Block Diagram Algebra
A graphical tool can help us to visualize the model of
a system and evaluate the mathematical
relationships between their elements, using their
transfer functions.
Using block diagram, we can solve the equations by
graphical simplification, which is often easier and
more informative than algebraic manipulation, even
though the methods are in every way equivalent
Introduction
Reminder: Component Block
Diagram
Block Diagram
• It represents the mathematical relationships between the
elements of the system.
• The transfer function of each component is placed in box,
and the input-output relationships between components
are indicated by lines and arrows.
)
(
)
(
)
( 1
1
1 s
Y
s
G
s
U 
Three basic forms
G1 G2
G2
G1
G1
G2
G1 G2 G1 G2 G1
G1
G2
1+
cascade parallel feedback
Block diagram transformations
behind a block
x1 y
G
±
x2
±
x1
x2
y
G
G
Ahead a block
±
x1
x2
y
G
x1
y
G
±
x2
1/G
1. Moving a summing point to be:
2. Moving a pickoff point to be:
behind a block
G
x1
x2
y
G
x1
x2
y
1/G
ahead a block
G
x1
x2
y
G
G
x1
x2
y
3. Interchanging
Summing points
x3
x1
x2
y
+
-
x1
x3
y
+
-
x2
Single loop negative
feedback
1
1 2
( )
( ) 1
G
Y s
R s G G


 
2 1
( ) ( ) ( )
Y s R s Y s G G
   
1 1 2
( ) ( ) ( )
Y s G R s GG Y s
 
 
1 2 1
( ) 1 ( )
Y s GG G R s
 
1
1 2
( )
( ) 1
G
Y s
R s G G


What about single loop with
positive feedback? ?
Negative
feedback
block diagram: reduction example
R
_
+
_
+ 1
G 2
G 3
G
1
H
1
2
G
H
+
+
C
block diagram: reduction example
R
_
+
_
+ 2
1G
G 3
G
1
H
1
2
G
H
+
+
C
block diagram: reduction example
R
_
+
_
+ 2
1G
G 3
G
1
H
1
2
G
H
+
+
C
block diagram: reduction example
R
_
+
_
+
1
2
1
2
1
1 H
G
G
G
G
 3
G
1
2
G
H
C
block diagram: reduction example
R
_
+
_
+
1
2
1
3
2
1
1 H
G
G
G
G
G

1
2
G
H
C
block diagram: reduction example
R
_
+
2
3
2
1
2
1
3
2
1
1 H
G
G
H
G
G
G
G
G


C
block diagram: reduction example
R
3
2
1
2
3
2
1
2
1
3
2
1
1 G
G
G
H
G
G
H
G
G
G
G
G



C
Example:
Find the transfer function of the system shown below.
1 2 5 1 6
1 3 1 2 4
1
G G G G G
G G G G G


 
1 2
1 3
1 2 4
1 3
1 6
5
2
1
( )
( )
( ) 1
G G
G G
G G G
G G
G
Y s
T s G
R s G


 
   
 
  
Transfer Function from Block
Diagram
Example:
Find the transfer function of the system shown below.
1 2 5 1 6
1 3 1 2 4
1
G G G G G
G G G G G


 
1 2
1 3
1 2 4
1 3
1 6
5
2
1
( )
( )
( ) 1
G G
G G
G G G
G G
G
Y s
T s G
R s G


 
   
 
  
Transfer Function from Block
Diagram
Moving pickoff point
G1 G2 G3 G4
H3
H2
H1
a b
G4
1
G1 G2
G3 G4
H3
H2
H1
?
1 2
1 2
( )
( ) 1
R
Y s G G
R s G G H


When D(s)  0,
When R(s)  0,
2 2
1 2 1 2
( )
( ) 1 ( ) 1
D
Y s G G
D s G G H G G H
 
  
Example: MISO
Find the response of the system Y(s) to simultaneous application of
the reference input R(s) and disturbance D(s).
Example MISO
( ) ( ) ( )
R D
Y s Y s Y s
 
1 2 2
1 2 1 2
( ) ( ) ( )
1 1
G G G
Y s R s D s
G G H G G H
 
 
 
2
1
1 2
( ) ( ) ( )
1
G
Y s G R s D s
G G H
 

Block_Diagram_Algebra in Control System.pdf
Block_Diagram_Algebra in Control System.pdf
Block_Diagram_Algebra in Control System.pdf
Block_Diagram_Algebra in Control System.pdf

Block_Diagram_Algebra in Control System.pdf

  • 1.
  • 2.
    A graphical toolcan help us to visualize the model of a system and evaluate the mathematical relationships between their elements, using their transfer functions. Using block diagram, we can solve the equations by graphical simplification, which is often easier and more informative than algebraic manipulation, even though the methods are in every way equivalent Introduction
  • 3.
  • 4.
    Block Diagram • Itrepresents the mathematical relationships between the elements of the system. • The transfer function of each component is placed in box, and the input-output relationships between components are indicated by lines and arrows. ) ( ) ( ) ( 1 1 1 s Y s G s U 
  • 5.
    Three basic forms G1G2 G2 G1 G1 G2 G1 G2 G1 G2 G1 G1 G2 1+ cascade parallel feedback
  • 6.
    Block diagram transformations behinda block x1 y G ± x2 ± x1 x2 y G G Ahead a block ± x1 x2 y G x1 y G ± x2 1/G 1. Moving a summing point to be:
  • 7.
    2. Moving apickoff point to be: behind a block G x1 x2 y G x1 x2 y 1/G ahead a block G x1 x2 y G G x1 x2 y
  • 8.
  • 9.
    Single loop negative feedback 1 12 ( ) ( ) 1 G Y s R s G G     2 1 ( ) ( ) ( ) Y s R s Y s G G     1 1 2 ( ) ( ) ( ) Y s G R s GG Y s     1 2 1 ( ) 1 ( ) Y s GG G R s   1 1 2 ( ) ( ) 1 G Y s R s G G   What about single loop with positive feedback? ? Negative feedback
  • 11.
    block diagram: reductionexample R _ + _ + 1 G 2 G 3 G 1 H 1 2 G H + + C
  • 12.
    block diagram: reductionexample R _ + _ + 2 1G G 3 G 1 H 1 2 G H + + C
  • 13.
    block diagram: reductionexample R _ + _ + 2 1G G 3 G 1 H 1 2 G H + + C
  • 14.
    block diagram: reductionexample R _ + _ + 1 2 1 2 1 1 H G G G G  3 G 1 2 G H C
  • 15.
    block diagram: reductionexample R _ + _ + 1 2 1 3 2 1 1 H G G G G G  1 2 G H C
  • 16.
    block diagram: reductionexample R _ + 2 3 2 1 2 1 3 2 1 1 H G G H G G G G G   C
  • 17.
    block diagram: reductionexample R 3 2 1 2 3 2 1 2 1 3 2 1 1 G G G H G G H G G G G G    C
  • 18.
    Example: Find the transferfunction of the system shown below.
  • 19.
    1 2 51 6 1 3 1 2 4 1 G G G G G G G G G G     1 2 1 3 1 2 4 1 3 1 6 5 2 1 ( ) ( ) ( ) 1 G G G G G G G G G G Y s T s G R s G              Transfer Function from Block Diagram
  • 20.
    Example: Find the transferfunction of the system shown below.
  • 21.
    1 2 51 6 1 3 1 2 4 1 G G G G G G G G G G     1 2 1 3 1 2 4 1 3 1 6 5 2 1 ( ) ( ) ( ) 1 G G G G G G G G G G Y s T s G R s G              Transfer Function from Block Diagram
  • 22.
    Moving pickoff point G1G2 G3 G4 H3 H2 H1 a b G4 1 G1 G2 G3 G4 H3 H2 H1
  • 23.
    ? 1 2 1 2 () ( ) 1 R Y s G G R s G G H   When D(s)  0, When R(s)  0, 2 2 1 2 1 2 ( ) ( ) 1 ( ) 1 D Y s G G D s G G H G G H      Example: MISO Find the response of the system Y(s) to simultaneous application of the reference input R(s) and disturbance D(s).
  • 24.
    Example MISO ( )( ) ( ) R D Y s Y s Y s   1 2 2 1 2 1 2 ( ) ( ) ( ) 1 1 G G G Y s R s D s G G H G G H       2 1 1 2 ( ) ( ) ( ) 1 G Y s G R s D s G G H   