 10 
12 10 
d 
v x t 
4 
= = ⇒ 
d 
6 . 
  t x s t = − 8 33 10 11 .   
For GaAs, v x cms d = 7.5 106 /   
  54  
  
Then  
     t 
d 
v x t 
= = ⇒ 
d 
10 
− 4 
7.5 10 
6   t x s t = − 133 10 11 .   
(b)  
Silicon: For Ε = 50 kV / cm ,  
    v x cms d = 9.5 106 /   
Then  
     t 
d 
v x t 
= = ⇒ 
d 
10 
− 4 
9.5 10 
6   t x s t = − 105 10 11 .   
GaAs,  v x cm s d = 7 106 /   
Then  
     t 
d 
v x t 
= = ⇒ 
d 
10 
− 4 
7 10 
6   t x s t = − 143 10 11 .   
  
5.7  
For an intrinsic semiconductor,  
    σ μ μ i i n p = en b + g  
(a)  
For N N cm d a = = − 1014 3 ,  
    μ μ n p = 1350 cm V − s = 480 cm V − s 2 2 / , /   
Then  
    σ i = x x + 16 10− 15 10 (1350 480) 19 10 b . gb . g   
or  
              σ i = x − cm − − 4.39 10 ( ) 6 1 Ω   
(b)  
For N N cm d a = = − 1018 3 ,  
    μ μ n p ≈ 300 cm V − s ≈ 130 cm V − s 2 2 / , /   
Then  
    σ i = x x + 16 10− 15 10 (300 130) 19 10 b . gb . g   
or  
              σ i = x − cm − − 1 03 10 ( ) 6 1 . Ω   
  
5.8  
(a)  GaAs  
    σ ≈ μ ⇒ = μ − e p x p p O p O 5 16 1019 b . g   
From Figure 5.3, and using trial and error, we  
find  
     p x cm cm V s O p ≈ ≈ − − 13 10 240 17 3 2 . , μ /   
Then
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 5  
Solutions Manual                                                                                                                  Problem Solutions  
  
  n 
b g   or  n x cm O = − − 2.49 105 3  
2 6 2 
n 
x 
= i 
= 
O 
p 
x O 
17 
18 . 
10 
13 . 
10 
  
(b)  Silicon:  
1 
    σ 
e nn O   
= ≈ μ 
ρ 
or  
     n 
1 1 
8 16 10 1350 19 ρ μ b . g   
= = 
( ) − ( ) 
e x O 
n 
or  
              n x cm O = − 579 1014 3 .   
and  
p 
b g   p x cm O = − 389 105 3 .   
2 10 2 
n 
x 
O 
n 
x 15 . 
10 
579 . 
10 
= i 
= ⇒ 
O 
14 
Note:  For the doping concentrations obtained in  
part (b), the assumed mobility values are valid.  
  
5.9  
    σ μ μ i i n p = en b + g  
Then  
    10 16 10 1000 600 −6 −19 = . x ( + )ni b g   
or  
              n K x cm i 300 3 91 10( ) = 9 3 − .   
Now  
    n N N 
− FH G 
E 
kT i C V 
2 g = 
IK J 
exp   
or  
= = FH G 
IK J 
L 
b 19 g 
2 
b g 
Q PPln . ln 
N MM 
10 
391 10 
N N 
n x g 
E kT 
C V 
9 2 0 0259 
. 2 
i 
( ) 
O 
or  
              E eV g = 1.122   
Now  
  n K i 
= 
b g − exp a f 
2 19 2 500 10 
1122 
. 
( ) 
0 0259 500 300 
( ) 
LN M 
OQ P 
. 
  
                     = 515 1026 . x   
or  
              n K x cm i 500 2.27 10( ) = 13 3 −   
Then  
    σ i = x x + 16 10− 2.27 10 (1000 600) 19 13 b . gb g   
so  
              σ i 500K 5 81x10 cm 3 1 ( ) = ( − ) − − . Ω   
  55  
  
5.10  
(a)  (i)  Silicon: σ μ μ i i n p = en b + g  
    σ i = x x + 16 10− 15 10 (1350 480) 19 10 b . gb . g   
or  
              σ i = x − cm − − 4.39 10 ( ) 6 1 Ω   
(ii)  Ge:   
    σ i = x x + 16 10− 2.4 10 (3900 1900) 19 13 b . gb g   
or  
              σ i = x − cm − − 2.23 10 ( ) 2 1 Ω   
(iii)  GaAs:  
    σ i = x x + 1 6 10− 18 10 (8500 400) 19 6 b . gb . g   
or  
              σ i = x − cm − − 2.56 10 ( ) 9 1 Ω   
(b)  R 
L 
A 
= 
σ 
  
(i)   R 
x 
− 
200 10 
4 
b 6 gb 8 g   
= ⇒ 
− − 
x x 
4.39 10 85 10 
               R = 5 36x109 . Ω   
(ii)   R 
x 
− 
200 10 
4 
b 2 gb 8 g   
= ⇒ 
− − 
x x 
2.23 10 85 10 
               R = 1 06x106 . Ω   
(iii)   R 
x 
− 
200 10 
4 
b 9 gb 8 g   
= ⇒ 
− − 
x x 
2.56 10 85 10 
               R = 9.19x1012 Ω   
  
5.11  
(a)  ρ 
μ 
= 5 = 
1 
e Nn d 
  
Assume  μ = 1350 cm 2/ V − s   
n Then  
1 
     N 
16 10 1350 5 19 b . g   
x d= ⇒ − ( )() 
              N x cm d = − 9.26 1014 3   
(b)  
T = 200K → T = −75C   
T = 400K → T = 125C   
From Figure 5.2,   
    T CN cm d = − = ⇒ − 75 1015 3 ,
Semiconductor Physics and Devices: Basic Principles, 3rd edition                                                    Chapter 5  
Solutions Manual                                                                                                                  Problem Solutions  
  
    μ ≈ 2500 cm 2/ V − s   
n     T = 125 CN , = 1015 cm − 3 ⇒   
d     μ ≈ 700 cm 2/ V − s   
n Assuming n = N = 9.26 x 1014 cm − 3  over the  
O d temperature range,  
For   T = 200K ,  
1 
    ρ= ⇒ − ( ) 
1 6 10 2500 9.26 10 19 14 b . x g b x g   
              ρ = 2.7 Ω − cm   
For  T = 400K ,  
1 
    ρ= ⇒ − ( ) 
1 6 10 700 9.26 10 19 14 b . x g b x g   
              ρ = 9.64 Ω − cm   
  
5.12  
Computer plot  
  
5.13  
(a)  Ε = 10V cm⇒ v = Ε d n / μ   
     vd= (1350)(10)⇒   v x cm s d = 135 104 . /   
so  
    T mv x x n d = = ( ) − 1 
2 
1 08 9.11 10 135 10 * 2 31 2 2 . b gb . g   
1 
2 
or  
               T = x J ⇒ x eV − − 8 97 10 56 10 27 8 . .   
(b)  
Ε = 1 kV / cm ,  
    v x cm s d= (1350)(1000) = 1 35 106 . /   
Then  
     T = ( ) x − x 1 
2 
108 9.11 10 135 10 31 4 2 . b gb . g   
or  
               T = x J ⇒ x eV − − 8 97 10 56 10 23 4 . .   
  
5.14  
(a)  n N N 
− FH G 
E 
kT i C V 
2 g = 
IK J 
exp   
19 19 b x gb x gexp 
             = 2 10 1 10 
− FH 
110 
. 
0 . 
0259 
IK 
  
            = ⇒ = − 7.18 10 8 47 10 19 9 3 x n x cm i .   
For N cm n n cm d i O = >> ⇒ = − − 10 10 14 3 14 3   
Then  
  56  
    J enn O = σΕ = μ Ε   
                  = 16 10− (1000) 10 (100) 19 14 b . x g b g   
or  
               J = 1 60 A cm2 . /   
(b)  
A 5% increase is due to a 5% increase in electron  
concentration.  So  
i = = + + FH 
    n x 
N N 
d d 
n O 
IK 
105 10 
2 2 
14 
2 
2 .   
We can write  
     b 1 . 05 x 10 14 − 5 x 10 13 g 2 = b 5 x 10 13 g 2 + 2   
so  
    n 2 = 5.25 x 10 26   
i 
ni 
          = 
− FH 
IK J2 10 1 10 
IK 
FH G 
b gb g exp g   
300 
19 19 
3 
x x 
T E 
kT 
which yields  
     2.625 10 
110 12 
300 
3 
x 
T 
kT 
− = 
− FH 
IK 
FH 
IK 
exp 
. 
  
By trial and error, we find  
               T = 456K   
  
5.15  
(a)  σ = eμ n + eμ p n O p O  and   n 
n 
p O 
i 
O 
= 
2 
  
Then  
    σ 
e μ 
n 
p 
n i e p 
O 
= + μ 
p O 
2 
  
To find the minimum conductivity,  
     
d 
dp 
e n 
p 
σ μ 
e 
O 
= = n i 
μ 
O 
p 
− 
+ ⇒ 
( ) 
0 
1 2 
2   
which yields  
    p n O i 
n 
p 
= 
FH G 
IK J 
μ 
μ 
1/ 2 
  (Answer to part (b))  
Substituting into the conductivity expression  
σ σ 
e μ 
n / 
b g b g   
μ μ 
= = + μ μ μ min / 
n 
n i e n 
i n p 
p i n p 
2 
1 2 
1 2 
which simplifies to  
    σ μμ min = 2eni n p   
The intrinsic conductivity is defined as
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed

More Related Content

What's hot

Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaK. M.
 
Electromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesElectromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesFellowBuddy.com
 
Solar Cells versus Photodiode
Solar Cells versus PhotodiodeSolar Cells versus Photodiode
Solar Cells versus PhotodiodeAbdullaziz Tagawy
 
OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1Asif Iqbal
 
4. single stage amplifier
4. single stage amplifier4. single stage amplifier
4. single stage amplifierShahbazQamar2
 
Metal semiconductor contact
Metal semiconductor contactMetal semiconductor contact
Metal semiconductor contactAnchit Biswas
 
Fabrication process of Integrated Circuit (IC's)
Fabrication process of Integrated Circuit (IC's)Fabrication process of Integrated Circuit (IC's)
Fabrication process of Integrated Circuit (IC's)COMSATS Abbottabad
 
Transmission lines
Transmission linesTransmission lines
Transmission linesSuneel Varma
 
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCETOPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCETSeshaVidhyaS
 
Rectangular waveguides
Rectangular waveguidesRectangular waveguides
Rectangular waveguideskhan yaseen
 
Working of Microwave Tubes and Semiconductor Devices, Unit 2 DECE - C18 SBTET
Working of Microwave Tubes  and  Semiconductor Devices, Unit 2 DECE - C18 SBTETWorking of Microwave Tubes  and  Semiconductor Devices, Unit 2 DECE - C18 SBTET
Working of Microwave Tubes and Semiconductor Devices, Unit 2 DECE - C18 SBTETjanakiravi
 

What's hot (20)

Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomena
 
Electromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesElectromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture Notes
 
Mobility
MobilityMobility
Mobility
 
Semiconductor lasers
Semiconductor lasersSemiconductor lasers
Semiconductor lasers
 
Solar Cells versus Photodiode
Solar Cells versus PhotodiodeSolar Cells versus Photodiode
Solar Cells versus Photodiode
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
 
OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1
 
4. single stage amplifier
4. single stage amplifier4. single stage amplifier
4. single stage amplifier
 
Metal semiconductor contact
Metal semiconductor contactMetal semiconductor contact
Metal semiconductor contact
 
Fabrication process of Integrated Circuit (IC's)
Fabrication process of Integrated Circuit (IC's)Fabrication process of Integrated Circuit (IC's)
Fabrication process of Integrated Circuit (IC's)
 
FET AMPLIFIER
FET AMPLIFIERFET AMPLIFIER
FET AMPLIFIER
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
StarkEffect.ppt
StarkEffect.pptStarkEffect.ppt
StarkEffect.ppt
 
Optics part i
Optics   part iOptics   part i
Optics part i
 
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCETOPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
 
Rectangular waveguides
Rectangular waveguidesRectangular waveguides
Rectangular waveguides
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
Working of Microwave Tubes and Semiconductor Devices, Unit 2 DECE - C18 SBTET
Working of Microwave Tubes  and  Semiconductor Devices, Unit 2 DECE - C18 SBTETWorking of Microwave Tubes  and  Semiconductor Devices, Unit 2 DECE - C18 SBTET
Working of Microwave Tubes and Semiconductor Devices, Unit 2 DECE - C18 SBTET
 

Similar to (Neamen)solution manual for semiconductor physics and devices 3ed

Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioEdgar Ortiz Sánchez
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 
8 Marking scheme Worksheet (A2.pdf
8 Marking scheme  Worksheet (A2.pdf8 Marking scheme  Worksheet (A2.pdf
8 Marking scheme Worksheet (A2.pdfLuz Martinez
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfDannyCoronel5
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdffranciscoantoniomonr1
 
JEE Main Mock Test - Physics
JEE Main Mock Test - Physics JEE Main Mock Test - Physics
JEE Main Mock Test - Physics Ednexa
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDChristos Kallidonis
 
JEE Main 2022 Session 1 Physics Paper and Solution 1st shift
JEE Main 2022 Session 1 Physics Paper and Solution 1st shiftJEE Main 2022 Session 1 Physics Paper and Solution 1st shift
JEE Main 2022 Session 1 Physics Paper and Solution 1st shiftALLEN Overseas
 
Resposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoResposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoKarine Felix
 

Similar to (Neamen)solution manual for semiconductor physics and devices 3ed (20)

Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Maths book2 Text book answer
Maths book2 Text book answerMaths book2 Text book answer
Maths book2 Text book answer
 
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
 
H c verma part 1 solution
H c verma part 1 solutionH c verma part 1 solution
H c verma part 1 solution
 
problemas resueltos
problemas resueltosproblemas resueltos
problemas resueltos
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Sm chap01
Sm chap01Sm chap01
Sm chap01
 
Ch.3-Examples 3.pdf
Ch.3-Examples 3.pdfCh.3-Examples 3.pdf
Ch.3-Examples 3.pdf
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
ask cap 3.pdf
ask cap 3.pdfask cap 3.pdf
ask cap 3.pdf
 
8 Marking scheme Worksheet (A2.pdf
8 Marking scheme  Worksheet (A2.pdf8 Marking scheme  Worksheet (A2.pdf
8 Marking scheme Worksheet (A2.pdf
 
577hw2s
577hw2s577hw2s
577hw2s
 
Ch01
Ch01Ch01
Ch01
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
 
JEE Main Mock Test - Physics
JEE Main Mock Test - Physics JEE Main Mock Test - Physics
JEE Main Mock Test - Physics
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCD
 
JEE Main 2022 Session 1 Physics Paper and Solution 1st shift
JEE Main 2022 Session 1 Physics Paper and Solution 1st shiftJEE Main 2022 Session 1 Physics Paper and Solution 1st shift
JEE Main 2022 Session 1 Physics Paper and Solution 1st shift
 
Resposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoResposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-edição
 

(Neamen)solution manual for semiconductor physics and devices 3ed

  • 1. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 Solutions Manual Problem Solutions Chapter 1 3 Problem Solutions 1.1 (a) fcc: 8 corner atoms × 1/8 = 1 atom 6 face atoms × ½ = 3 atoms Total of 4 atoms per unit cell (b) bcc: 8 corner atoms × 1/8 = 1 atom 1 enclosed atom = 1 atom Total of 2 atoms per unit cell (c) Diamond: 8 corner atoms × 1/8 = 1 atom 6 face atoms × ½ = 3 atoms 4 enclosed atoms = 4 atoms Total of 8 atoms per unit cell 1.2 (a) 4 Ga atoms per unit cell Density = ⇒ − 4 5 65 10 8 3 b . x g Density of Ga = − 2.22 1022 3 x cm 4 As atoms per unit cell, so that Density of As = − 2.22 1022 3 x cm (b) 8 Ge atoms per unit cell Density = ⇒ − 8 565 10 8 3 b . x g Density of Ge = − 4.44 1022 3 x cm J IK GFH 1.3 (a) Simple cubic lattice; a = 2r Unit cell vol = a 3 = ( 2 r) 3 = 8 r 3 4 πr 3 1 atom per cell, so atom vol. = ( 1 )3 Then Ratio r π = × ⇒ r FH G IK J 4 3 8 100% 3 3 Ratio = 52.4% (b) Face-centered cubic lattice d d = 4r = a 2 ⇒ a = = r 2 2 2 Unit cell vol = a = r = r 3 3 3 c2 2 h 16 2 4 atoms per cell, so atom vol. = FH G IK J 4 3 πr 4 3 Then Ratio r 4 3 16 2 = × ⇒ r FH G IK J 4 100% 3 3 π Ratio = 74% (c) Body-centered cubic lattice d = 4r = a 3 ⇒ a = r 4 3 Unit cell vol. = =FH IK 3 4 3 a r 3 2 atoms per cell, so atom vol. = FH G IK J2 3 πr 4 3 Then Ratio r = × ⇒ r FH G IK J FH IK 2 4 3 4 3 100% 3 3 π Ratio = 68% (d) Diamond lattice Body diagonal = d = 8r = a 3 ⇒ a = r 8 3 Unit cell vol. = =FH IK a 3 8 3 r 3 3 πr FH G 8 atoms per cell, so atom vol. 8 4 3 IK J Then Ratio r = × ⇒ r FH G IK J FH IK 8 4 3 8 3 100% 3 3 π Ratio = 34% 1.4 From Problem 1.3, percent volume of fcc atoms is 74%; Therefore after coffee is ground, Volume = 0 74 3 . cm
  • 2. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 Solutions Manual Problem Solutions 4 1.5 (a) a = A° 5.43 From 1.3d, a = r 8 3 so that r ( ) ° 3 8 a = = = A 543 3 8 118 . . Center of one silicon atom to center of nearest neighbor = 2r ⇒ 2.36 A° (b) Number density = ⇒ − 8 543 10 8 3 b . x g Density = − 5 1022 3 x cm (c) Mass density N ( AtWt . . ) ( . ) = ρ = = ⇒ N x 5 10 2809 6 02 10 . x A 22 23 b g ρ = 2.33 3 grams / cm 1.6 (a) a r A A = = ( ) = ° 2 2 1.02 2.04 Now 2r 2r a 3 2r 2.04 3 2.04 A B B + = ⇒ = − so that r A B = ° 0.747 (b) A-type; 1 atom per unit cell Density = ⇒ − 1 2.04 10 8 3 b x g Density(A) =118 1023 3 . x cm− B-type: 1 atom per unit cell, so Density(B) =118 1023 3 . x cm− 1.7 (b) a = 1.8 + 1.0⇒ a = A° 2.8 (c) Na: Density = 1 2 b g = 2.28 x 1022 cm − 3 2.8 x 10 − 8 3 Cl: Density (same as Na) = − 2.28 1022 3 x cm (d) Na: At.Wt. = 22.99 Cl: At. Wt. = 35.45 So, mass per unit cell = + = ( ) ( ) − 1 2 22.99 1 2 35 45 6 02 10 4.85 10 23 23 . . x x Then mass density is − ρ= ⇒ 4.85 x 10 b 2.8 x 10 − g ρ = 2.21 gm / cm 3 23 8 3 1.8 (a) a 3 = 2(2.2) + 2(18) = 8 A° . so that a = A° 4.62 Density of A = ⇒ − 1 4.62 10 8 3 b x g 101 1022 3 . x cm− 1 4.62 10 8 b x g 101 1022 3 . x cm− Density of B = ⇒ − (b) Same as (a) (c) Same material 1.9 (a) Surface density = = ⇒ − 1 2 1 4.62 10 2 2 8 2 a b x g 331 1014 2 . x cm− Same for A atoms and B atoms (b) Same as (a) (c) Same material 1.10 (a) Vol density = 1 3 ao Surface density = 1 2 2 ao (b) Same as (a) 1.11 Sketch 1.12 (a) 1 1 1 3 1 1 , , FH IK ⇒ (313) (b) 1 4 1 2 1 4 , , FH IK ⇒ (121)
  • 3. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 Solutions Manual Problem Solutions 5 1.13 (a) Distance between nearest (100) planes is: d = a = A° 5.63 (b)Distance between nearest (110) planes is: a d a 1 2 = = = 2 2 563 . 2 or d = A° 3.98 (c) Distance between nearest (111) planes is: a d a 1 3 = = = 3 3 563 . 3 or d = A° 3.25 1.14 (a) Simple cubic: a = A° 4.50 (i) (100) plane, surface density, = ⇒ 1 atom b g 4.94 x 1014 cm− 2 4.50 x 10 − 8 2 (ii) (110) plane, surface density, = atom x − 1 2 4.50 10 8 2 ⇒ b g 3 49 1014 2 . x cm− (iii) (111) plane, surface density, 1 6 1 2 = = ⋅ ⋅ = FH IK ( ) 3 2 1 2 1 2 2 3 2 1 3 2 atoms a x a c h a a = ⇒ − 1 3 4.50 10 8 2 b x g 2.85 1014 2 x cm− (b) Body-centered cubic (i) (100) plane, surface density, Same as (a),(i); surface density 4.94 1014 2 x cm− (ii) (110) plane, surface density, = ⇒ atoms b x g 6 99 1014 2 . x cm− 2 2 4.50 10 − 8 2 (iii) (111) plane, surface density, Same as (a),(iii), surface density 2.85 1014 2 x cm− (c) Face centered cubic (i) (100) plane, surface density 2 atoms b g 9.88 x 1014 cm− 2 4.50 x 10 8 2 = ⇒ − (ii) (110) plane, surface density, = ⇒ atoms b x g 6 99 1014 2 . x cm− 2 2 4.50 10 − 8 2 (iii) (111) plane, surface density, = ⋅ + ⋅ = FH IK b a x − g 3 1 6 3 1 2 3 2 4 2 3 4.50 10 8 2 or 114 1015 2 . x cm− 1.15 (a) (100) plane of silicon – similar to a fcc, surface density = ⇒ atoms b . x g 2 543 10 − 8 2 6 78 1014 2 . x cm− (b) (110) plane, surface density, = ⇒ atoms b . x g 9.59 1014 2 x cm− 4 2 5 43 10 − 8 2 (c) (111) plane, surface density, = ⇒ atoms b . x g 7.83 1014 2 x cm− 4 3 5 43 10 − 8 2 1.16 d = 4r = a 2 then a 4 r 4 ( 2.25 ) ° 2 = = = A 2 6.364 (a) Volume Density = ⇒ atoms b . x g 4 6 364 10 − 8 3 155 1022 3 . x cm− (b) Distance between (110) planes, = = = ⇒ 1 2 2 2 6 364 2 a a . or
  • 4. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 1 Solutions Manual Problem Solutions 6 4.50 A° (c) Surface density = = atoms a b . x − g 2 2 2 2 6364 10 2 8 2 or 3 49 1014 2 . x cm− 1.17 Density of silicon atoms = − 5 1022 3 x cm and 4 valence electrons per atom, so Density of valence electrons 2 1023 3 x cm− 1.18 Density of GaAs atoms = = 22 3 atoms x 8 4.44 x 10 cm − 565 10 − 8 3 b . g An average of 4 valence electrons per atom, Density of valence electrons 1 77 1023 3 . x cm− 1.19 (a) Percentage = ⇒ 2 10 5 10 100% 16 22 x x x 4 10 5 x − % 1 10 5 10 (b) Percentage = 100 ⇒ 15 22 x x x % 2 10 6 x − % 1.20 (a) Fraction by weight ≈ ⇒ b g b g ( ) ( ) 16 5 10 3098 5 10 22 2806 x x . . 110 10 6 . x − (b) Fraction by weight ≈ b 18 g 10 10 . 82 b 16 g b 22 g x . + x . 7.71 x 10 − 6 ⇒ ( ) ( ) ( ) 5 10 30 98 5 10 28 06 1.21 Volume density = = − 1 2 10 3 15 3 d x cm So d = x cm = A − ° 7.94 10 794 6 We have a A O = ° 5.43 So d aO 794 5.43 = ⇒ d aO = 146
  • 5. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions Chapter 2 9 Problem Solutions 2.1 Computer plot 2.2 Computer plot 2.3 Computer plot 2.4 For problem 2.2; Phase = − = 2π λ ω x t constant Then 2 0 π λ dx dt ⋅ −ω = or dx dt = v =p FH + IK ω λ 2π 2π λ For problem 2.3; Phase = + ω = x t constant Then 2 0 π λ dx dt ⋅ +ω = or dx dt vp = =− FH IK ω λ 2π 2.5 E h hc hc E = ν = ⇒ = λ λ Gold: E = 4 . 90 eV = ( 4 . 90 ) b 1 . 6 x 10 − 19 g J So b x − 34 gb x 10 g λ= ⇒ 6 625 10 3 10 4.90 1 6 10 b g 2.54 10 5 x cm − ( ) − 19 . . x or λ = 0.254 μm Cesium: E = eV = ( ) x − J 190 190 16 10 19 . . b . g So λ= ⇒ b − gb g x cm − 6 625 10 3 10 190 16 10 5 . . . b g ( ) − 654 10 34 10 19 . x x x or λ = 0.654 μm 2.6 (a) Electron: (i) K.E. = = = − T 1 eV 1 6x10 J 19 . p = mT = x x − − 2 2 9.11 10 1 6 10 b 31gb . 19 g or p = x kg − m s − 54 10 25 . / − λ= = ⇒ − h p x x 6 625 10 54 10 34 25 . . or λ = ° 12.3 A (ii) K.E. = = = − T 100 eV 1 6x10 J 17 . p = 2mT ⇒ p = x kg − m s − 54 10 24 . / h p λ= ⇒ λ = ° 1.23 A (b) Proton: K.E. = = = − T 1 eV 1 6x10 J 19 . p = mT = x x − − 2 216710 1610 27 19 b . gb . g or p = x kg − m s − 2.31 10 23 / − λ= = ⇒ − h p x x 6 625 10 2.31 10 34 23 . or λ = ° 0.287 A (c) Tungsten Atom: At. Wt. = 183.92 For T = eV = x J − 1 161019 . p = 2mT = ( ) − − 2 18392 166 10 16 10 27 19 . b . x gb . x g or p = x kg = m s − 313 10 22 . / − λ= = ⇒ − h p x x 6 625 10 313 10 34 22 . . or λ = ° 0.0212 A (d) A 2000 kg traveling at 20 m/s: p = mv = (2000)(20)⇒ or p = 4x10 kg − m s 4 / 34 h 6 625 x 10 − p 4 x 10 λ= = ⇒ 4 . or λ = − ° 166 10 28 . x A
  • 6. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 10 2.7 Eavg = kT = ( )⇒ 3 2 3 2 0.0259 or E eV avg = 0.01727 Now p mE avg avg = 2 = 2 9.11 10− (0 01727) 1 6 10− 31 19 b x g . b . x g or p x kg ms avg= − − 7.1 10 26 / Now − λ= = ⇒ − h p x x 6 625 10 7.1 10 34 26 . or λ = ° 93 3 . A 2.8 E h hc p p p = ν = λ Now E 2 2 p = e e m and p h e = ⇒ λ e E m h e e = FH G IK J 1 2 2 λ Set E E p e = and λ λ p e = 10 Then hc 1 h = FH = 2 G m 10 2 2 1 2 m h IK J FH G IK J p e p λ λ λ which yields λ p h mc = 100 2 E E hc hc = = = ⋅ = h mc mc p λ 100 p 2 2 2 100 31 8 2 b x gb x g − 2 9.11 10 3 10 = ⇒ 100 So E = x J = keV − 164 10 10 3 15 . . 2.9 (a) E = mv = x x − 1 2 9.11 10 2 10 2 b 31gb 4 g2 1 2 or E = x J ⇒ − 1822 10 22 . E = x eV − 114 10 3 . Also p = mv = x x ⇒ − 9.11 10 2 10 b 31gb 4 g p = x kg − m s − 1822 10 26 . / Now − λ= = ⇒ − h p x x 6 625 10 1822 10 34 26 . . λ = ° 364 A (b) p h x 6 625 10 125 10 = = ⇒ x − − λ 34 10 . p = x kg − m s − 53 10 26 . / Also v p m x x − 4 . = = = x m s − 53 10 9.11 10 582 10 26 31 . / or v = 5 82x10 cm s 6 . / Now E = mv = x x − 1 2 9.11 10 582 10 2 b 31 gb . 4 g2 1 2 or E = x J ⇒ − 154 10 21 . E = x eV − 9.64 10 3 2.10 (a) E h b . 34 gb 8 g hc x x x = = = − − ν λ 6 625 10 3 10 1 10 10 or E = x J − 199 10 15 . Now E = e ⋅V ⇒ x = x V − − 199 10 16 10 15 19 . b . g so V = 12.4x10 V = 12.4 kV 3 (b) p = mE = x x − − 2 2 9.11 10 199 10 b 31 gb . 15 g = − − 6 02 10 23 . x kg m / s Then − λ= = ⇒ − h p x x 6 625 10 6 02 10 34 23 . . λ = ° 0.11 A
  • 7. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 11 2.11 (a) Δ h 1054 10 Δ p x x − = = ⇒ − 10 34 6 . Δp = x kg − m s − 1054 10 28 . / (b) E FH hc = = hc = pc p h IK λ So ΔE = c(Δp) = x x − ⇒ 3 10 1054 10 b 8 gb . 28 g or ΔE = x J ⇒ − 316 10 20 . ΔE = 0.198 eV 2.12 (a) Δ h 1054 10 Δ p x x x − = = ⇒ − 12 10 34 10 . Δp = x kg − m s − 8 78 10 26 . / (b) Δ b . g 2 26 2 ( Δ ) − E p m x x = ⋅ = ⋅ ⇒ − 1 2 1 2 8 78 10 5 10 29 ΔE = x J ⇒ − 7.71 10 23 ΔE = x eV − 4.82 10 4 2.13 (a) Same as 2.12 (a), Δp = x kg − m s − 8 78 10 26 . / (b) Δ b . g 2 26 2 ( Δ ) − E p m x x = ⋅ = ⋅ ⇒ − 1 2 1 2 8 78 10 5 10 26 ΔE = x J ⇒ − 7.71 10 26 ΔE = x eV − 4.82 10 7 2.14 Δ − h 1054 10 Δ p x x − 32 . = = = x − 10 1054 10 34 2 . p mv v p m . x 32 − Δ Δ 1054 10 = ⇒ = = ⇒ 1500 or Δv = x m s − 7 10 36 / 2.15 (a) Δ h 1054 10 Δ p x x − = = ⇒ − 10 34 10 . Δp = x kg − m s − 1054 10 24 . / (b) Δt x x − 1054 10 1 16 10 34 . b . g = ⇒ ( ) − 19 or Δt = x s − 6 6 10 16 . 2.16 (a) If Ψ1 (x, t) and Ψ2 (x, t) are solutions to Schrodinger’s wave equation, then − h ∂ ( ) ⋅ ( ) ( ) ( ) ∂ + = ∂Ψ ∂ h 2 2 1 2 1 1 2m x t x V x x t j x t t Ψ Ψ , , , and − h ∂ ( ) ⋅ ( ) ( ) ( ) ∂ + = ∂Ψ ∂ h 2 2 2 2 2 2 2m x t x V x x t j x t t Ψ Ψ , , , Adding the two equations, we obtain − h2 2 ⋅ ( ) + ( ) ∂ ∂ Ψ x, t Ψ x, t +V(x) Ψ (x t) + Ψ (x t) 1 2 , , 2 1 2 2m x = ∂ ∂ j ( ) + ( ) h Ψ x t Ψ x t 1 2 , , t which is Schrodinger’s wave equation. So Ψ Ψ 1 2 (x, t) + (x, t) is also a solution. (b) If Ψ Ψ 1 2 ⋅ were a solution to Schrodinger’s wave equation, then we could write − ∂ ⋅ + ( ) ⋅ h2 2 2m ∂ x 2 1 2 1 2 aΨ Ψ f V x aΨ Ψ f = h Ψ Ψ 1 2 a f ∂ ∂ j ⋅ t which can be written as − ∂ ∂ + ∂ ∂ + ∂Ψ ∂ ⋅ ∂Ψ ∂ LN M OQ P h2 Ψ 1 2 Ψ Ψ 2 2 2 2 Ψ 1 2 1 2 2 2 m x x x x + ⋅ = ∂Ψ ∂ + ∂Ψ ∂ ( ) LNM OQP V x j Ψ Ψ Ψ Ψ 1 2 1 h 2 1 2 t t Dividing by Ψ Ψ 1 2 ⋅ we find − ⋅ ∂ ∂ + ⋅ ∂ ∂ + ∂Ψ ∂ ∂Ψ ∂ LN M OQ P h2 2 2 Ψ 2 2 1 2 1 2 1 2 1 2 2 1 1 1 m Ψ x Ψ x x x Ψ ΨΨ + = ∂Ψ ∂ + ∂Ψ ∂ ( ) LN M OQ P V x j t x h 1 1 2 2 1 1 Ψ Ψ
  • 8. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 12 Since Ψ1 is a solution, then − ⋅ ⋅ ∂ ∂ + = ⋅ ⋅ ∂Ψ ∂ Ψ ( ) h h 2 1 2 1 2 1 1 2 1 1 m x V x j Ψ Ψ t Subtracting these last two equations, we are left with − ∂ ∂ + ∂Ψ ∂ ∂Ψ ∂ LN M OQ P h2 2 2 Ψ 2 2 1 2 1 2 2 1 2 m Ψ x ΨΨ x x = ∂Ψ ∂ j t h 1 2 2 Ψ Since Ψ2 is also a solution, we may write − ∂ ∂ + = ∂Ψ ∂ Ψ ( ) h h 2 2 2 2 2 2 2 2 1 1 m x V x j Ψ Ψ t Subtracting these last two equations, we obtain − h2 ⋅ ⋅ − ( ) = ∂Ψ ∂ ⋅ ∂Ψ ∂ 1 2 1 2 2 2 0 m x x V x ΨΨ This equation is not necessarily valid, which means that ΨΨ 1 2 is, in general, not a solution to Schrodinger’s wave equation. 2.17 Ψ(x, t) = A sin(πx) exp(− jωt) + z = = z 2 1 1 Ψ(x, t) dx A sin ( x)dx + − 1 π − 1 2 2 1 or + LNM ⋅ − (2 ) = 1 1 1 2 A x x 2 1 1 4 OQP − π sin π which yields A2 = 1 or A = +1, − 1, + j , − j 2.18 Ψ(x, t) = A sin(nπx) exp(− jωt) + + z = = z 2 0 1 Ψ(x, t) dx A sin (n x)dx 1 2 2 1 π 0 or ⋅ − (2 ) = 1 LNM 1 1 2 n x 2 A x n 0 1 4 OQP + π sin π which yields A 2 = 2 or A = + 2 , − 2 , + j 2 , − j 2 2.19 Note that Ψ⋅Ψ = ∞z * 0 dx 1 Function has been normalized (a) Now P a x a dx o o ao = − FH G IK J LN M OQ P z 2 2 0 4 exp = − FH G IK J 2 ao z 2 exp 0 4 a x a dx o o = − − FH IK FH G IK J 2 2 2 0 4 a a x o a o o ao exp or P a o − a G FH o = − − IK J LN M OQ P 1 2 4 exp 1 = − − FH IK 1 1 2 exp which yields P = 0.393 (b) P IK Jz 2 IK JFH G a x a dx a o = 2 a o o o − FH G 2 4 exp = − FH GIK J 2 z 2 o 2 exp 4 a x a dx a o a o o = FH G − − FHIK IK J 2 2 2 2 4 a a x o a o a o a o o exp or P = − − − − ( ) FH IK LNM OQP 1 1 1 2 exp exp which yields P = 0.239 (c) P a x a dx o o ao = − FH G IK J FH G IK J z 2 2 0 exp = − FH G IK J 2 z 2 ao exp = 0 a x a dx o o − − FH IK FH G IK J 2 a x 2 2 o a a o o 0 ao exp or P = −1 exp(−2) − 1 which yields P = 0.865
  • 9. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 13 2.20 (a) kx −ωt = constant Then k dx dt −ω = 0⇒ dx dt + = v =ω p k or v x x 15 10 15 10 4 . . = = 10 m s p13 9 / v cms p = 106 / (b) k 2 2 2 = ⇒ = = 15 109 k x π λ λ π π . or λ = ° 41 9 . A Also p h x 6 625 10 419 10 = = ⇒ x − − λ 34 10 . . or p = x kg − m s − 158 10 25 . / Now E h b 34 gb 8 g hc x x x = = = − − ν λ 6 625 10 3 10 419 10 10 . . or E = x J ⇒ − 4.74 10 17 E = 2.96x10 eV 2 2.21 ψ (x) = Aexp − jbkx +ωtg where k mE = 2 h = b g . b . g 2 9.11 10 (0 015) 1 6 10 − − 31 19 x x − 1054 10 34 x . or k = x m− 6 27 108 1 . Now ω= = b g ( ) − − E x h x 0 015 16 10 1054 10 19 34 . . . or ω = 2.28 1013 x rad / s 2.22 E π b . g π n ma x n x x = = − 1054 10 b − gb − g h2 2 2 2 34 2 2 2 31 10 2 2 2 9.11 10 100 10 so E = x n J 6 018 10− ( ) 22 2 . or E = x n eV 3 76 10− ( ) 3 2 . Then 3 = 3 76 10− . n = 1⇒ E x eV 1 2 = 150 10− . n = 2 ⇒ E x eV 2 2 = 3 38 10− . n = 3⇒ E x eV 3 2.23 (a) E n ma = h2 2 2 π 2 2 = b 1054 . x 10 − 34 g 2 π 2 n 2 b x gb x g 31 10 2 − − 2 9.11 10 12 10 = 4.81 10− ( ) 20 2 x n J So E x J 1 = 4.18 10 − 20 ⇒ E = 0.261 eV 1 E = 1 . 67 x 10− 19 J ⇒ E = 1.04 eV 2 2 (b) E E h hc hc − = ν = ⇒ λ = 2 1 λ Δ E or λ = b 34 gb 8 g 6 625 10 3 10 167 10 − 4.18 10 ⇒ − − − 19 20 . . x x x x λ = − 159 10 6 . x m or λ = 1.59 μm 2.24 (a) For the infinite potential well E n ma π 2 n ma E h = ⇒ = h 2 2 2 2 2 2 2 2 π 2 so n b − 5 gb − 2 g 2 b − 2 g b . g 56 2 10 10 10 1054 10 x 2 = = 182 10 x 34 2 2 − . π or
  • 10. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 14 n = 1 35x1028 . (b) ΔE = (n + ) − n h2 2 ma 2 2 2 2 1 π = ( + ) h2 2 2 2 2 1 π ma n or ΔE b 1 . 054 x 10 34 g 2 2 (2) b 1 . 35 x 10 28 g = − π b gb g 5 2 2 − − 2 10 10 ΔE = x J − 148 10 30 . Energy in the (n+1) state is 1 48 10 30 . x − Joules larger than 10 mJ. (c) Quantum effects would not be observable. 2.25 For a neutron and n = 1: E b g b gb g x x 1 h 2 π 2 . π ma 2 34 2 1054 10 27 14 2 2 2 1 66 10 10 = = − − − . or 6 = 2.06 10 E x eV 1 For an electron in the same potential well: E b . g b gb g x x 1 34 2 2 π 1054 10 2 9.11 10 10 31 14 2 = − − − or 9 = 3.76 10 E x eV 1 2.26 Schrodinger’s wave equation ∂ ∂ ( ) 2 ( ( )) ( ) + − = 2 2 2 0 ψ ψ x x m E V x x h We know that ψ (x) = 0 for x a ≥ 2 and x a ≤ − 2 V(x) = 0 for − a + x ≤ ≤ a 2 2 so in this region ∂ ∂ ( ) 2 ( ) + = 2 2 2 0 ψ ψ x x mE x h Solution is of the form ψ (x) = Acos Kx + B sin Kx where K mE = 2 2 h Boundary conditions: ψ (x) = 0 at x a x a = + = − , 2 2 So, first mode: ψ 1 (x) = Acos Kx where K a = π so E 2 2 ma 1 2 2 = π h Second mode: ψ 2 (x) = B sin Kx where K a = 2π so E 2 2 ma 2 2 4 2 = π h Third mode: ψ 3 (x) = Acos Kx where K a = 3π so E 2 2 ma 3 2 9 2 = π h Fourth mode: ψ 4 (x) = B sin Kx where K a = 4π so E 2 2 ma 4 2 16 2 = π h 2.27 The 3-D wave equation in cartesian coordinates, for V(x,y,z) = 0 ∂ 2 ( ) ( ) ( ) ψ x y z ψ ψ ∂ + ∂ ∂ + ∂ ∂ 2 2 2 2 2 x x y z y x y z z , , , , , , mE 2 + ( x y z ) = 0 2 h ψ , , Use separation of variables, so let ψ (x, y, z) = X(x)Y(y)Z(z) Substituting into the wave equation, we get YZ X x XZ Y y XY Z z mE XYZ ∂ ∂ + ∂ ∂ + ∂ ∂ 2 + = 2 2 2 2 2 2 2 0 h Dividing by XYZ and letting k mE 2 2 2 = h , we obtain (1) ∂ ∂ 1 1 1 0 2 2 2 2 2 2 2 X X x Y Y y Z Z z ⋅ + ⋅ k ∂ ∂ + ⋅ ∂ ∂ + = We may set
  • 11. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 15 1 2 2 2 X X x ∂ ∂ kx ⋅ = − so ∂ ∂ + = 2 2 2 0 X x k X x Solution is of the form X(x) = Asinakx xf+ B cosakx xf Boundary conditions: X(0) = 0⇒ B = 0 and X x a k n a x π ( = ) = 0⇒ = x where nx = 1, 2 , 3,... Similarly, let 1 2 2 2 Y Y y ∂ ∂ ky ⋅ = − and 1 2 2 2 Z Z z ∂ ∂ ⋅ = − kz Applying the boundary conditions, we find k n a π , 1, 2 , 3,... y n y y = = k n a π , 1, 2 , 3,... n z = z = z From Equation (1) above, we have −k 2 − k 2 − k 2 + k 2 = 0 x y z or k k k k mE 2 2 2 2 x y z 2 2 + + = =h so that E E h2 2 nxnynz nx ny nz ⇒ = + + ma 2 2 2 2 2 πb g 2.28 For the 2-dimensional infinite potential well: ( ) ( ) ( ) ∂ ∂ + ∂ ∂ 2 + = 2 2 2 2 2 0 ψ ψ ψ x y x x y y mE x y , , , h Let ψ (x, y) = X(x)Y(y) Then substituting, Y X x X Y y mE XY ∂ ∂ + ∂ ∂ 2 + = 2 2 2 2 2 0 h Divide by XY So X x Y Y y ∂ ∂ ∂ ∂ 1 1 2 0 2 2 2 mE ⋅ + ⋅ + = X 2 h 2 Let 1 2 2 2 X X x ∂ ∂ ⋅ = − kx or ∂ ∂ + = 2 2 2 0 X x k X x Solution is of the form: X A kx B kx x x = sina f+ cosa f But X(x = 0) = 0⇒ B = 0 So X A kxx = sina f Also, X x a k a n x x ( = ) = 0⇒ = π Where nx = 1, 2 , 3, . . . So that k n a x π = x We can also define 1 2 2 2 Y Y y ∂ ∂ ⋅ = − ky Solution is of the form Y C k y D k y y y = sinb g+ cosb g But Y(y = 0) = 0⇒ D = 0 and Y y b k b n y y ( = ) = 0⇒ = π so that k n b y π y = Now mE −k 2 − k 2 + = x y 2 2 0 h which yields x y ⇒ = + FH G E E π n n nxny m a b IK J h2 2 2 2 2 2 2 Similarities: energy is quantized Difference: now a function of 2 integers 2.29 (a) Derivation of energy levels exactly the same as in the text. (b) ΔE h2 2 2 = n − n ma 2 2 2 1 2 π b g For n = 2 , n = 1 2 1 Then h π ΔE ma = 3 2 2 2 2
  • 12. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 16 (i) a = A° 4 ΔE b x − 34 g 2 2 b gb g 3 1054 10 2 1 67 10 4 10 = ⇒ 27 10 2 − − x x . . π ΔE = x eV − 385 10 3 . (ii) a = 0.5 cm ΔE b x − 34 g 2 2 b gb g 3 1054 . 10 2 167 . 10 0 . 5 10 = ⇒ 27 2 2 − − x x π ΔE = x eV − 2.46 10 17 2.30 (a) For region II, x > 0 ∂ ∂ ( ) 2 ( ) + − = 2 2 2 2 2 0 ψ ψ x x m E V x O h a f General form of the solution is ψ(x) = A expajK xf+ B expa− jK xf 2 2 2 2 2 where 2 m K = E − V2 2 O h a f Term with B2 represents incident wave, and term with A2 represents the reflected wave. Region I, x < 0 ∂ ∂ ( ) 2 ( ) + = 2 1 2 2 1 0 ψ ψ x x mE x h The general solution is of the form ψ(x) = A expa jK xf+ B expa− jK xf 1 1 1 1 1 where 2 mE K = 1 2 h Term involving B1 represents the transmitted wave, and the term involving A1 represents the reflected wave; but if a particle is transmitted into region I, it will not be reflected so that A1 = 0 . Then ψ1 1 1 (x) = B expa− jK xf ψ2 2 2 2 2 (x) = A expajK xf+ B expa− jK xf (b) Boundary conditions: (1) ψ ψ 1 2 (x = 0) = (x = 0) (2) ∂ ∂ ( ) ( ) ψ ψ 1 = ∂ ∂ = = 0 2 0 x x x x x x Applying the boundary conditions to the solutions, we find B A B 1 2 2 = + K A K B K B 2 2 2 2 1 1 − =− Combining these two equations, we find A K − K K + K B 2 = 2 1 2 2 1 FH G IK J and B K K K 2 B 1 2 1 2 2 = + FH G IK J The reflection coefficient is R A A B B * * R = 2 2 ⇒ 2 2 K K K K = − + FH G IK J 2 1 2 1 2 The transmission coefficient is T = 1− R ⇒ T K K K K = 4 1 2 a + f2 1 2 2.31 In region II, x > 0 , we have ψ2 2 2 (x) = A expa−K xf where K a − f h m V E O 2 = 2 2 For V eV O = 2.4 and E = 2.1 eV K b x |W| UV 31 g ( RS |T| ) b x 19 g b g x 2 34 2 1 2 2 9.11 10 2.4 2.1 16 10 1054 10 = − − − − . . / or K x m 2 9 1 = 2.81 10 − Probability at x compared to x = 0, given by P ( x ) ( ) ψ ψ expa 2 f = 2 = − K x 2 2 2 0 (a) For x = A° 12 P = − x x ⇒ − exp 2 2.81 10 12 10 b 9 gb 10 g P = x = − 118 10 0118 3 . . % (b) For x = 48 A° P = − x x ⇒ − exp 2 2.81 10 48 10 b 9 gb 10 g P = x − 19 10 10 . % 2.32 For V eV E eV O= 6 , = 2.2 We have that
  • 13. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 17 T E E = − − V V G FH K a IK J FH G O O IK J 16 1 2 2 expa f where K a − f h m V E O 2 = 2 2 = ( ) RS |T| b − 31 g − b − 19 g b − g UV |W| 2 9.11 10 6 2.2 16 10 1054 10 34 2 1 2 x x x . . / or 9 1 = 9.98 10 − K x m 2 For a = m − 10 10 T = − − x FH IK FH IK 2.2 6 16 1 − 2.2 6 2 9.98 10 10 9 10 exp b gb g or T = 0.50 For a = m − 10 9 T = x − 7.97 10 9 2.33 Assume that Equation [2.62] is valid: T E E = − − V V G FH K a IK J FH G O O IK J 16 1 2 2 expa f (a) For m mo = (0.067) K a − f h m V E O 2 = 2 2 = − ( ) ( ) RS |T| UV |W| b − 31 g b − 19 g b g 2 0067 9.11 10 08 02 16 10 − 1054 10 34 2 1 2 . . . . . / x x x or 9 1 = 1 027 10 − . K x m 2 Then T = − − x x FH IK FH IK 0 2 08 16 1 − 0 2 08 . . 2 1027 10 9 15 10 10 . . exp b . gb g or T = 0.138 (b) For m mo = (1.08) K b / x 31 g b x 19 g b g . . . . x 2 34 2 1 2 2 1 08 9.11 10 0 8 0 2 1 6 10 1054 10 = − ( ) ( ) RS |T| UV |W| − − − . or 9 1 = 4.124 10 − K x m 2 Then T = − x x − 3 2 4.124 10 15 10 9 10 exp b gb g or T = x − 127 10 5 . 2.34 V x eV E x eV a m O= = = − 10 10 3 10 10 6 6 14 , , and m = x kg − 167 10 27 . Now K a − f h m V E O 2 = 2 2 = b − 27 g − b 6 gb − 19 g b − g ( ) RS |T| UV |W| 2 167 10 10 3 10 16 10 1054 10 34 2 1 2 . . . / x x x or 14 1 = 5 80 10 − . K x m 2 So T = − − x FH IK FH IK 3 10 16 1 − 3 10 2 580 10 10 14 14 exp b . gb g or T = x − 306 10 5 . 2.35 Region I, V = 0 (x < 0) ; Region II, V V x a O = (0 < < ) ; Region III, V = 0 (x > a) . (a) Region I; ψ1 1 1 1 1 (x) = A expa jK xf+ B expa− jK xf (incident) (reflected) Region II; ψ2 2 2 2 2 (x) = A expaK xf+ B expa−K xf Region III; ψ3 3 1 3 1 (x) = A expajK xf+ B expa− jK xf (b) In region III, the B3 term represents a reflected wave. However, once a particle is transmitted into region III, there will not be a reflected wave which means that B3 = 0 . (c) Boundary conditions: For x = 0 = ⇒ A + B = A + B 1 2 1 1 2 2 :ψ ψ d ψ ψ 1 2 dx d dx jK A jK B K A K B 1 1 1 2 2 2 2 2 = ⇒ − = − For x = a:ψ =ψ ⇒ 2 3 A Ka B Ka A jKa 2 2 2 2 3 1 expa f+ expa− f = expa f And also
  • 14. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 18 d dx d dx ψ ψ 2 = 3 ⇒ K A K a K B K a 2 2 2 2 2 2 expa f− expa− f = jK A jK a 1 3 1 expa f Transmission coefficient is defined as T A A A A * = 3 3 * 1 1 so from the boundary conditions, we want to solve for A3 in terms of A1 . Solving for A1 in terms of A3 , we find A jA K K 2 2 3 K K Ka Ka 1 2 2 4 1 2 2 1 = + lb − g expa f− expa− f −2 + − 1 2 2 2 2 jK K expaK af expa K af sexpa jK af We then find that A A A A = a f lb 2 − 2 g expa f K K −exp a −K a f 2 2 3 3 K K Ka 1 1 2 4 1 2 2 2 1 * * K 2 K 2 expaK af expa K af 2 r +4 + − 1 2 2 2 We have K a − f h m V E O 2 2 2 = and since V E O >> , then K a 2 will be large so that exp K a exp K a 2 2 a f >> a− f Then we can write A A A A = a f lb 2 − 2 g expa f K K 3 3 K K Ka 1 1 1 2 2 2 1 2 2 4 * * K 2 K expaK af 2 r +4 1 2 2 2 which becomes A A A A = a f b + gexpa f K K * 2 2 2 3 3 K K Ka 1 1 2 4 1 2 2 2 1 * Substituting the expressions for Kand K, we 1 2 find mVK 2 K O 1 2 2 2 2 + = h and K K m V E mE O 2 1 2 2 2 2 2 2 = − LNM OQP LNM OQP a f h h = = FH IK m ( ) 2 2 V E E O h a f or K K 2 m 2 FH = V 1− E V E O O 2 1 2 2 2 IK FH G IK J ( ) h Then A A A A mV K a m E V ( E ) LN M V O O O 1 1 3 3 2 2 2 2 2 2 2 16 2 1 * * exp = − FH IK FH IK FH G IK J OQ P h h a f = IK J FH G A A IK J 3 3 E E − − V FH G V K a 2 16 1 2 O O * expa f or finally T A A = = − − A A G FH * expa f E V E V K a IK J FH G O O IK J 3 3 1 1 2 16 1 2 * 2.36 Region I: V = 0 ∂ ∂ 2 + = ⇒ 2 1 2 2 1 0 ψ ψ x mE h ψ1 1 1 1 1 = A expa jK xf+ B expa− jK xf (incident wave) (reflected wave) where K mE 2 = 1 2 h Region II: V = V1 ∂ ∂ + − = 2 2 2 1 2 2 2 0 ψ ψ x maE V f h ⇒ ψ2 2 2 2 2 = A expa jK xf+ B expa− jK xf (transmitted (reflected wave) wave) where K m E V 2 1 2 2 = a − f h Region III: V = V2 ∂ ∂ + − = 2 3 2 2 2 3 2 0 ψ ψ x maE V f h ⇒ ψ3 3 3 = A expajK xf (transmitted wave) where K m E V 3 2 2 2 = a − f h There is no reflected wave in region III.
  • 15. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 19 The transmission coefficient is defined as T v v A A A A K K A A A A = 3 ⋅ = ⋅ 1 3 3 1 1 3 1 3 3 1 1 * * * * From boundary conditions, solve for A3 in terms of A1 . The boundary conditions are: x = 0: ψ ψ 1 2 = ⇒ A B A B 1 1 2 2 + = + ∂ ∂ ψ ∂ ψ 1 = 2 ⇒ x ∂ x K A K B K A K B 1 1 1 1 2 2 2 2 − = − x = a: ψ ψ 2 3 = ⇒ A jK a B jK a 2 2 2 2 expa f+ expa− f =A jKa 3 3 expa f ∂ ∂ ψ ∂ ψ 2 = 3 ⇒ x ∂ x K A jK a K B jK a 2 2 2 2 2 2 expa f− expa− f = K A jK a 3 3 3 expa f But K a n 2 = 2 π ⇒ exp jK a exp jK a 2 2 a f = a− f = 1 Then, eliminating B A B 1 2 2 , , from the above equations, we have T K K K 2 4 a f T 3 ⇒ K K 1 = ⋅ + 1 1 3 2 K K K K = 4 1 3 a + f2 1 3 2.37 (a) Region I: Since V E O > , we can write ∂ ∂ − − = 2 2 1 2 2 1 0 ψ ψ x m V E O a f h Region II: V = 0 , so ∂ ∂ 2 + = 2 2 2 2 2 0 ψ ψ x mE h Region III: V → ∞ ⇒ψ = 3 0 The general solutions can be written, keeping in mind that ψ 1 must remain finite for x < 0 , as ψ1 1 1 = B expa+K xf ψ2 2 2 2 2 = A sinaK xf+ B cosaK xf ψ 3 = 0 where K a − f h m V E O 2 = 1 2 and K mE 2 = 2 2 h (b) Boundary conditions: x = 0: ψ ψ 1 2 = ⇒ B B 1 2 = ∂ ∂ ψ ∂ ψ 1 = 2 ⇒ x ∂ x K B K A 1 1 2 2 = x = a: ψ ψ 2 3 = ⇒ A Ka B Ka 2 2 2 2 sin + cos = 0 or B A Ka 2 2 2 = − tan (c) K B K A 1 1 2 2 = ⇒ A FH = G K K 1 1 B 2 2 IK J and since B B 1 2 = , then A FH = G K K 2 1 B 2 2 IK J From B A Ka 2 2 2 = − tan , we can write B = −G FH K K 2 2 1 B Ka 2 2 IK J tan which gives 1 1 2 = −FH G 2 IK J K K tan K a In turn, this equation can be written as 1 LN M 2 ⋅ − 2 = − OQ P V E E mE O tan a h or E V E mE a O − = − ⋅ LN M OQ P tan 2 2 h This last equation is valid only for specific values of the total energy E . The energy levels are quantized. 2.38 m e E J n n o o = − ∈ ( ) 4 2 2 2 a4π f 2h = ( ) m e o eV o ∈ n 3 2 2 2 a4π f 2h = − b gb g b g b g ⇒ 31 19 3 − − x x x x n 9.11 10 16 . 10 12 2 34 2 2 − − π . . E 4 8 85 10 2 1054 10 − 13 . 58 ( ) eV n = n 2 Then
  • 16. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 2 Solutions Manual Problem Solutions 20 n = 1⇒ E eV 1 = −13.58 n = 2 ⇒ E eV 2 = −3.395 n = 3⇒ E eV 3 = −1.51 n = 4 ⇒ E eV 4 = −0.849 2.39 We have ψ 3 2 1 1 = ⋅ π 100 − FH G IK J FH G IK J a / exp r a o o and P r r 1 1 2 2 * exp a r a o o = = ⋅ ⋅ − FH G IK J FH G IK J 4 4 100 100 2 3 π ψ ψ π π or P a f 2 exp a r r a o o = ⋅ − FH G IK J 4 2 3 To find the maximum probability dP r ( ) dr = 0 = − FH G − − r a f exp + exp a o o o o IK J FH G IK J FH G IK J RST UVW 4 2 22 2 3 2 a r a r a r which gives − 0 = 1 + ⇒ r ao r ao = or r ao = is the radius that gives the greatest probability. 2.40 ψ 100 is independent of θ and φ , so the wave equation in spherical coordinates reduces to 1 2 FH r 2 + − = ∂ ∂ ∂ ∂ IK ( ( )) ψ 0 2 r r r 2 m ⋅ o E V r ψ h where V r − 2 2 e r mar o o o ( ) = − ∈ = 4π h For ψ ⇒ FH G 3 2 1 1 = ⋅ π 100 − IK J FH G IK J a / exp r a o o d dr a a r a o o o ψ π 100 3 2 1 1 1 = ⋅ − − FH G IK J FH G IK J FH G IK J / exp Then r d dr a r r a o o 2 100 5 2 2 ψ 1 1 π = − ⋅ − FH G IK J FH G IK J / exp so that d dr ψ r FH 2 100 d dr IK = − ⋅ 5 2 2 FH G − − r − a o o o o IK J FH G IK J FH G IK J FH G IK J LN M OQ P 1 1 2 π a r r a r a / exp exp Substituting into the wave equation, we have − r ⋅ π a o o o o 5 2 − 2 − FH G − IK J FH G IK J FH G IK J LN M OQ P 1 1 2 2 r a r r a r a / exp exp = LN M 2 3 2 m E h + + ⋅ ⋅ − OQ P FH IK FH G IK J FH G IK J 2 1 1 / exp 0 2 m a r a r a o π o o o o h where E E m e o a4π f 2 2h 2 o = = 4 − ∈ ⋅ ⇒ 1 E m a o o 1 2 2 2 = −h Then the above equation becomes FH G 3 2 − r a o o o o 1 1 12 2 2 π ⋅ − − IK J FH G IK JLN M OQ PRSTLN M OQ P a r a ra r / exp + + = FH G m − 2 2 IK J UVW 2 h h 0 2 2 m a m a r o o o o o h or 1 1 3 2 ⋅ π − FH G IK J FH G IK J LN M OQ P a / exp r a o o × − + + − + = FH G IK J RST UVW 2 1 1 2 0 2 2 a r a a a r o o o o which gives 0 = 0, and shows that ψ 100 is indeed a solution of the wave equation. 2.41 All elements from Group I column of the periodic table. All have one valence electron in the outer shell.
  • 17. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions Chapter 3 23 Problem Solutions 3.1 If ao were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal. If ao were to decrease, the bandgap energy would increase and the material would begin to behave more like an insulator. 3.2 Schrodinger’s wave equation − h ( ) ( ) ( ) ( ) ⋅ x t x ∂ ∂ + ⋅ = ∂Ψ ∂ h 2 2 2 2m V x x t j x t t Ψ Ψ , , , Let the solution be of the form Ψ x t u x j kx FH ( , ) ( )E exp t IK FH IK LNM OQP = − h Region I, V(x) = 0 , so substituting the proposed solution into the wave equation, we obtain − ⋅ ∂ ∂ ( ) − FH IK FH IK LNM OQP h h 2 2m x jku x j kx E { exp t + ( ) FH ∂ ∂ − IK FH IK LNM OQP UVW u x x j kx E exp t h = FH − ⋅ − IK ( ) FH IK FH IK LNM OQP j jE u x j kx E h exp t h h which becomes − ( ) ( ) − FH IK FH IK LNM OQP h h 2 2 2m jk u x j kx E { exp t + ( ) FH ∂ ∂ − IK FH IK LNM OQP 2 jk u x x j kx E exp t h + u x x ∂ ∂ ( ) FH − IK FH IK LNM OQPUVW 2 2 j kx E exp t h = + ( ) − FHIK FH IK LNM OQP Eu x j kx E exp t h This equation can then be written as − + ( ) + ⋅ = ( ) ( ) ( ) k u x jk ∂ ∂ + 2 ∂ ∂ u x x u x x mE 2 u x 2 2 2 2 0 h Setting u(x) = u (x) 1 for region I, this equation becomes ( ) ( ) ( ) + − b −α g = d u x dx jk du x dx k ux 2 1 2 1 2 2 1 2 0 where α 2 2 2 = mE h Q.E.D. ( ) = . Assume the same form In region II, V x VO of the solution Ψ x t u x j kx FH ( , ) ( )E exp t IK FH IK LNM OQP = − h Substituting into Schrodinger’s wave equation, we obtain − ( ) ( ) − FH IK FH IK LNM OQP h h 2 2 2m jk u x j kx E { exp t + ( ) FH ∂ ∂ IKIKFH LNM − OQP 2 jk u x x j kx E exp t h + u x x ∂ ∂ ( ) FH FHIK − IK LNM OQP UVW 2 2 j kx E exp t h + ( ) − FH IK FH IK LNM OQP V u x j kx E t O exp h = ( ) − FH IK FH IK LNM OQP Eu x j kx E exp t h This equation can be written as − + ( ) ( ) ( ) ∂ ∂ + ∂ ∂ k u x jk u x x u x x 2 2 2 2 mV mE 2 2 − O u ( x ) + u ( x ) = 0 2 2 h h Setting u(x) = u (x) 2 for region II, this equation becomes d u x dx ( ) ( ) jk du x dx 2 2 2 2 2 + − − + = FH IK mV k 2 2 O u ( x ) 2 2 2 α 0 h where α 2 2 2 = mE h Q.E.D.
  • 18. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 2 ( ) ( ) ( ) = α − exp α − 24 3.3 We have d u x ( ) ( ) + − b −α g ( ) = dx jk du x dx k ux 2 1 2 1 2 2 1 2 0 The proposed solution is u x A j k x B j k x 1( ) = exp (α − ) + exp − (α + ) The first derivative is du x 1 j k A j k x ( ) ( ) ( ) = α − exp α − dx − j(α + k)B exp − j(α + k)x and the second derivative becomes d u x dx j k A j kx 2 1 2 + j(α + k ) B − j(α + k )x 2 exp Substituting these equations into the differential equation, we find −(α − k ) A j(α − k )x 2 exp −(α + k ) B − j(α + k)x 2 exp +2 jk{ j(α − k )Aexp j(α − k )x − j(α + k )B exp − j(α + k )x } − k − {A j( − k)x 2 2 b α g exp α +B exp − j(α + k )x } = 0 Combining terms, we have − α − α + − (α − ) 2 2 l b 2 k k g 2k k − k − A j( − k)x 2 2 b α gq exp α +m−cα 2 + 2αk + k 2 h+ 2kaα + kf − k − B − j( + k)x = 2 2 b α gq exp α 0 We find that 0 = 0 Q.E.D. For the differential equation in u x 2( ) and the proposed solution, the procedure is exactly the same as above. 3.4 We have the solutions u x A j k x B j k x 1( ) = exp (α − ) + exp − (α + ) for 0 < x < a u x C j k x D j k x 2( ) = exp (β − ) + exp − (β + ) for −b < x < 0 The boundary conditions: u u 1 2 (0) = (0) which yields A + B − C − D = 0 Also du = 1 2 dx du x dx x =0 =0 which yields (α − k)A − (α + k )B − (β − k)C + (β + k)D = 0 The third boundary condition is u a u b 1 2 ( ) = (− ) which gives Aexp j(α − k )a + B exp − j(α + k)a = C exp j(β − k )(−b) + Dexp − j(β + k )(−b) This becomes Aexp j(α − k )a + B exp − j(α + k)a −C exp − j(β − k)b − Dexp j(β + k )b = 0 The last boundary condition is du = 1 2 dx du x = a dx x =− b which gives j(α − k )Aexp j(α − k)a − j(α + k)B exp − j(α + k)a = j(β − k)C exp j(β − k)(−b) − j(β + k)Dexp − j(β + k)(−b) This becomes (α − k)Aexp j(α − k )a −(α + k)B exp − j(α + k )a −(β − k )C exp − j(β − k )b +(β + k)Dexp j(β + k )b = 0 3.5 Computer plot 3.6 Computer plot 3.7 P′ + = a a a ka sin cos cos α α α Let ka = y ,αa = x Then P′ + = x x x y sin cos cos Consider d dy of this function
  • 19. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 25 d dy P′ ⋅ x ⋅ x + x y − { b g 1 } = − sin cos sin We obtain ′ (− )( ) + ( ) RST UVW dx dy − − P x x x x dx dy 1 2 1 sin cos dx dy − sin x = − sin y Then dx dy P − + LNM − =− x x x x OQP ′ x y RST UVW 1 2 sin cos sin sin For y = ka = nπ , n = 0 , 1, 2 , . . . ⇒ sin y = 0 So that, in general, then dx dy ( ) ( ) d a d ka d dk = = = 0 α α And α α FH = ⇒ = IK FH IK − 2 1 2 / 2 2 2 2 1 2 2 mE d dk mE m dE h h h dk This implies that d dk dE dk α = 0 = for k n a = π 3.8 sin ( ) = 9 + α = f a a a α α α cos a cos ka (a) ka = π ⇒ cos ka = −1 1st point: αa = π : 2nd point: αa = 1.66π (2nd point by trial and error) Now α α FH = ⇒ = ⋅ a a mE E IK 2 2 a a m 2 2 2 h h So E ( ) a x b 1054 . x 10 g b x g = ⋅ ⇒ b − g 2 9.11 10 − − α 2 10 2 34 2 31 5 10 E = ( a) x − (J) α 2 20 2.439 10 or E = (αa) ( ) (eV ) 2 0.1524 So αa = π ⇒ E = eV 1 1.504 αa = 1 66π ⇒ E = 4.145 eV 2 . Then ΔE = 2.64 eV (b) ka = 2π ⇒ cos ka = +1 1st point: αa = 2π 2nd point: αa = 2.54π Then E eV 3 = 6.0165 E eV 4 = 9.704 so ΔE = 3.69 eV (c) ka = 3π ⇒ cos ka = −1 1st point: αa = 3π 2nd point: αa = 3.44π Then E eV 5 = 13.537 E eV 6 = 17.799 so ΔE = 4.26 eV (d) ka = 4π ⇒ cos ka = +1 1st point: αa = 4π 2nd point: αa = 4.37π Then E eV 7 = 24.066 E eV 8 = 28.724 so ΔE = 4.66 eV 3.9 (a) 0 < ka < π For ka = 0⇒ cos ka = +1 By trial and error: 1st point: αa = 0.822π 2nd point: αa = π From Problem 3.8, E = (αa) ( ) (eV ) 2 0.1524 Then E eV 1 = 1.0163 E eV 2 = 1.5041 so ΔE = 0.488 eV (b) π < ka < 2π Using results of Problem 3.8 1st point: αa = 1.66π 2nd point: αa = 2π Then
  • 20. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 26 E3 = 4.145 eV E eV 4 = 6.0165 so ΔE = 1.87 eV (c) 2π < ka < 3π 1st point: αa = 2.54π 2nd point: αa = 3π Then E eV 5 = 9.704 E eV 6 = 13.537 so ΔE = 3.83 eV (d) 3π < ka < 4π 1st point: αa = 3.44π 2nd point: αa = 4π Then E7 = 17.799 eV E8 = 24.066 eV so ΔE = 6.27 eV 3.10 6 sin cos cos α α α a a + a = ka Forbidden energy bands (a) ka = π ⇒ cos ka = −1 1st point: αa = π 2nd point: αa = 1.56π (By trial and error) From Problem 3.8, E = (αa) ( ) eV 2 0.1524 Then E eV 1 = 1.504 E eV 2 = 3.660 so ΔE = 2.16 eV (b) ka = 2π ⇒ cos ka = +1 1st point: αa = 2π 2nd point: αa = 2.42π Then E eV 3 = 6.0165 E eV 4 = 8.809 so ΔE = 2.79 eV (c) ka = 3π ⇒ cos ka = −1 1st point: αa = 3π 2nd point: αa = 3.33π Then E eV 5 = 13.537 E eV 6 = 16.679 so ΔE = 3.14 eV (d) ka = 4π ⇒ cos ka = +1 1st point: αa = 4π 2nd point: αa = 4.26π Then E eV 7 = 24.066 E eV 8 = 27.296 so ΔE = 3.23 eV 3.11 Allowed energy bands Use results from Problem 3.10. (a) 0 < ka < π 1st point: αa = 0.759π (By trial and error) 2nd point: αa = π We have E = (αa) ( ) eV 2 0.1524 Then E eV 1 = 0.8665 E eV 2 = 1.504 so ΔE = 0.638 eV (b) π < ka < 2π 1st point: αa = 1.56π 2nd point: αa = 2π Then E eV 3 = 3.660 E eV 4 = 6.0165 so ΔE = 2.36 eV (c) 2π < ka < 3π 1st point: αa = 2.42π 2nd point: αa = 3π
  • 21. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 27 Then E5 = 8.809 eV E eV 6 = 13.537 so ΔE = 4.73 eV (d) 3π < ka < 4π 1st point: αa = 3.33π 2nd point: αa = 4π Then E eV 7 = 16.679 E eV 8 = 24.066 so ΔE = 7.39 eV 3.12 T = 100K ; E x g= − 4 2 + ⇒ − ( ) 1170 4.73 10 100 636 100 . b g E eV g = 1.164 T = 200K ⇒ E eV g = 1.147 T = 300K ⇒ E eV g = 1.125 T = 400K ⇒ E eV g = 1.097 T = 500K ⇒ E eV g = 1.066 T = 600K ⇒ E eV g = 1.032 3.13 The effective mass is given by m d E dk *= ⋅ FH G IK J 1 2 − 2 2 1 h We have that d E dk a curve A f > a f 2 d E dk curve B 2 2 2 so that m curve A m curveB *a f < *a f 3.14 The effective mass for a hole is given by m *= ⋅ FH G d E dk p IK J 1 2 − 2 2 1 h We have that d E dk a curve A f > a f 2 d E dk curve B 2 2 2 so that * a f < * a f m curve A m curveB p p 3.15 Points A, B: ∂ ∂ < ⇒ E k 0 velocity in –x direction; Points C, D: ∂ ∂ > E x 0 ⇒ velocity in +x direction; Points A, D; E k ∂ ∂ < ⇒ 2 2 0 negative effective mass; Points B, C; E k ∂ ∂ > ⇒ 2 2 0 positive effective mass; 3.16 E E 2 2 2 k h − = C m At k = A ⇒ ° − 01 1 . b g 1 10 10 9 k = A = m ° − So k = m + − 109 1 For A: b g b g b g 0 07 16 10 10 1054 10 2 19 9 2 34 2 . . . ( ) − − x = x m which yields m = x kg − 4.96 10 31 so curve A m mo ; = 0.544 For B: b g b gb g 0 7 16 10 10 1054 10 2 19 9 34 2 . . . ( ) − − x = x m which yields m = x kg − 4.96 10 32 so Curve B m mo : = 0.0544 3.17 E E 2 2 2 k h − = Vm
  • 22. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 28 k = A ⇒ m − − 01 10 1 9 1 . b * g For Curve A: b g b g b g 0 08 16 10 10 1054 10 2 19 9 2 34 2 . . . ( ) − − x = x m which yields m = x kg ⇒ − 4.34 10 31 m mo = 0.476 For Curve B: b g b g b g 0 4 16 10 10 1054 10 2 19 9 2 34 2 . . . ( ) − − x = x m which yields m = x kg ⇒ − 8 68 10 32 . m mo = 0.0953 3.18 (a) E = hν Then ν= = ⇒ b g b g ( ) − − E h x x 142 16 10 6 625 10 19 34 . . . ν = 343 1014 . x Hz (b) λ = = = − c x ν x x m 3 10 343 10 8 75 10 8 14 7 . . or λ = 0.875 μm 3.19 (c) Curve A: Effective mass is a constant Curve B: Effective mass is positive around k = 0 , and is negative around k = ± π 2 . 3.20 E E E k k O O = − − 1 cos αa f dE dk E k kO = − (− ) − 1 a f α sin αa f = + − E k kO 1α sin αa f So d E dk = E α 2 cos αa k − kf O 2 2 1 Then d E dk E k kO 2 2 1 2 = = α We have 1 1 *= ⋅ = 2 2 d E dk 2 α 1 2 E m h h 2 or m E * = h2 2 α 1 3.21 For the 3-dimensional infinite potential well, V(x) = 0 when 0 < x < a , 0 < y < a , and 0 < z < a . In this region, the wave equation is ∂ 2 ( ) ( ) ( ) ψ x y z ψ ψ ∂ + ∂ ∂ + ∂ ∂ 2 2 2 2 2 x x y z y x y z z , , , , , , mE 2 + ( x y z ) = 0 2 h ψ , , Use separation of variables technique, so let ψ (x, y, z) = X(x)Y(y)Z(z) Substituting into the wave equation, we have YZ X x XZ Y y XY Z z ∂ ∂ + ∂ ∂ + ∂ ∂ 2 2 2 2 2 2 2 mE XYZ + ⋅ = 0 2 h Dividing by XYZ , we obtain X x Y Y y Z Z z ∂ ∂ ∂ ∂ ∂ ∂ 1 1 1 2 0 2 2 2 2 2 mE ⋅ + ⋅ + ⋅ + = X 2 h 2 Let 1 0 2 2 2 2 2 2 X X x k X x ∂ ∂ ⋅ = − ⇒ k X x x ∂ ∂ + = The solution is of the form X x A k x B k x x x ( ) = sin + cos Since ψ (x, y, z) = 0 at x = 0 , then X(0) = 0 so that B ≡ 0 . Also, ψ (x, y, z) = 0 at x = a , then X(a) = 0 so we must have k a n x x = π , where nx = 1, 2 , 3, . . Similarly, we have 1 2 2 2 Y Y y ∂ ∂ ky ⋅ = − and 1 2 2 2 Z Z z ∂ ∂ ⋅ = − kz From the boundary conditions, we find
  • 23. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 29 k a = n π and k a = n π y y z z where n= 1, 2 , 3, . . . and n= 1, 2 , 3, . . . y z From the wave equation, we have mE −k 2 − k 2 − k 2 + = x y z 2 2 0 h The energy can then be written as E FH = n + n + n m x y z a IK h2 2 2 2 2 2 b g π 3.22 The total number of quantum states in the 3- dimensional potential well is given (in k-space) by k 2 dk g k dk π π a T( ) = ⋅ 3 3 where k mE 2 2 2 = h We can then write 1 k = ⋅ 2 mE h Taking the differential, we obtain dk m E dE m E 1 = ⋅ 2 ⋅ ⋅ ⋅ = ⋅ ⋅ dE 1 2 1 1 h h 2 Substituting these expressions into the density of states function, we obtain g E dE 3 ( ) a FH mE m dE TE IK π π 2 1 h h 2 = ⋅ ⋅ ⋅ 3 2 Noting that h = h 2m this density of states function can be simplified and written as g E dE a h 3 2 π / 4 ( ) = ( 2 m ) ⋅ EdE ⋅ T3 3 Dividing by a3 will yield the density of states, so that ( ) E ( ) g E 4 π 2 3 / 2 m h = ⋅ 3 3.23 g E π b * g / 4 2 3 2 m h ( )= n − C E E C 3 Now g π b * g / + 4 2 z 3 2 m h n E kT E E dE T C E C C = − ⋅ 3 = − FH IK * / E kT 4 π 2 m 2 + 3 2 3 3 2 3 h E E n C C C E / b g a f / b g = FH IK * / 3 2 π m ( ) 4 2 2 3 3 2 3 h kT n Then g b g / b g ( ) FH x 4 2 0 067 9.11 10 x T = IK − − 6 625 10 2 3 31 3 2 34 3 π . . ×( ) − 0 0259 16 10 19 3 2 . . / b x g or g x m x cm T= =− − 3 28 10 3 28 10 23 3 17 3 . . 3.24 g E π b * g / 4 2 3 2 m h ( )= p − V E E V 3 Now g π b * g / 4 2 3 2 m h p − z E E E dE T V E kT V V = − ⋅ 3 = − FH * / E π m − 3 2 IK − 4 2 2 3 3 2 3 h E E p V V V E kT / b g a f / b g = FH IK * / 3 2 π m ( ) 4 2 2 3 3 2 3 h kT p g b g / b g ( ) FH x 4 2 048 9.11 10 x T = IK − − 6 625 10 2 3 31 3 2 34 3 π . . ×( ) − 0 0259 16 10 19 3 2 . . / b x g or g x m x cm T= = − − 6 29 10 6 29 10 24 3 18 3 . . 3.25 (a) g E π b * g / 4 2 3 2 m h ( )= n − C E E C 3 b g b g b g ( ) − π . 19 1 2 − 4 2108 9.11 10 = − − 6 625 10 16 10 31 3 2 34 3 . . / x / x x E EC = − − − 4.77 1046 3 1 x E E mJ C
  • 24. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 30 or g E x E E cm eV C C ( )= − − − 7.63 1021 3 1 Then E gC EC + 0.05 eV E eV C + 0.10 E eV C + 0.15 E eV C + 0.20 171 1021 3 1 . x cmeV − − 2.41 1021 x 2.96 1021 x 341 1021 . x π b * g / 4 2 3 2 V ( )= − (b) g E m h p E E V 3 ( ) b − g b g b g = 178 . x 1046 E − E mJ − 3 − 1 V g ( E )= 2.85 x 1021 E − E cm − 3 eV − 1 V V π . 19 1 2 − 4 2 056 9.11 10 = − − 6 625 10 16 10 31 3 2 34 3 . . / x / x x E E V E g E V( ) E eV V − 0.05 E eV V − 0.10 E eV V − 0.15 E eV V − 0.20 0 637 1021 3 1 . x cm eV − − 0 901 1021 . x 110 1021 . x 127 1021 . x 3.26 g g b m g b m g C V * / n = ⇒ * / p 3 2 3 2 g g m m C V n p = FH G IK J * * 3/2 3.27 Computer Plot 3.28 g 10 a i f ( − ) ! N g N ! ! i i i ! = − 8 ! 10 8 ! ( )( )( ) ( )( ) ( )( ) ( )( ) 10 9 8 8 2 10 9 2 1 ! = = ⇒ ! ! = 45 3.29 (a) f E 1 1 expa f E kT E C C kT ( ) LNM OQP = + + − = + ⇒ ( ) 1 1 exp 1 f (E) = 0.269 (b) 1 1 1 1 − = − + a − f − exp V V ( ) LNM OQP f E E kT E kT = − + − ⇒ ( ) 1 1 1 exp 1 1− f (E) = 0.269 3.30 f E E E kT F ( ) FH IK = + − 1 1 exp (a) E E kT F − = , f (E) ( ) = + ⇒ 1 1 exp 1 f (E) = 0.269 (b) E E kT F − = 5 , f (E) ( ) = + ⇒ 1 1 exp 5 f (E) = x − 6 69 10 3 . (c) E E kT F − = 10 , f (E) ( ) = + ⇒ 1 1 exp 10 f (E) = x − 4.54 10 5 3.31 1 1 1 1 − = − + − ( ) FH IK f E E E kT exp F or 1 1 1 − = + − ( ) FH IK f E E E kT exp F (a) E E kT F− = , 1− f (E) = 0.269 (b) E E kT F− =5 , 1 6 69 10 3 − ( ) = − f E . x (c) E E kT F− =10 , 1 4.54 10 5 − ( ) = − f E x 3.32 (a) T = 300K ⇒ kT = 0.0259 eV f E LNM 1 − − F ( ) FH E E kT E E IK F kT OQP = + − ≈ 1 exp exp a f
  • 25. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 31 E f bE g EC EC + (1 2)kT E kT C + EC + (3 2)kT E kT C +2 6 43 10 5 . x − 390 10 5 . x − 2.36 10 5 x − 143 10 5 . x − 087 10 5 . x − (b) T = 400K ⇒ kT = 0.03453 E f (E) EC EC + (1 2)kT E kT C + EC + (3 2)kT E kT C +2 7.17 10 4 x − 4.35 10 4 x − 2.64 10 4 x − 160 10 4 . x − 0 971 10 4 . x − 3.33 E h2 2 2 n ma n = π 2 2 = b 1054 . x 10 − 34 g 2 n 2 π 2 b x gb x g 31 10 2 − − 2 9.11 10 10 10 or E = 6 . 018 x 10 − 20 nJ 2 = 0 . 376 neV 2 nFor n = 4 ⇒ E = 6 . 02 eV , 4 For n = 5⇒ E = 9.40 eV . 5 As a 1st approximation for T > 0 , assume the probability of n = 5 state being occupied is the same as the probability of n = 4 state being empty. Then 1 1 1 1 IKexp exp − 4 1 5 FH − + − = + IK FH E E kT E E kT F F ⇒ + − FH E − E kT = + IK FHIK 1 1 1 E E kT exp 4 1 exp 5 F F or E E E E E E E F F F − = − ⇒ = + 4 5 4 5 2 Then EF = + ⇒ 6 02 9.40 2 . E eV F = 7.71 3.34 (a) For 3-Dimensional infinite potential well, h2 2 E n n n x y z = + + ma 2 2 2 2 2 πb g b . x − 34 g 2 π 2 b gb g b 2 2 2 g x 1054 10 2 9.11 10 10 = ++ 31 9 2 − − n n n x y z = 0 376 + + 2 2 2 . n n n eV x y z b g For 5 electrons, energy state corresponding to n n n x y z= 221 = 122 contains both an electron and an empty state, so EF= (0 376) 2 + 2 + 1 ⇒ 2 2 2 . b g E eV F = 3.384 (b) For 13 electrons, energy state corresponding to n n n x y z= 323 = 233 contains both an electron and an empty state, so EF= (0 376) 2 + 3 + 3 ⇒ 2 2 2 . b g E eV F = 8.272 3.35 The probability of a state at E E E 1 F = +Δ being occupied is f E + FH E E kT E kT F 1 1 1 1 1 1 1 a f = + − = IK FH IK exp exp Δ The probability of a state at E = E −Δ E 2 F being empty is 1 1 1 1 2 2 2 − =− + − FH IK f E E E kT F a f exp = − + E kT = − FH − − + IK FH IK FH IK 1 1 1 exp 1 exp exp Δ Δ E Δ kT E kT or 1 1 1 2 2 − = + + FH IK f E E kT a f exp Δ Hence, we have that f E f E 1 1 2 2 a f = 1− a f Q.E.D.
  • 26. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 32 3.36 (a) At energy E1 , we want 1 1 exp exp 1 1 1 0 01 F F 1 1 1 exp . E E kT E E kT E E kT F − − + − + − = FH IK FH IK FH IK This expression can be written as 1 1 001 1 1 + − − − = FH IK FH IK exp exp . E E kT E E kT F F ⇒ = − ( ) FH IK E E kT 1 0.01 exp 1 F or E E kT 1 F = + ln(100) Then E E kT 1 F = + 4.6 (b) At E E kT 1 F = + 4.6 , f E 4.6 a f = + FH E E kT kT kT F 1 1 1 1 1 1 + − = IK FH IK exp exp which yields f E1 a f = 0.00990 ≈ 0.01 3.37 (a) E eVT K F= 6.25 , = 300 , At E = 6.50 eV = − 1 f E x ( ) FH IK = + − 1 650 6 25 0 0259 6 43 10 5 exp . . . . or 6 43 10 3 . x % − (b) T = K ⇒ kT = ( )FH IK 950 0 0259 950 300 . or kT = 0.0820 eV Then f E ( ) FH IK = + − = 1 1 650 6 25 0 0820 0 0453 exp . . . . or 4.53% = FH − = 0 99 (c) 1 001 1 1 0 30 + − IK . exp . . kT Then 1 0 30 1 = = FH + 1 0101 0 99 − IK exp . . . kT which can be written as exp FH . = = . + IK 0 30 1 0 0101 99 kT Then 0 30 99 0 30 99 0 06529 . ln . ln . kT = ( )⇒ kT = = ( ) So T = 756K 3.38 (a) f E ( ) FH IK = + − = 1 1 7.15 7.0 0 0259 0 00304 exp . . or 0.304% (b) At T = 1000K ⇒ kT = 0.08633 eV Then f E ( ) FH IK = + − = 1 1 7.15 7.0 0 08633 01496 exp . . or14.96% (c) f E ( ) FH IK = + − = 1 1 685 7.0 0 0259 0 997 exp . . . or 99.7% (d) At E EF = , f (E) = 1 2 for all temperatures. 3.39 For E = E1 , f E LNM 1 − − F ( ) FH E E kT E E IK F kT OQP = + − ≈ 1 1 1 exp exp a f Then
  • 27. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 33 f E1 ⇒ FH 0 30 0 0259 a f= − IK exp . . f E x 1 a f = 9.3 10 6 − For E = E, E − E = 1.12 − 0.3 = 0.82 eV 2 F2 1 1 1 1 082 0 0259 − = − + − ( ) FH IK f E exp . . or 1 1 1 − ( ) FH 082 0 0259 − ≈ − − IK LNM OQP f E exp . . = FH − ⇒ IK exp 082 . 0 . 0259 1 1 78 10 14 − ( ) = − f E . x (b) For E E E E eV F F − = ⇒ − = 2 1 0.4 0.72 At E = E1 , ( ) F LNM f E E E kT OQP FH IK = − − = − exp exp . . 1 0 72 0 0259 a f so f (E) = x − 8 45 10 13 . At E = E2 , 1 − ( ) LNM 0 4 0 0259 − − − = 2 = OQP FH IK f E E E kT exp F exp . . a f so 1 1 96 10 7 − ( ) = − f E . x 3.40 (a) At E = E1 , a f 0 30 ( ) F LNM f E E E kT OQP FH IK = − − = − exp exp . . 0 0259 or f (E) = x − 9.3 10 6 At E = E2 , then E E eV F− = − = 2 1.42 0.3 1.12 , So 1 OQPFH − ( ) LNM 112 0 0259 − − − = 2 = IK f E E E kT exp F exp . . a f or 1 1 66 10 19 − ( ) = − f E . x (b) For E E E E eV F F − = ⇒ − = 2 1 0.4 1.02 , At E = E1 , ( ) F LNM f E E E kT OQP FH IK = − − = − exp exp . . 1 102 0 0259 a f or f (E) = x − 7.88 10 18 At E = E2 , 1 − ( ) LNM 0 4 0 0259 − − − = 2 = OQP FH IK f E E E kT exp F exp . . a f or 1 1 96 10 7 − ( ) = − f E . x 3.41 ( ) F FH f E E E kT IK LNM OQP = + − − 1 1 exp so df E F ( ) ( ) FH dE E E kT IK LNM OQP = − + − − 1 1 2 exp × − FH IK FH IK 1 kT E E kT exp F or df E dE kT E E kT E E kT F F ( ) FH IK FHIK LNM OQP = − − + − 1 1 2 exp exp (a) T = 0 , For df E < E ⇒ exp(−∞) = 0⇒ = 0 F dE E E df dE F > ⇒ exp(+∞) = +∞ ⇒ = 0 At E E df dE F = ⇒ →−∞ 3.42 (a) At E Emidgap = , f E E E kT E kT F g ( ) FH IK FH G IK J = + − = + 1 1 1 1 2 exp exp Si: E eV g = 1.12 , f (E) ( ) LN M OQ P = + 1 1 112 2 0 0259 exp . . or f (E) = x − 4.07 10 10 Ge: E eV g = 0.66 ,
  • 28. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 3 Solutions Manual Problem Solutions 34 f (E) ( ) LN M OQ P = + 1 1 0 66 2 0 0259 exp . . or f (E) = x − 2.93 10 6 GaAs: E eV g = 1.42 , f (E) ( ) LN M OQ P = + 1 1 142 2 0 0259 exp . . or f (E) = x − 124 10 12 . (b) Using results of Problem 3.35, the answers to part (b) are exactly the same as those given in part (a). 3.43 f E kT ( ) FH IK = = + − 10 1 1 055 6 exp . Then 1 055 1 FH + exp = = + 6 ⇒ 10 10 6 IK − . kT exp . . ln 055 10 055 10 6 6 kT kT FH IK FH IK ≈ ⇒ = + b g or kT= ⇒ 055 106 . lnb g T K = 461 3.44 At E = E, f a Ef = 0.05 2 2 So 1 0 05 1 2 . exp = + − FH IK E E kT F Then E − E kT = ln( ) 2 F 19 By symmetry, at E = E − f E = 1 1 , 1 a f 0.05 , So E E kT F − 1 = ln(19) Then E − E kT = ln( ) 2 1 2 19 (a) At T = 300K , kT = 0.0259 eV E E E 2 1 − = Δ = (0.0259)(2)ln(19)⇒ ΔE = 0.1525 eV (b) At T = 500K , kT = 0.04317 eV E E E 2 1 − = Δ = (0.04317)(2)ln(19)⇒ ΔE = 0.254 eV
  • 29. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions Chapter 4 Problem Solutions 4.1 n N N − FH G E kT i C V 2 g = IK J exp (a) Silicon T(° K) kT (eV ) n cm i b −3 g 200 400 600 0.01727 0.03453 0.0518 7.68 104 x 2.38 1012 x 9.74 1014 x (b) Germanium (c) GaAs T(° K) n cm i b −3 g n cm i b −3 g 200 400 600 2.16 1010 x 8 60 1014 . x 382 1016 . x 1.38 328 109 . x 572 1012 . x 4.2 n N N − FH G E kT i C V 2 g = IK J exp − FH IK 3 b g = b gb g FH T 112 12 2 19 19 x x 10 2.8 10 104 10 . exp 300 IK . kT Then exp FH 1.12 T =b 2.912 x 10 g 300 14 3 kT IK FH IK By trial and error T = 381K 4.3 Computer Plot 4.4 n N N T ( ) FH G IK J E kT i CO VO 2 3 g = ⋅ ⋅ − exp So 2 a f 1 1 a f= − − FH GIK JFH G n T n T T T E exp kT kT i 2 i g 2 1 2 1 3 2 1 IK J LN M OQ P At T K kT eV 2 = 300 ⇒ = 0.0259 At T K kT eV 1 = 200 ⇒ = 0.01727 Then 37 2 3 . . 583 10 182 10 300 200 1 0 0259 1 0 01727 7 2 exp . . x x Eg FH G IK J FH IK FH IK LNM OQP = − − or 1026 10 3 375 19.29 11 . x . exp Eg = ( ) which yields E eV g = 1.25 For T = 300K , 583 10 300 − ( ) FH 125 0 0259 7 2 3 . exp . . x NNCO VO b g = a f IK or N N x CO VO = 115 1029 . 4.5 (a) g f E E exp a f − − LNM E E kT C F C ∝ − F OQP ∝ − exp C exp C F a f a f − − − − LNM OQP LNM OQP E E E E E E C kT kT Let E E x C − ≡ Then g f x − FH x kT C F ∝ IK exp Now, to find the maximum value d g f dx x x kT C F a f ∝ − − FH IK 1 2 1/2 exp − ⋅ FH − = IK 1 0 1 2 kT x x kT / exp This yields 1 2 1 2 x 1 2 2 x kT x kT / / = ⇒ = Then the maximum value occurs at kT E E C = + 2 (b) g f E E a f a f exp − − LNM E E 1− ∝ − F V F V kT OQP exp F V exp V a f a f E E kT V ∝ − − − − − LNM OQP LNM OQP E E E E kT Let E E x V− ≡
  • 30. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions Then g f x − FH a f exp x kT V F 1− ∝ IK To find the maximum value a f exp d g − f V F 1 dx d dx x = FH x kT 0 ∝ − IK LNM OQP Same as part (a). Maximum occurs at kT x E E V = = − 2 or E E kT V = − 2 4.6 a f a f n E n E E E a f E E kT 1 − − − LNM exp = a f E E C 1 E E kT C C C 1 2 2 − − 2 − OQP LNM OQP exp where E E kT 1 C = + 4 and E E kT = + 2 C 2 Then a f a f n E n E a f = kT kT − − LNM E E kT 1 2 1 2 4 2 OQP exp = − − = − FH IK LNM OQP 1 2 2 2 4 ( ) exp 2 2 exp 3.5 or 0 0854 a f a f = . n E n E 1 2 4.7 Computer Plot 4.8 2 ( ) ( ) n A n B E kT E kT exp b g E E kT i 2 i − FH GIK JLN M gA gB − − gA gB FH G IK J OQ P = − = exp exp or exp b g LN M gA gB ( ) ( ) n A n B E E kT i i OQ P = − − 2 38 = ( ) + ( ) − − = LN M OQ P ( ) LN M OQ P exp . . exp . . 1 12 2 0 0259 0 20 2 0 0259 or n A i n B i ( ) ( ) = 47.5 4.9 Computer Plot 4.10 E E kT m m Fi midgap p n − = FH G IK J 3 4 ln * * * * = 0.56 , = 1.08 Silicon: m m m m p O n O E E eV Fi midgap − = −0.0128 Germanium: m m m m p O n O * * = 0.37 , = 0.55 E E eV Fi midgap − = −0.0077 Gallium Arsenide: m m m m p O n O * * = 0.48 , = 0.067 E E eV Fi midgap − = +0.038 4.11 (a) E E kT m m Fi midgap p n − = FH G IK J 3 4 ln * * = ( ) ⇒ FH IK 3 4 . ln . 0 0259 14 0 . 62 E E eV Fi midgap − = +0.0158 (b) E E Fi midgap − = ( ) ⇒ FH IK 3 4 . ln . 0 0259 0 25 110 . E E eV Fi midgap − = −0.0288 4.12 E E kT N N Fi midgap V C − = ( ) FH G IK J 1 2 ln = ( ) = − FH G IK J x x . 1 104 10 ln 0 495 ( kT ) 2 2.8 10 19 19 kT .
  • 31. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions T(° K) kT (eV ) E E eV Fi midgap − ( ) 200 400 600 0.01727 0.03453 0.0518 −0.0085 −0.017 −0.0256 4.13 Computer Plot 4.14 Let g E K C( )= =constant Then, n g Ef EdE O C ∞z ( ) ( ) F = EC = + 1 − FH IK ∞K z E E kT dE 1 exp E F C ≈ exp a f − − LNM OQP ∞K z E E kT F dE EC Let η = E − E kT F so that dE = kT ⋅ dη We can write E E E E E E F C F C − = a − f− a − f so that exp exp exp F C F a f a f η ⋅ − LNM ( ) E E kT − − = E E kT − − OQP LNM OQP The integral can then be written as n K kT ∞exp zexp a f η η − LNM E E kT − − OQP ( ) = ⋅ ⋅ C F d O 0 which becomes n K kT exp a f − − LNM E E kT O = ⋅ ⋅ C F OQP 4.15 Let g E C E E C C ( )= − 1a f for E EC ≥ n g Ef EdE O C F ∞z = ( ) ( ) EC 39 = a − f exp + − FH IK ∞C z E E C dE E E kT 1 1 E F C or n C E E 1 a f a f exp ∞ − − z LNM E E kT ≈ − F dE O C EC OQP Let η = E − E kT C so that dE = kT ⋅ dη We can write E E E E E E F C C F a − f = a − f+ a − f Then n C 1 exp a f − − LNM E E kT O = C F OQP − − ∞z LNM × − OQP E E E E kT C dE C EC a f a f exp or = 1 exp a f − − LNM OQP C E E kT C F ∞z kT kT d 0 × ( ) (− ) ( ) η exp η η We find that η η η η ∞ e − η ∞ z0 exp(− ) = (− − ) = + d 1 1 0 1 So n C kT − − ( ) LNM E E kT O = C F OQP 1 2 exp a f 4.16 We have 1 =∈ O FH r a m r m O IK * For Germanium, ∈ = = r O 16 , m 0.55m * Then r a1 O 16 = ( ) = 29 0 53 FH 1 055 IK ( ) . . so r A 1 = 15 4 ° . The ionization energy can be written as E m m 2 13 6 eV O O S = ∈ ∈ FH G IK J FH G IK J ( ) * .
  • 32. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions 055 . ( ) 16 . E = 0.029 eV = ⇒ ( ) 13 6 2 4.17 We have 1 =∈ O FH r a m r m O IK * For GaAs, ∈ = = r O 13.1, m 0.067m * Then r1 131 = ( ) 0 53 FH 1 0 067 IK . ( ) . . or r A 1 = 104 ° The ionization energy is E FH G * = m mO ∈ ∈ O S = IK J FH G IK J ( ) 0 . 067 131 . 2 13 6 ( ) ( ) . 13 . 6 2 or E = 0.0053 eV 4.18 (a) p b . g 2 10 2 n x O n x 15 10 5 10 = i = ⇒ O 4 p x cm O = − 4.5 1015 3 , p n O O > ⇒ p-type (b) E E kT − = FH G p n Fi F ln O i IK J =( ) FH G IK J 0 0259 x x 4.5 10 15 10 15 10 . ln. or E − E = 0.3266 eV Fi F 4.19 a f p N exp − − LNM E E kT O V = F V OQP = − FHIK 19 . exp . x 104 10 0 22 0 . 0259 so p x cm O = − 2.13 1015 3 Assuming E E eV C F − = 1.12 − 0.22 = 0.90 Then 40 exp a f − − LNM E E kT O C n N = C F OQP = − FH IK 2.8 10 0 90 0 0259 18 x exp . . or n x cm O = − 2.27 104 3 4.20 (a) T = 400K ⇒ kT = 0.03453 eV N x x cm C= = FH IK 400 300 3 2 4.7 10 17 7.24 10 − 17 3 / Then n N exp a f − − LNM E E kT O C = C F OQP = − FH IK 7.24 10 0 25 0 03453 17 x exp . . or n x cm O = − 519 1014 3 . Also N x x cm V= = FHIK 400 300 3 2 7 10 18 108 10 − 19 3 / . and E E eV F V − = 1.42 − 0.25 = 1.17 Then p x O = − FH IK 19 . exp . 108 10 117 0 . 03453 or p x cm O = − 2.08 104 3 (b) E E kT N n C F C O − = FH G IK J ln =( ) FH G IK J 0 0259 17 x x 4.7 10 519 10 14 . ln. or E E eV C F − = 0.176 Then E E eV F V − = 1.42 − 0.176 = 1.244 and p x O = − FH IK 7 10 1244 0 0259 b 18 gexp . . or p x cm O = − − 9.67 103 3
  • 33. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions 4.21 p N exp a f − − LNM E E kT O V = F V OQP or E E kT − = FH G N p F V ln V O IK J = ( ) = FH G IK J x 15 . ln . 0 0259 104 10 10 0 24 19 . eV Then E − E = 1.12 − 0.24 = 0.88 eV C F So a f n N exp − − LNM E E kT O C = C F OQP = − FH IK 19 x exp 2.8 10 088 . 0 . 0259 or n x cm O = − 4.9 104 3 4.22 (a) p n − FH E E kT O i = Fi F IK exp x FH 10 . exp . 15 10 0 35 0 . 0259 IK or p x cm O = − 111 1016 3 . (b) From Problem 4.1, n K x cm i 400 2.38 10( ) = 12 3 − kT = ( ) = eV FH IK 0 0259 400 300 . 0.03453 Then E E kT − = FH G p n Fi F ln O i IK J =( ) FH G IK J x x 12 . ln . 0 03453 16 111 10 2.38 10 or E E eV Fi F − = 0.292 (c) From (a) n b g 2 10 2 n x = i = O p x O 15 10 111 10 16 . . or 41 n x cm O = − 2.03 104 3 From (b) n b g . 2 12 2 n x = i = O p x O 16 2.38 10 111 10 or n x cm O = − 510 108 3 . 4.23 (a) p n − FH E E kT O i = Fi F IK exp = FH IK p b 18 . x 10 6 g ex . 0 35 0 . 0259 or p x cm O = − 133 1012 3 . (b) From Problem 4.1, n K x cm i 400 3 28 10( ) = 9 3 − . , kT = 0.03453 eV Then E E kT p n Fi F O i − = FH G IK Jln =( ) FH G IK J 9 . ln . 0 03453 12 133 10 328 . 10 x x or E E eV Fi F − = 0.207 (c) From (a) n b g 2 6 2 n x = i = O p x O 18 10 133 10 12 . . or n cm O = − 2.44 3 From (b) n b g x x O = 9 2 328 10 133 10 12 . . or n x cm O = − 8 09 106 3 . 4.24 For silicon, T KE E F V = 300 , = ′ = E − E kT η = ⇒ (η′) = V F 0 F 0 60 1/ 2 . We can write
  • 34. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions π / b . g . 2 pO = NV F ( η ′) 2 = 104 x 10 19 ( 0 60 ) 1 2 π or p = 7.04 x 1018 cm − 3 O 4.25 Silicon, T = 300 Kn , = 5 x 1019 cm − 3 O We have 2 n = NF O C F η / a f 1 2 π or 5 10 2 b g aη f / 2.8 10 19 19 1 2 x x F F = π which gives F 1 2 F 158 / aη f = . Then η F F C E E kT = = − 13 . or E E F C − = (1.3)(0.0259) ⇒ E E eV C F − = −0.034 4.26 For the electron concentration n E g E f E C F ( ) = ( ) ( ) The Boltzmann approximation applies so b g a f ( ) F LNM n E π * / 4 2 − − 3 2 m h E E E E kT n C OQP = − 3 exp or b g a f ( ) n C F LNM n E π * / 4 2 − − 3 2 m h E E kT OQP = 3 exp × C exp C a f − − − LNM OQP kT E E kT E E kT Define x E − E kT = C Then n(E)→ n(x) = K x exp(−x) To find maximum n(E)→ n(x) , set dn x dx ( ) ( ) ( ) ( ) LNM 1 2 = 0 = − 1/ 2 exp − + 1/ 2 − 1 exp − K x x x x OQP or 42 0 1 2 = − − − ( )LNM 1 2 OQP Kx x x / exp which yields x E − E kT = = C ⇒ 1 2 1 2 E E kT C = + For the hole concentration p E g E f E V F ( ) = ( ) 1− ( ) From the text, using the Maxwell-Boltzmann approximation, we can write b g a f ( ) F LNM p E π * / 4 2 − − 3 2 m h E E E E kT p V OQP = − 3 exp or b g a f ( ) p F V LNM p E π * / m h E E kT OQP = 4 2 − − 3 2 3 exp × V exp V a f − − − LNM OQP kT E E kT E E kT Define ′ = − x E E kT V Then p(x′) = K′ x′ exp(−x′) To find the maximum of p(E)→ p(x′) , set dp ( x ′ ) = dx ′ 0 . Using the results from above, we find the maximum at E E kT V = − 1 2 4.27 (a) Silicon: We have n N exp a f − − LNM E E kT O C = C F OQP We can write E E E E E E C F C d d F − = a − f+ a − f For E E eV E E kT C d d F − = 0.045 , − = 3 n x O = − LNM b − 19 gexp 3 OQP 2.8 10 0 . 045 0 . 0259 = 2.8 10 (−4.737) 19 b x gexp or n x cm O = − 2.45 1017 3 We also have
  • 35. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions exp a f − − LNM E E kT O V p N = F V OQP Again, we can write E E E E E E F V F a a V − = a − f+ a − f For E E kT E E eV F a a V − = 3 , − = 0.045 Then p x O= −− LNM OQP b 104 p . 10 19 g ex3 . 0 045 0 . 0259 = 104 10 (−4.737) 19 b . x gexp or p x cm O = − 9.12 1016 3 (b) GaAs: Assume E E eV C d − = 0.0058 Then n x O = − LNM b − 17 gexp 3 OQP 4.7 10 0 . 0058 0 . 0259 = 4.7 10 (−3 224) 17 b x gexp . or n x cm O = − 187 1016 3 . Assume E E eV a V − = 0.0345 Then p x O = − LNM b − 18 gexp 3 OQP 7 10 0 . 0345 0 . 0259 = 7 10 (−4.332) 18 b x gexp or p x cm O = − 9.20 1016 3 4.28 Computer Plot 4.29 (a) Ge: p + FH N − N N − N IK 2 n O 2 = a d + a d i 2 2 Then 10 13 10 13 2 p = + + x O2 2 IK J FH Gb 2.4 10 13 g2 or p x cm O = − 2.95 1013 3 and 43 n b g 2 13 2 n x O p x = i = ⇒ O 13 2.4 10 2.95 10 n x cm O = − 195 1013 3 . (b) n + FH N − N N − N n O = d a + d a i IK 2 2 2 2 Then n x x = + + x OG FH IK J 5 10 2 5 10 2 2.4 10 15 15 2 b 13 g2 or n x cm O ≈ − 5 1015 3 and p b g 2 13 2 n x O n x 2.4 10 5 10 = i = ⇒ O 15 p x cm O = − 115 1011 3 . 4.30 For the donor level n 1 N E E − FHIK kT d = + 1 1 2 exp d d F = + FH IK 1 1 1 2 0 20 0 0259 exp . . or n N = − 885 10 4 . d x d And f E E E kT F F ( ) FH IK = + − 1 1 exp Now E E E E E E F C C F − = a − f+ a − f or E E kT F − = + 0.245 Then f E F( ) FH IK = + + ⇒ 1 1 1 0 245 0 0259 exp . . f E x F( )= − 2.87 10 5
  • 36. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions 4.31 (a) n N x cm O d = = − 2 1015 3 p b . g 2 10 2 n x O n x 15 10 2 10 = i = ⇒ O 15 p x cm O = − 1125 105 3 . (b) p N cm O a = = − 1016 3 n n p b . g 2 10 2 x O 15 10 10 = i = ⇒ O 16 n x cm O = − 2.25 104 3 (c) n p n x cm O O i = = = − 15 1010 3 . (d) T = 400K ⇒ kT = 0.03453 eV n x x i b gb . g exp 2 19 19 FH 3 − 2.8 10 1 04 10 400 300 112 0 03453 = IK FH IK . . or n x cm i = − 2.38 1012 3 p N N = + + i FH IK 2 a a n O 2 2 2 = 5 10 + 5 10 + 2.38 10 13 13 2 12 2 x b x g b x g or p x cm O = − 10 1014 3 . Also n n p b g 2 12 2 x O 2.38 10 10 = i = ⇒ O 14 n x cm O = − 566 1010 3 . (e) T = 500K ⇒ kT = 0.04317 eV n x x i b gb . g exp 2 19 19 IK 3 − FH2.8 10 1 04 10 500 300 112 0 04317 = FH IK . . or n x cm i = − 854 1013 3 . Now n N N = + + i FH IK 2 d d n O 2 2 2 44 = 5 10 + 5 10 + 8 54 10 13 13 2 13 2 x b x g b . x g or n x cm O = − 149 1014 3 . Also p b g 2 13 2 n x O n x = i = ⇒ O 14 854 . 10 149 . 10 p x cm O = − 4.89 1013 3 4.32 (a) n N x cm O d = = − 2 1015 3 p b . g 2 6 2 n x O n x 18 10 2 10 = i = ⇒ O 15 p x cm O = − − 162 103 3 . (b) p N cm O a = = − 1016 3 n n p b . g 2 6 2 x O 18 10 10 = i = ⇒ O 16 n = 324 . x 10− 4 cm − 3 O (c) n = p = n = 18 . x 106 cm − 3 O O i (d) kT = 0.03453 eV 3 n 2 4.7 x 10 17 7 x 10 18 i 400 300 142 0 03453 = − FH IK FH IK b gb g exp . . or n x cm i = − 328 109 3 . Now p N cm O a = = − 1014 3 and n n p b . g 2 9 2 x O 328 10 10 = i = ⇒ O 14 n = 108 . x 105 cm − 3 O (e) kT = 0.04317 eV n 2 x 17 x 18 i 3 4.7 10 7 10 500 300 142 0 04317 = − FH IK FH IK b gb g exp . . or
  • 37. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions n x cm i = − 2.81 1011 3 Now n N cm O d = = − 1014 3 Also p n n b g 2 11 2 x O 2.81 10 10 = i = ⇒ O 14 p x cm O = − 7.90 108 3 4.33 (a) N N a d > ⇒ p-type (b) Si: pO = Na − Nd = 2.5x10 − 1x10 13 13 or p x cm O = − 15 1013 3 . Then n b g 2 10 2 n x O p x 15 . 10 15 . 10 = i = ⇒ O 13 n x cm O = − 15 107 3 . Ge: p + FH N − N N − N IK 2 n O 2 = a d + a d i 2 2 = + + FH G IK J FH G IK J 13 13 2 b x g . x . x 13 2 15 10 2 15 10 2 2.4 10 or p x cm O = − 326 1013 3 . Then n b g . 2 13 2 n x O p x 2.4 10 326 10 = i = ⇒ O 13 n x cm O = − 177 1013 3 . GaAs: p x cm O = − 15 1013 3 . And n b g 2 6 2 n x O p x 18 . 10 15 . 10 = i = ⇒ O 13 n cm O = − 0 216 3 . 45 4.34 For T = 450K n x x i 2 19 19 3 2.8 10 104 10 450 300 = FH IK b gb . g × − ( ) LN M OQ P exp . . 112 0 0259 a450 300f or n x cm i = − 172 1013 3 . (a) N N a d > ⇒ p-type (b) p + FH N − N N − N n O = a d + a d i IK 2 2 2 2 = 15 14 .x x 15 10 − 8 10 2 + FH G − + IK J 15 10 8 10 2 172 10 15 14 2 . 13 2 . x x b x g or p N N x cm O a d ≈ − = − 7 1014 3 Then n b . g 2 13 2 n x O p x 172 10 7 10 = i = ⇒ O 14 n = 4.23 x 1011 cm − 3 O (c) Total ionized impurity concentration N = N + N = 15 . x 10 15 + 8 x 10 14 I a d or N = 2.3 x 1015 cm − 3 I 4.35 b . 10 g 2 2 n n x O p x = i = ⇒ O 5 15 10 2 10 n x cm O = − 1125 1015 3 . n p O O > ⇒ n-type
  • 38. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions 4.36 kT = ( ) = eV FH IK 0 0259 200 300 . 0.01727 = FH b gb g 2 17 18 n x x i 3 4.7 10 7 10 200 300 IK × − LNM OQP exp 142 . 0 . 01727 or n = 138 . cm − 3 i Now n p = n 2 ⇒ 5 p 2 = n 2 O O i O i or n p O = i ⇒ 5 p cm O = − 0 617 3 . And n p O O = 5 ⇒ n cm O = − 309 3 . 4.37 Computer Plot 4.38 Computer Plot 4.39 Computer Plot 4.40 n-type, so majority carrier = electrons n N N = + + i FH IK 2 d d n O 2 2 2 = 10 + 10 + 2 10 13 b 13 g2 b x 13 g2 or n x cm O = − 324 1013 3 . Then p b g . 2 13 2 n x O n x 2 10 324 10 = i = ⇒ O 13 p x cm O = − 123 1013 3 . 4.41 (a) N N d a > ⇒ n-type n N N x x O d a = − = 2 10 − 1 10 16 16 or 46 n x cm O = − 1 1016 3 Then p n n b . g 2 10 2 x O 15 10 10 = i = ⇒ O 16 p x cm O = − 2.25 104 3 (b) N N a d > ⇒ p-type p N N x x O a d = − = 3 10 − 2 10 16 15 or p x cm O = − 2.8 1016 3 Then n b . g 2 10 2 n x O p x = i = ⇒ O 16 15 10 2.8 10 n x cm O = − 8 04 103 3 . 4.42 (a) n n O i < ⇒ p-type (b) n x cm O= ⇒− 4.5 104 3 electrons: minority carrier p b . g 2 10 2 n x O n x = i = ⇒ O 4 15 10 4.5 10 p x cm O= ⇒ − 5 1015 3 holes: majority carrier (c) p N N O a d = − so 5 10 5 10 15 15 x N x a = − ⇒ N cm a = − 1016 3 Acceptor impurity concentration, N x cm d = − 5 1015 3 Donor impurity concentration 4.43 E E kT p n Fi F O i − = FH G IK J ln For Germanium: T(° K) kT(eV ) n cm i b −3 g 200 400 600 0.01727 0.03454 0.0518 2.16 1010 x 8 6 1014 . x 382 1016 . x
  • 39. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions p N N = + + i FH IK 2 a a n O 2 2 2 and N cm a = − 1015 3 T(° K) p cm O b −3 g E E eV Fi F − ( ) 200 400 600 10 1015 . x 149 1015 . x 387 1016 . x 0.1855 0.01898 0.000674 4.44 E E kT − = FH G n n F Fi ln O i IK J For Germanium, T K n x cm i = ⇒ = − 300 2.4 1013 3 n N N = + + i FH IK 2 d d n O 2 2 2 N b cm −3 g n b cm −3 g E − E ( eV ) d O F Fi 1014 105 . x 1014 0.0382 1016 1016 0.156 1018 1018 0.2755 4.45 n N N = + + i FH IK 2 d d n O 2 2 2 Now n n i O = 0.05 so n x x n O O = 15 10 + 15 10 + (0 05) 15 15 2 2 . b . g . which yields n x cm O = − 30075 1015 3 . Then n x cm i = − 1504 1014 3 . We have n N N − FH G E kT i C V 2 g = IK J exp so 47 1504 10 4.7 10 7 10 300 14 2 17 18 3 . x x x b g b gb g T = FH IK × − ( ) LN M OQ P exp . . 142 0 0259 aT 300f By trial and error T ≈ 762K 4.46 Computer Plot 4.47 Computer Plot 4.48 (a) E E kT m m Fi midgap p n − = FH G IK J 3 4 ln * * = ( ) ( )⇒ 3 4 0.0259 ln 10 E E eV Fi midgap − = +0.0447 (b) Impurity atoms to be added so E E eV midgap F − = 0.45 (i) p-type, so add acceptor impurities (ii) E E eV Fi F − = 0.0447 + 0.45 = 0.4947 p n = FH E − E O i kT = Fi F IK FH IK exp exp . . 10 0 4947 0 0259 5 or p N x cm O a = = − 197 1013 3 . 4.49 n N N N exp a f − − LNM E E kT O d a C = − = C F OQP so N x x d= + − FH IK 5 10 2.8 10 0 215 0 0259 15 19 exp . . = 5 10 + 6 95 10 15 15 x . x so N x cm d = − 12 1016 3 . 4.50 (a) p N N exp a f − − LNM E E kT O a V = = F V OQP or
  • 40. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions exp a f 104 10 OQP = = LNM E E kT N N + − . x x F V V a 7 10 19 15 = 149 103 . x Then E E x F V − = (0 0259) 149 103 . lnb . g or E E eV F V − = 0.189 (b) If E E eV F V − = 0.1892 − 0.0259 = 0.1633 Then N x a = − FH IK 19 . exp . 104 10 01633 0 . 0259 = − 190 1016 3 . x cm so that ΔN x x a= 1 90 10 − 7 10 ⇒ 16 15 . ΔN x cm a = − 12 1016 3 . Acceptor impurities to be added 4.51 (a) E E kT − = = FH G IK J ( ) FH G N ln d . ln F Fi n x i IK J 15 10 15 . 10 0 0259 10 or E E eV F Fi − = 0.2877 (b) E E kT N − = = n G FH IK J eV Fi F ln a 0.2877 i (c) For (a), n N cm O d = = − 1015 3 For (b) n n p b . g 2 10 2 x O 15 10 10 = i = ⇒ O 15 n x cm O = − 2.25 105 3 4.52 E E kT − = FH G IK J p n Fi F ln O i = ( ) = FH G IK J p n O eV i 0.0259 ln 0.45 Then 48 p x O= ⇒ FH IK p b 18 . 10 6 . g ex 0 45 0 . 0259 p x cm O = − 6 32 1013 3 . Now p N O a < , Donors must be added p N N N N p O a d d a O = − ⇒ = − so N x d= 10 − 6 32 10 ⇒ 15 13 . N x cm d = − 9.368 1014 3 4.53 (a) E E kT N n F Fi d i − = FH G IK J ln = ( ) ⇒ FH G IK J 0 0259 15 x x 2 10 15 10 10 . ln. E E eV F Fi − = 0.3056 (b) E E kT N n Fi F a i − = FH G IK Jln = ( ) ⇒ FH G IK J 0 0259 16 10 15 10 10 . ln. x E E eV Fi F − = 0.3473 (c) E E F Fi = (d) kT eV n x cm i = = − 0 03453 2.38 1012 3 . , E E kT p n Fi F O i − = FH G IK J ln = ( ) ⇒ FH G IK J 0 03453 14 10 2.38 10 12 . lnx E E eV Fi F − = 0.1291 (e) kT eV n x cm i = = − 0 04317 8 54 1013 3 . , . E E kT n n F Fi O i − = FH G IK J ln = ( ) ⇒ FH G IK J 13 . ln . 0 04317 14 149 10 854 . 10 x x E E eV F Fi − = 0.0024
  • 41. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions 4.54 (a) E E kT − = FH G N n F Fi ln d i IK J = ( ) ⇒ FH G IK J 0 0259 15 x x 2 10 18 10 6 . ln. E E eV F Fi − = 0.5395 (b) E E kT − = FH G N n Fi F ln a i IK J = ( ) ⇒ FH G IK J 0 0259 16 10 18 10 6 . ln. x E E eV Fi F − = 0.5811 (c) E E F Fi = EFi − (d) kT eV n x cm i = = − 0 03453 3 28 109 3 . , . E E x Fi F − = ( ) ⇒ FH G IK J 0 03453 14 10 328 10 9 . ln. E E eV Fi F − = 0.3565 49 (e) kT eV n x cm i = = − 0 04317 2.81 1011 3 . , E E kT n n F Fi O i − = FH G IK J ln = ( ) ⇒ FH G IK J 0 04317 14 10 2.81 10 11 . lnx E E eV F Fi − = 0.2536 4.55 p-type E E kT p n Fi F O i − = FH G IK J ln = ( ) ⇒ FH G IK J 0 0259 15 x x 5 10 15 10 10 . ln. E E eV Fi F − = 0.3294
  • 42. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 4 Solutions Manual Problem Solutions (page left blank) 50
  • 43. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 5 Solutions Manual Problem Solutions Chapter 5 Problem Solutions 5.1 (a) n cm O = − 1016 3 and p n n b . g 2 6 2 x O 18 10 10 = i = ⇒ O 16 p x cm O = − − 324 104 3 . (b) J e nn O = μ Ε For GaAs doped at N cm d = − 1016 3 , μ n ≈ 7500 cm V − s 2/ Then J = x 16 10− (7500) 10 (10) 19 16 b . g b g or J = 120 A cm2 / (b) (i) p cm O = − 1016 3 , n x cm O = − − 324 104 3 . (ii) For GaAs doped at N cm a = − 1016 3 , μ p ≈ 310 cm V − s 2 / J e p p O = μ Ε = ⇒ 16 10− (310) 10 (10) 19 16 b . x g b g J = 4.96 A cm2 / 5.2 (a) V = IR ⇒10 = (0.1R)⇒ R = 100 Ω (b) R L A L RA σ = ⇒ = ⇒ σ − 3 b 3 g 10 100 10 σ= ⇒ ( ) − σ = ( − )− 0 01 1 . Ω cm (c) σ ≈ eμ N n d or 0 01 16 10 1350 19 . = . x − ( )Nd b g or 53 N x cm d = − 4.63 1013 3 (d) σ ≈ eμ p ⇒ p O 0 01 16 10 480 19 . = . x − ( )pO b g or p x cm N N N O a d a = = − = − − 130 10 10 14 3 15 . or N x cm a = − 113 1015 3 . Note: For the doping concentrations obtained, the assumed mobility values are valid. 5.3 (a) R L A L A ρ = = σ and σ ≈ eμ N n d For N = 5 x 1016 cm − 3 , μ ≈ 1100 cm 2/ V − s d n Then 01 . R b 16 . x 10 19 g 1100 b 5 x 10 16 g 100 b 10 4 g 2 = − ( ) ( ) − or R = 1136x104 . Ω Then I V 5 R x = = ⇒ 1136 104 . I = 0.44 mA (b) In this case R = 1136x103 . Ω Then I V 5 R x = = ⇒ 1136 103 . I = 4.4 mA (c) Ε = V L 5 010 For (a), Ε = = 50 . V / cm And vd n = μ Ε = (1100)(50) or v x cm s d = 55 104 . / For (b), Ε = = = V L V cm 5 0 01 500 . / And vd= (1100)(500)⇒ v x cm s d = 55 105 . /
  • 44. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 5 Solutions Manual Problem Solutions 5.4 (a) GaAs: R L A V I k L A ρ 10 20 05 . Ω = = = = = σ Now σ ≈ eμ N p a For N cm a = − 1017 3 , μ p ≈ 210 cm V − s 2 / Then σ= = − − − 1 6 10 (210) 10 3 36 ( ) 19 17 1 b . x g b g . Ω cm So L = R A = ( )( ) x − σ 500 3 36 85 10 8 . b g or L = 14.3 μm (b) Silicon For N cm a = − 1017 3 , μ p ≈ 310 cm V − s 2 / Then σ= = − − − 1 6 10 (310) 10 4.96 ( ) 19 17 1 b . x g b g Ω cm So L = R A = ( )( ) x − σ 500 4.96 85 10 b 8 g or L = 21.1 μm 5.5 (a) Ε = = = V L V cm 3 1 3 / v v = μ Ε ⇒ μ = d = d n n Ε 10 3 4 or μ n = 3333 cm V − s 2 / (b) vd n = μ Ε = (800)(3) or v x cms d = 2.4 103 / 5.6 (a) Silicon: For Ε = 1 kV / cm , v x cms d = 12 106 . / Then t − 10 12 10 d v x t 4 = = ⇒ d 6 . t x s t = − 8 33 10 11 . For GaAs, v x cms d = 7.5 106 / 54 Then t d v x t = = ⇒ d 10 − 4 7.5 10 6 t x s t = − 133 10 11 . (b) Silicon: For Ε = 50 kV / cm , v x cms d = 9.5 106 / Then t d v x t = = ⇒ d 10 − 4 9.5 10 6 t x s t = − 105 10 11 . GaAs, v x cm s d = 7 106 / Then t d v x t = = ⇒ d 10 − 4 7 10 6 t x s t = − 143 10 11 . 5.7 For an intrinsic semiconductor, σ μ μ i i n p = en b + g (a) For N N cm d a = = − 1014 3 , μ μ n p = 1350 cm V − s = 480 cm V − s 2 2 / , / Then σ i = x x + 16 10− 15 10 (1350 480) 19 10 b . gb . g or σ i = x − cm − − 4.39 10 ( ) 6 1 Ω (b) For N N cm d a = = − 1018 3 , μ μ n p ≈ 300 cm V − s ≈ 130 cm V − s 2 2 / , / Then σ i = x x + 16 10− 15 10 (300 130) 19 10 b . gb . g or σ i = x − cm − − 1 03 10 ( ) 6 1 . Ω 5.8 (a) GaAs σ ≈ μ ⇒ = μ − e p x p p O p O 5 16 1019 b . g From Figure 5.3, and using trial and error, we find p x cm cm V s O p ≈ ≈ − − 13 10 240 17 3 2 . , μ / Then
  • 45. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 5 Solutions Manual Problem Solutions n b g or n x cm O = − − 2.49 105 3 2 6 2 n x = i = O p x O 17 18 . 10 13 . 10 (b) Silicon: 1 σ e nn O = ≈ μ ρ or n 1 1 8 16 10 1350 19 ρ μ b . g = = ( ) − ( ) e x O n or n x cm O = − 579 1014 3 . and p b g p x cm O = − 389 105 3 . 2 10 2 n x O n x 15 . 10 579 . 10 = i = ⇒ O 14 Note: For the doping concentrations obtained in part (b), the assumed mobility values are valid. 5.9 σ μ μ i i n p = en b + g Then 10 16 10 1000 600 −6 −19 = . x ( + )ni b g or n K x cm i 300 3 91 10( ) = 9 3 − . Now n N N − FH G E kT i C V 2 g = IK J exp or = = FH G IK J L b 19 g 2 b g Q PPln . ln N MM 10 391 10 N N n x g E kT C V 9 2 0 0259 . 2 i ( ) O or E eV g = 1.122 Now n K i = b g − exp a f 2 19 2 500 10 1122 . ( ) 0 0259 500 300 ( ) LN M OQ P . = 515 1026 . x or n K x cm i 500 2.27 10( ) = 13 3 − Then σ i = x x + 16 10− 2.27 10 (1000 600) 19 13 b . gb g so σ i 500K 5 81x10 cm 3 1 ( ) = ( − ) − − . Ω 55 5.10 (a) (i) Silicon: σ μ μ i i n p = en b + g σ i = x x + 16 10− 15 10 (1350 480) 19 10 b . gb . g or σ i = x − cm − − 4.39 10 ( ) 6 1 Ω (ii) Ge: σ i = x x + 16 10− 2.4 10 (3900 1900) 19 13 b . gb g or σ i = x − cm − − 2.23 10 ( ) 2 1 Ω (iii) GaAs: σ i = x x + 1 6 10− 18 10 (8500 400) 19 6 b . gb . g or σ i = x − cm − − 2.56 10 ( ) 9 1 Ω (b) R L A = σ (i) R x − 200 10 4 b 6 gb 8 g = ⇒ − − x x 4.39 10 85 10 R = 5 36x109 . Ω (ii) R x − 200 10 4 b 2 gb 8 g = ⇒ − − x x 2.23 10 85 10 R = 1 06x106 . Ω (iii) R x − 200 10 4 b 9 gb 8 g = ⇒ − − x x 2.56 10 85 10 R = 9.19x1012 Ω 5.11 (a) ρ μ = 5 = 1 e Nn d Assume μ = 1350 cm 2/ V − s n Then 1 N 16 10 1350 5 19 b . g x d= ⇒ − ( )() N x cm d = − 9.26 1014 3 (b) T = 200K → T = −75C T = 400K → T = 125C From Figure 5.2, T CN cm d = − = ⇒ − 75 1015 3 ,
  • 46. Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 5 Solutions Manual Problem Solutions μ ≈ 2500 cm 2/ V − s n T = 125 CN , = 1015 cm − 3 ⇒ d μ ≈ 700 cm 2/ V − s n Assuming n = N = 9.26 x 1014 cm − 3 over the O d temperature range, For T = 200K , 1 ρ= ⇒ − ( ) 1 6 10 2500 9.26 10 19 14 b . x g b x g ρ = 2.7 Ω − cm For T = 400K , 1 ρ= ⇒ − ( ) 1 6 10 700 9.26 10 19 14 b . x g b x g ρ = 9.64 Ω − cm 5.12 Computer plot 5.13 (a) Ε = 10V cm⇒ v = Ε d n / μ vd= (1350)(10)⇒ v x cm s d = 135 104 . / so T mv x x n d = = ( ) − 1 2 1 08 9.11 10 135 10 * 2 31 2 2 . b gb . g 1 2 or T = x J ⇒ x eV − − 8 97 10 56 10 27 8 . . (b) Ε = 1 kV / cm , v x cm s d= (1350)(1000) = 1 35 106 . / Then T = ( ) x − x 1 2 108 9.11 10 135 10 31 4 2 . b gb . g or T = x J ⇒ x eV − − 8 97 10 56 10 23 4 . . 5.14 (a) n N N − FH G E kT i C V 2 g = IK J exp 19 19 b x gb x gexp = 2 10 1 10 − FH 110 . 0 . 0259 IK = ⇒ = − 7.18 10 8 47 10 19 9 3 x n x cm i . For N cm n n cm d i O = >> ⇒ = − − 10 10 14 3 14 3 Then 56 J enn O = σΕ = μ Ε = 16 10− (1000) 10 (100) 19 14 b . x g b g or J = 1 60 A cm2 . / (b) A 5% increase is due to a 5% increase in electron concentration. So i = = + + FH n x N N d d n O IK 105 10 2 2 14 2 2 . We can write b 1 . 05 x 10 14 − 5 x 10 13 g 2 = b 5 x 10 13 g 2 + 2 so n 2 = 5.25 x 10 26 i ni = − FH IK J2 10 1 10 IK FH G b gb g exp g 300 19 19 3 x x T E kT which yields 2.625 10 110 12 300 3 x T kT − = − FH IK FH IK exp . By trial and error, we find T = 456K 5.15 (a) σ = eμ n + eμ p n O p O and n n p O i O = 2 Then σ e μ n p n i e p O = + μ p O 2 To find the minimum conductivity, d dp e n p σ μ e O = = n i μ O p − + ⇒ ( ) 0 1 2 2 which yields p n O i n p = FH G IK J μ μ 1/ 2 (Answer to part (b)) Substituting into the conductivity expression σ σ e μ n / b g b g μ μ = = + μ μ μ min / n n i e n i n p p i n p 2 1 2 1 2 which simplifies to σ μμ min = 2eni n p The intrinsic conductivity is defined as