Physics Helpline
L K Satapathy
Binomial Theorem 5
Physics Helpline
L K Satapathy
Binomial Theorem 5
Question : If the number of terms in the expansion of is 28 , then the
sum of the coefficients of all the terms in the expansion is
2
2 41
n
x x
   
 
( )64 ( )2187 ( )243 ( )729a b c d
Concept of Trinomial
1 2 2
0 1 2( ) ... ...n n n n n n n n n r r n n
r na b C a C a b C a b C a b C b  
       
2
0 1 2(1 ) . . ... . ... . . . (1)n n n n n r n n
r na C C a C a C a C a        
 The total number of terms = 1 + 2 + 3 + . . . + (n + 1)
2
0 1 2(1 ) ( ) ( ) ... ( ) . . (2)n n n n n n
na b C C a b C a b C a b          
 The total number of terms in a trinomial expansion
( 1)( 2)
2
n n 

Physics Helpline
L K Satapathy
Binomial Theorem 5
Given that the total number of terms in the expansion = 28
2( 1)( 2)
28 3 2 56
2
n n
n n
 
     
2
3 54 0 ( 9)( 6) 0n n n n       
 Either n = – 9 (not possible) or n = 6
1 2 2
0 2 2 2
2 4. . . 1
n
n
n
a a a
a
x xx x x
        
 
In the given expansion , powers of x will vary from 0 to – 2n
 We write
 0 1 2 21 . . . 1 2 4 3
n n
nx a a a a          
For n = 6 , the sum of coefficients of all the terms
Correct option = (d)
Answer :
6
3 729 [ ]Ans 
2
2 41
n
x x
   
 
Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

Binomial Theorem 5

  • 1.
    Physics Helpline L KSatapathy Binomial Theorem 5
  • 2.
    Physics Helpline L KSatapathy Binomial Theorem 5 Question : If the number of terms in the expansion of is 28 , then the sum of the coefficients of all the terms in the expansion is 2 2 41 n x x       ( )64 ( )2187 ( )243 ( )729a b c d Concept of Trinomial 1 2 2 0 1 2( ) ... ...n n n n n n n n n r r n n r na b C a C a b C a b C a b C b           2 0 1 2(1 ) . . ... . ... . . . (1)n n n n n r n n r na C C a C a C a C a          The total number of terms = 1 + 2 + 3 + . . . + (n + 1) 2 0 1 2(1 ) ( ) ( ) ... ( ) . . (2)n n n n n n na b C C a b C a b C a b            The total number of terms in a trinomial expansion ( 1)( 2) 2 n n  
  • 3.
    Physics Helpline L KSatapathy Binomial Theorem 5 Given that the total number of terms in the expansion = 28 2( 1)( 2) 28 3 2 56 2 n n n n         2 3 54 0 ( 9)( 6) 0n n n n         Either n = – 9 (not possible) or n = 6 1 2 2 0 2 2 2 2 4. . . 1 n n n a a a a x xx x x            In the given expansion , powers of x will vary from 0 to – 2n  We write  0 1 2 21 . . . 1 2 4 3 n n nx a a a a           For n = 6 , the sum of coefficients of all the terms Correct option = (d) Answer : 6 3 729 [ ]Ans  2 2 41 n x x      
  • 4.
    Physics Helpline L KSatapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline