International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1410 | Page
Vasil G. Angelov, 1
Andrey Zahariev2
1
Department of Mathematics, University of Mining and Geology” St. I. Rilski”, 1700 Sofia, Bulgaria
2
Faculty of Mathematics and Informatics, University of Plovdiv, Plovdiv, Bulgaria
Abstract: The present paper is the first part of investigations devoted to analysis of lossy transmission lines terminated by
nonlinear parallel connected GC loads and in series connected L-load (cf. Fig. 1). First we formulate boundary conditions
for lossy transmission line system on the base of Kirchhoff’s law. Then we reduce the mixed problem for the hyperbolic
system (Telegrapher equations) to an initial value problem for a neutral system on the boundary. We show that only
oscillating solutions are characteristic for this case. Finally we analyze the arising nonlinearities.
Keywords: Fixed point theorem, Kirchhoff’s law, Lossless transmission line, mixed problem for hyperbolic system, Neutral
equation, Oscillatory solution
I. INTRODUCTION
The transmission line theory is based on the Telegrapher equations, which from mathematical point of view
presents a first order hyperbolic system of partial differential equations with unknown functions voltage and current. The
subject of transmission lines has grown in importance because of the many applications (cf. [1]-[9]).
In the previous our papers we have considered lossless and lossy transmission lines terminated by various
configuration of nonlinear (or linear) loads – in series connected, parallel connected and so on (cf. [10]-[16]). The main
purpose of the present paper is to consider a lossless transmission line terminated by nonlinear GCL-loads placed in the
following way: GC-loads are parallel connected and a L-load is in series connected (cf. Fig. 1).
The first difficulty is to derive the boundary conditions as a consequence of Kirchhoff’s law (cf. Fig.1) and to
formulate the mixed problem for the hyperbolic system. The second one is to reduce the mixed problem for the hyperbolic
system to an initial value problem for neutral equations on the boundary. The third one is to introduce a suitable operator
whose fixed point is an oscillatory solution of the problem stated. In the second part of the present paper by means of by
fixed point method [17] we obtain an existence-uniqueness of an oscillatory solution.
The paper consists of four sections. In Section II on the base of Kirchhoff’s law we derive boundary conditions and
then formulate the mixed problem for the hyperbolic system or transmission line system. In Section III we reduce the mixed
problem to an initial value problem on the boundary. In Section IV we analyse the arising nonlinearities and make some
estimates which we use in the second part of the present paper.
Fig. 1. Lossy transmission line terminated by circuits consisting of RC-elements in series connected to L-element
II. DERIVATION OF THE BOUNDARY CONDITIONS AND FORMULATION OF THE MIXED PROBLEM
In order to obtain the boundary conditions we have to take into account that if  is the length of the transmission
line then, LCLCT  )/1/( where L is per unit length inductance and C – per unit-length capacitance
Lossy Transmission Lines Terminated by Parallel Connected
RC-Loads and in Series Connected L-Load (I)
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1411 | Page
In accordance of Kirchhoff’s V-law (cf. Fig. 1) we have to collect the currents of the elements pG and pC after
that to collect the voltage of ppCG with the voltage of )1,0( pLp . But we deal with nonlinear elements, that is,
)1,0(,)(
1
)(
 

piriR
m
n
np
np and 


m
n
np
np iliL
0
)(
)( , )()(
~
,.)(.)(
~
0
)(
uCuuCiliiLiiL pp
m
n
np
npp  

;
);1,0(,
)(
)(
))(()(
~






 p
di
idL
iiL
dt
di
dt
iLid
dt
iLd p
p
pp
).1,0(,
)(
)(
))(()(
~






 p
du
udC
uuC
dt
du
dt
uCud
dt
uCd p
p
pp
One can formulate boundary conditions corresponding to Fig. 1: for )),0((0 0000
tiiiix CGCG 
)()(),0(
),0(
)),0((
)),0((
),0(
),(),0()(
)(
0000
00
0
000
00
000
00
000
00
tEtutu
dt
tdi
tiL
di
tidL
ti
uGti
dt
du
uC
du
udC
u
CG
CG
CG
CG
CG
CG
CG
CG




















(1)
And for )),(( 1111
tiiiix CGCG  :
).()(),(
),(
)),((
)),((
),(
)(),()(
)(
1111
11
1
111
11
111
11
111
11
tEtutu
dt
tdi
tiL
di
tidL
ti
uGti
dt
du
uC
du
udC
u
CG
CG
CG
CG
CG
CG
CG
CG























(2)
Here we consider the following lossy transmission line system:
0),(
),(),(
0),(
),(),(












txRi
x
txu
t
txi
L
txGu
x
txi
t
txu
C
(3)
         ,0,0,:,),( 2
txtxtx
Where ),( txu and ),( txi are the unknown voltage and current, while L, C, R and G are prescribed specific
parameters of the line and  > 0 is its length.
For the above system (3) might be formulated the following mixed problem: to find ),( txu and ),( txi in  such
that the following initial conditions
  ,0),()0,(),()0,( 00 xxixixuxu (4)
And boundary conditions (1) and (2) to be satisfied.
III. REDUCING THE MIXED PROBLEM TO AN INITIAL VALUE PROBLEM ON THE BOUNDARY
First we present (3) in the form:
0),(
),(1),(
0),(
),(1),(












txi
L
R
x
txu
Lt
txi
txu
C
G
x
txi
Ct
txu
(5)
And then write it in a matrix form
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1412 | Page
0),(
),(),(






txBU
x
txU
A
t
txU
(6)
Where













































x
txi
x
txu
x
txU
t
txi
t
txu
t
txU
txi
txu
txU
),(
),(
),(
,
),(
),(
),(
,
),(
),(
),( , .
0
0
,
0
1
1
0


























L
R
C
G
B
L
C
A
In order to transform the matrix A in a diagonal form we have to solve the characteristic equation: 0
/1
/1





L
C
whose
roots are ,/11 LC LC/12  . For the eigen-vectors we obtain the following systems:
0
11
0
11
21
21




LCC
LLC
And
0
11
0
11
21
21




LCC
LLC
.
Hence        LCLC ,,,,, )2(
2
)2(
1
)1(
2
)1(
1  
Denote by  the matrix formed by eigen-vectors










LC
LC
H and its inverse one














LL
CC
H
2
1
2
1
2
1
2
1
1 . It is known
that 1can 
 HAHA , where










LC
LC
A
/10
0/1can
.
Introduce new variables Z = HU, (or U = H-1
Z)























),(
),(
,,
),(
),(
txi
txu
U
LC
LC
H
txI
txV
Z .
Then
),(),(),(
),(),(),(
txiLtxuCtxI
txiLtxuCtxV


(7)
or
).,(
2
1
),(
2
1
),(
),(
2
1
),(
2
1
),(
txI
L
txV
L
txi
txI
C
txV
C
txu


(8)
Replacing ),(),( 1
txZHtxU 
 in (6) we obtain
      01
11





 

ZHB
x
ZH
A
t
ZH
.
Since 1
H is a constant matrix we have
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1413 | Page
    0),(
),(),( 111





 
txZBH
x
txZ
AH
t
txZ
H .
After multiplication from the left by H we obtain     011





 
ZBHH
x
Z
AHH
t
Z
, i.e.
  01





 
ZHBH
x
Z
A
t
Z can
. (9)
But




































LL
CC
L
R
C
G
LC
LC
HBH
2
1
2
1
2
1
2
1
0
0
1






































L
R
C
G
L
R
C
G
L
R
C
G
L
R
C
G
2
1
2
1
2
1
2
1
.
Applying Heaviside condition
C
G
L
R
 we obtain







































































0
0
),(
),(
0
0
),(
),(
1
0
0
1
),(
),(
txI
txV
L
R
L
R
x
txI
x
txV
LC
LC
t
txI
t
txV
. (10)
The new initial conditions we obtain from (4):
)()()()0,()0,()0,( 000 xVxiLxuCxiLxuCxV  ,   ,0x (11)
)()()()0,()0,()0,( 000 xIxiLxuCxiLxuCxI  ,   ,0x . (12)
One can simplify (10) by the substitution:
),(),(
),(),(
txIetxJ
txVetxW
t
L
R
t
L
R


Or
),(),(
),(),(
txJetxI
txWetxV
t
L
R
t
L
R




. (13)
Substituting in (8) we obtain
).,(
2
1
),(
2
1
),(
),(
2
1
),(
2
1
),(
txJe
L
txWe
L
txi
txJe
C
txWe
C
txu
t
L
R
t
L
R
t
L
R
t
L
R




(14)
Then with respect to the variables ),( txW and ),( txJ (10) looks like:
.0
),(1),(
,0
),(1),(












x
txJ
LCt
txJ
x
txW
LCt
txW
(15)
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1414 | Page
The mixed problem for (1) - (4) can be reduced to an initial value problem for a neutral system. The neutral system
is a nonlinear one in view of the nonlinear characteristics of the RGLC-elements.
From now on we propose two manners to obtain a neutral system for unknown voltage and current functions.
First manner: The solution of (15) is a pair of functions  vtxtxW W ),( and  vtxtxJ J ),( , where W and ФJ
are arbitrary smooth functions. From (14) we obtain
    
    .
2
),(
2
),(
vtxvtx
L
e
txi
vtxvtx
C
e
txu
JW
t
L
R
JW
t
L
R




(16)
Hence
 
 .),(),()(
),(),()(
txuCtxiLevtx
txiLtxuCevtx
t
L
R
J
t
L
R
W


(17)
For x we obtain
 
 .),(),()(
),(),()(
tuCtiLevt
tiLtuCevt
t
L
R
J
t
L
R
W


(18)
Let us put  vTTtvttvtvt /'/''  and then replacing t by Tt ' in the first equation of (18) we get
 )',()',()'(
)'(
TtiLTtuCevt
Tt
L
R
W 

.
For the second equation of (18) we put
 vTTtvttvtvt /''/''''  And then we have
.)](Λ)(Λ[)''(
)''(
,t''-TuC-,t''-TiLevt
Tt
L
R
J


So we obtain
 ),(),()(
)(
TtiLTtuCevt
Tt
L
R
W 

(19)
 ),(),()(
)(
TtuCTtiLevt
Tt
L
R
J 

. (20)
From (16) by x = 0 we have
    
    .
2
),0(
2
),0(
vtvt
L
e
ti
vtvt
C
e
tu
JW
t
L
R
JW
t
L
R




(21)
Substituting )( vtW  and )(vtJ from (19) and (20) into (21) we obtain:
         









TtuCTtiLeTtiLTtuCe
C
tu L
TtR
L
TtR
,,,,
2
1
),0(
)()(
         









TtuCTtiLeTtiLTtuCe
C
ti L
TtR
L
TtR
,,,,
2
1
),0(
)()(
.
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1415 | Page
Substitute the above expressions into the boundary conditions (1), (2) we have
          ,
)(
~
)(
)(
~
2
,,,,)(
00
000
000
00
000
0
0
)(
0
)(
00
CG
CG
CG
CG
CG
L
TtR
L
TtR
CG
du
uCd
uG
du
uCd
Z
TtuTtiZeTtiZTtue
dt
tdu




         
         
,
/)),0((
~
2
)(2)(2,,,,
,,,,
2
1
000
0000
)(
0
)(
0
)(
0
)(
0
CG
CG
L
TtR
L
TtR
L
TtR
L
TtR
ditiLd
tEtuTtuTtiZeTtiZTtue
TtuTtiZeTtiZTtue
dt
d
Z























11111
11111
/)(
~
)(),()(
CGCG
CGCG
duuCd
uGti
dt
tdu 
 ,
.
/)),((
~
)()(),(),(
111
111
CG
CG
ditiLd
tEtutu
dt
tdi




Let us put Tt  .Then we arrive at a system that we cannot formulate an initial value problem.
Second manner
We proceed from (14) and obtain
),0(
2
1
),0(
2
1
),0(
),0(
2
1
),0(
2
1
),0(
tJe
L
tWe
L
ti
tJe
C
tWe
C
tu
t
L
R
t
L
R
t
L
R
t
L
R




And
).,(
2
1
),(
2
1
),(
),(
2
1
),(
2
1
),(
tJe
L
tWe
L
ti
tJe
C
tWe
C
tu
t
L
R
t
L
R
t
L
R
t
L
R




Substituting in (2.1) and (2.2) we obtain
00000
00000
/)(
~
2
))((2),0(),0()(
CGCG
CG
t
L
R
t
L
R
CG
duuCdL
tuGLtJetWe
dt
tdu 


;
000
00000
/)),0((
~
)(2)(2),0(),0(
),0(),0(
CG
CG
t
L
R
t
L
R
t
L
R
t
L
R
ditiLd
tELtuLtJeZtWeZ
tJetWe
dt
d 












;
11111
11111
/)(2
))((2),(),()(
CGCG
CG
t
L
R
t
L
R
CG
duudCL
tuGLtJetWe
dt
tdu 


;
111
11100
/)),((
~
)(2)(2),(),(
),(),(
CG
CG
t
L
R
t
L
R
t
L
R
t
L
R
ditiLd
tELtuLtJeZtWeZ
tJetWe
dt
d














.
But
),(),0(),,(),0(),(),0(),,(),0( TtJtJtWTtWtJTtJTtWtW  .
We choose ),()(),(),0( tJtJtWtW  to be unknown functions and then the above system becomes
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1416 | Page
.
/)),((
~
)(2)(2)()(
)()(
;
/)(2
))((2)()()(
;
/)),0((
~
)(2)(2)()(
)()(
;
/)(
~
2
))((2)()()(
111
1110
)(
0)(
11111
111
)(
11
000
000
)(
00)(
00000
000
)(
00
CG
CG
t
L
R
Tt
L
R
t
L
R
Tt
L
R
CGCG
CG
t
L
R
Tt
L
R
CG
CG
CG
Tt
L
R
t
L
R
Tt
L
R
t
L
R
CGCG
CG
Tt
L
R
t
L
R
CG
ditiLd
tELtuLtJeZTtWeZ
tJeTtWe
dt
d
duudCL
tuGLtJeTtWe
dt
tdu
ditiLd
tELtuLTtJeZtWeZ
TtJetWe
dt
d
duuCdL
tuGLTtJetWe
dt
tdu

































(22)
We notice that if (22) has a periodic solution
 )(),(),(),( 1100
tJtutWtu CGCG
Then functions )(),( tJetWe
t
L
R
t
L
R

are oscillatory ones and vanishing exponentially at infinity. Therefore we put
)()(),()( tJetJtWetW
t
L
R
t
L
R



and then we can state the problem for existence-uniqueness of an oscillatory solution
vanishing at infinity of the following system (we denote by )(),( tJtW

again by )(),( tJtW ) and obtain:
);;[,
/)),((
~
)(2)(2)()()()(
);;[,
/)(2
))((2)()()(
);;[,
/)),0((
~
)(2)(2)()()()(
);;[,
/)(
~
2
))((2)()()(
111
11100
11111
11111
000
00000
00000
00000

















Tt
ditiLd
tELtuLtJZTtWZ
dt
TtdW
dt
tdJ
Tt
duudCL
tuGLtJTtW
dt
tdu
Tt
ditiLd
tELtuLTtJZtWZ
dt
TtdJ
dt
tdW
Tt
duuCdL
tuGLTtJtW
dt
tdu
CG
CG
CGCG
CGCG
CG
CG
CGCG
CGCG
(23)
,)(,)( 11110000
T
CGCG
T
CGCG uTuuTu  ],0[,
)()(
,
)()(
),()(),()( 00
00 Tt
dt
tdJ
dt
tdJ
dt
tdW
dt
tdW
tJtJtWtW  .
IV. ANALYSIS OF THE ARISING NONLINEARITIES
First we precise the definition domains of the functions:
)1,0(,
)).(()(
~
 p
dt
uuCd
dt
uCd pp
Where
  h
p
h
pp
h
p
p
p
u
c
u
c
uC





/1
)( , ]3,2[,0,0  hc pp are constants and  100 ,min  u . We have to
show an interval for u where
h
p
h
pppp
u
u
cuCuuC

 )(.)(
~
Has a strictly positive lower bound.
First we calculate the derivatives
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1417 | Page
  ;
)( 1
h
h
p
h
ppp
u
h
c
du
udC 



   h
h
p
h
ppp
u
h
h
h
c
du
uCd 21
2
2
1)( 



 ;

du
udC
uuC
du
uCd p
p
p )(
)(
)(
~
      hpp
h
pphp
h
pphp
h
pp uu
h
h
cu
h
u
cuc
1
11
11 1 











 
 ;
   
 
 
.
1221
1
11)(
~
1
2
22
2
1
2
1
1
2
2
hp
p
h
pp
hpphp
h
pp
p
u
uhhh
h
c
u
h
u
h
h
u
h
h
c
du
uCd






























 





 

Since  










 10100
1
,
1
min,min
h
h
h
h
u 
the derivative
0
)(
~

du
uCd p
.
Then   .0ˆ,min].[:)(
~
min
0
0
0
0
0
0
00 















 p
h
p
h
pp
h
p
h
pp
h
p
h
ppp C
c
ccuuC







Further on we have
 
 
 
    
 
.
12212)(
~
21
0
2
0
2
1
0
21
1
0










 h h
p
p
h
pp
hp
h
pp
hp
h
ppp
h
huhc
h
ch
u
h
c
du
uCd



    
 
 
 
.
212 )1(
21
0
2
0
21
0
2
00
p
h h
p
p
h
pp
h h
p
p
h
pp
C
h
hc
h
hhc 












For








 1000 ,,
1
min
h
h
u  it follows
   
)1(
01
0
1
ˆ11)(
~
pp
h
h
p
h
pp
p
h
h
p
h
ppp
C
h
hc
u
h
h
u
c
du
uCd





 








 



 


.
Therefore
 
 
,ˆ
)1(
)(
~
],[:)(
~
min 1
1
0
0
000 p
hp
p
h
pp
pp C
hh
h
c
CuuC 







 
 
 
 
)2(
1
2
0
0
22
21
2
22
22
2
122122)(
~
p
hp
p
h
pp
hp
p
h
ppp
C
hhh
h
c
u
uhhh
h
c
du
uCd 










.
For the I-V characteristics we assume )1,0(,)(
1
)(
 

piriR
m
n
np
np and 


m
n
np
np iliL
0
)(
)( then
..)(.)(
~
0
)(



m
n
np
npp iliiLiiL
For )(
~
iLp we get 



m
n
np
n
m
n
np
n
m
n
np
np
pp
ilnilinliiL
di
idL
i
di
iLd
1
)(
1
)(
1
1)(
)1()(
)()(
~
.
Assumptions (C):
 
;
2
),0( 0
00
0





JWe
tu
T
 
;
2
),( 0
00
0





JWe
tu
T
 
0
0
00
0
2
),0( 


Z
JWe
ti
T
,
 
0
0
00
0
2
),( 


Z
JWe
ti
T
.
Assumptions (L): ,0ˆ)1(
)(
~
)1(
1
)(
0  

p
m
n
np
n
p
Liln
di
iLd
i
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645
www.ijmer.com 1418 | Page
)2(
1
1
1
0
)(
2
2
)1(
1
0
)(
)1(
)(
~
,)1(
)(
~
p
m
n
np
n
p
p
m
n
np
n
p
Llnn
di
iLd
Lln
di
iLd 
 




.
Assumptions (G): .)()(,)()(
1
11
)1(
111
1
00
)0(
000 


m
n
n
LRnLR
m
n
n
LRnLR igiGigiG
V. CONCLUSION
Here we have investigated lossy transmission lines terminated by circuits different from parallel or in series
connected RGLC-elements. It turned out that in this case one obtains more number of equations which leads to more
complicated boundary conditions at both ends of the line. First difficulty is to find independent unknown functions −
voltages and currents and to obtain a system of neutral differential equations. We show that just oscillatory solutions are
specific for the lossy transmission lines and in the second part of the paper we formulate conditions for existence-uniqueness
of an oscillatory solution. They can be easily applied to concrete problem because they are explicit type conditions − just
inequalities between specific parameters of the line and characteristics of the circuit.
REFERENCES
[1] G. Miano, and A. Maffucci, Transmission lines and lumped circuits (Academic Press, NY, 2-nd ed., 2010)
[2] D. Pozar, Microwave engineering (J. Wiley & Sons, NY, 1998).
[3] C.R. Paul, Analysis of multi-conductor transmission lines (A Wiley-Inter science Publication, J. Wiley &Sons, NY, 1994).
[4] S. Ramom, J.R. Whinnery, and T.van Duzer, Fields and waves in communication electronics (J. Wiley & Sons, Inc. NY, 1994).
[5] S. Rosenstark, Transmission lines in computer engineering (Mc Grow-Hill, NY, 1994).
[6] P. Vizmuller, RF design guide systems, circuits and equations (Artech House, Inc., Boston - London, 1995).
[7] P.C. Magnusson, G.C. Alexander, and V.K. Tripathi, Transmission lines and wave propagation (CRC Press. Boka Raton, 3rd ed.,
1992).
[8] J. Dunlop, and D.G. Smith, Telecommunications engineering (Chapman & Hall, London, 1994).
[9] V. Damgov, Nonlinear and parametric phenomena: Theory and applications in radio physical and mechanical systems (World
Scientific: New Jersey, London, Singapore, 2004).
[10] V.G. Angelov, and M. Hristov, Distortion less lossy transmission lines terminated by in series connected RCL-loads. Circuits and
Systems, 2(4), 2011, 297-310.
[11] V.G. Angelov, and D.Tz. Angelova, Oscillatory solutions of neutral equations with polynomial nonlinearities, in Recent Advances
in Oscillation Theory − special issue published in International Journal of Differential Equations, Volume 2011, Article ID 949547,
2011, 12 pages.
[12] V.G. Angelov, Periodic regimes for distortion less lossy transmission lines terminated by parallel connected RCL-loads, in
Transmission Lines: Theory, Types and Applications, (Nova Science Publishers, Inc., 2011) 259-293.
[13] V.G. Angelov, Oscillations in lossy transmission lines terminated by in series connected nonlinear RCL-loads, International Journal
of Theoretical and Mathematical Physics, 2(5), (2012).
[14] V.G. Angelov, Various applications of fixed point theorems in uniform spaces. 10Th
International Conference on Fixed Point Theory
and its Applications. Cluj-Napoca, 2012.
[15] V.G. Angelov, Lossless transmission lines terminated by in series connected RL-loads parallel to C-load. International Journal of
Theoretical and Mathematical Physics, 3(1), 2013.
[16] V.G. Angelov, A method for analysis of transmission lines terminated by nonlinear loads (submitted for publication).
[17] V.G. Angelov, Fixed points in uniform spaces and applications (Cluj University Press “Babes-Bolyia”, Romania, 2009).

Lossy Transmission Lines Terminated by Parallel Connected RC-Loads and in Series Connected L-Load (I)

  • 1.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1410 | Page Vasil G. Angelov, 1 Andrey Zahariev2 1 Department of Mathematics, University of Mining and Geology” St. I. Rilski”, 1700 Sofia, Bulgaria 2 Faculty of Mathematics and Informatics, University of Plovdiv, Plovdiv, Bulgaria Abstract: The present paper is the first part of investigations devoted to analysis of lossy transmission lines terminated by nonlinear parallel connected GC loads and in series connected L-load (cf. Fig. 1). First we formulate boundary conditions for lossy transmission line system on the base of Kirchhoff’s law. Then we reduce the mixed problem for the hyperbolic system (Telegrapher equations) to an initial value problem for a neutral system on the boundary. We show that only oscillating solutions are characteristic for this case. Finally we analyze the arising nonlinearities. Keywords: Fixed point theorem, Kirchhoff’s law, Lossless transmission line, mixed problem for hyperbolic system, Neutral equation, Oscillatory solution I. INTRODUCTION The transmission line theory is based on the Telegrapher equations, which from mathematical point of view presents a first order hyperbolic system of partial differential equations with unknown functions voltage and current. The subject of transmission lines has grown in importance because of the many applications (cf. [1]-[9]). In the previous our papers we have considered lossless and lossy transmission lines terminated by various configuration of nonlinear (or linear) loads – in series connected, parallel connected and so on (cf. [10]-[16]). The main purpose of the present paper is to consider a lossless transmission line terminated by nonlinear GCL-loads placed in the following way: GC-loads are parallel connected and a L-load is in series connected (cf. Fig. 1). The first difficulty is to derive the boundary conditions as a consequence of Kirchhoff’s law (cf. Fig.1) and to formulate the mixed problem for the hyperbolic system. The second one is to reduce the mixed problem for the hyperbolic system to an initial value problem for neutral equations on the boundary. The third one is to introduce a suitable operator whose fixed point is an oscillatory solution of the problem stated. In the second part of the present paper by means of by fixed point method [17] we obtain an existence-uniqueness of an oscillatory solution. The paper consists of four sections. In Section II on the base of Kirchhoff’s law we derive boundary conditions and then formulate the mixed problem for the hyperbolic system or transmission line system. In Section III we reduce the mixed problem to an initial value problem on the boundary. In Section IV we analyse the arising nonlinearities and make some estimates which we use in the second part of the present paper. Fig. 1. Lossy transmission line terminated by circuits consisting of RC-elements in series connected to L-element II. DERIVATION OF THE BOUNDARY CONDITIONS AND FORMULATION OF THE MIXED PROBLEM In order to obtain the boundary conditions we have to take into account that if  is the length of the transmission line then, LCLCT  )/1/( where L is per unit length inductance and C – per unit-length capacitance Lossy Transmission Lines Terminated by Parallel Connected RC-Loads and in Series Connected L-Load (I)
  • 2.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1411 | Page In accordance of Kirchhoff’s V-law (cf. Fig. 1) we have to collect the currents of the elements pG and pC after that to collect the voltage of ppCG with the voltage of )1,0( pLp . But we deal with nonlinear elements, that is, )1,0(,)( 1 )(    piriR m n np np and    m n np np iliL 0 )( )( , )()( ~ ,.)(.)( ~ 0 )( uCuuCiliiLiiL pp m n np npp    ; );1,0(, )( )( ))(()( ~        p di idL iiL dt di dt iLid dt iLd p p pp ).1,0(, )( )( ))(()( ~        p du udC uuC dt du dt uCud dt uCd p p pp One can formulate boundary conditions corresponding to Fig. 1: for )),0((0 0000 tiiiix CGCG  )()(),0( ),0( )),0(( )),0(( ),0( ),(),0()( )( 0000 00 0 000 00 000 00 000 00 tEtutu dt tdi tiL di tidL ti uGti dt du uC du udC u CG CG CG CG CG CG CG CG                     (1) And for )),(( 1111 tiiiix CGCG  : ).()(),( ),( )),(( )),(( ),( )(),()( )( 1111 11 1 111 11 111 11 111 11 tEtutu dt tdi tiL di tidL ti uGti dt du uC du udC u CG CG CG CG CG CG CG CG                        (2) Here we consider the following lossy transmission line system: 0),( ),(),( 0),( ),(),(             txRi x txu t txi L txGu x txi t txu C (3)          ,0,0,:,),( 2 txtxtx Where ),( txu and ),( txi are the unknown voltage and current, while L, C, R and G are prescribed specific parameters of the line and  > 0 is its length. For the above system (3) might be formulated the following mixed problem: to find ),( txu and ),( txi in  such that the following initial conditions   ,0),()0,(),()0,( 00 xxixixuxu (4) And boundary conditions (1) and (2) to be satisfied. III. REDUCING THE MIXED PROBLEM TO AN INITIAL VALUE PROBLEM ON THE BOUNDARY First we present (3) in the form: 0),( ),(1),( 0),( ),(1),(             txi L R x txu Lt txi txu C G x txi Ct txu (5) And then write it in a matrix form
  • 3.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1412 | Page 0),( ),(),(       txBU x txU A t txU (6) Where                                              x txi x txu x txU t txi t txu t txU txi txu txU ),( ),( ),( , ),( ),( ),( , ),( ),( ),( , . 0 0 , 0 1 1 0                           L R C G B L C A In order to transform the matrix A in a diagonal form we have to solve the characteristic equation: 0 /1 /1      L C whose roots are ,/11 LC LC/12  . For the eigen-vectors we obtain the following systems: 0 11 0 11 21 21     LCC LLC And 0 11 0 11 21 21     LCC LLC . Hence        LCLC ,,,,, )2( 2 )2( 1 )1( 2 )1( 1   Denote by  the matrix formed by eigen-vectors           LC LC H and its inverse one               LL CC H 2 1 2 1 2 1 2 1 1 . It is known that 1can   HAHA , where           LC LC A /10 0/1can . Introduce new variables Z = HU, (or U = H-1 Z)                        ),( ),( ,, ),( ),( txi txu U LC LC H txI txV Z . Then ),(),(),( ),(),(),( txiLtxuCtxI txiLtxuCtxV   (7) or ).,( 2 1 ),( 2 1 ),( ),( 2 1 ),( 2 1 ),( txI L txV L txi txI C txV C txu   (8) Replacing ),(),( 1 txZHtxU   in (6) we obtain       01 11         ZHB x ZH A t ZH . Since 1 H is a constant matrix we have
  • 4.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1413 | Page     0),( ),(),( 111        txZBH x txZ AH t txZ H . After multiplication from the left by H we obtain     011        ZBHH x Z AHH t Z , i.e.   01        ZHBH x Z A t Z can . (9) But                                     LL CC L R C G LC LC HBH 2 1 2 1 2 1 2 1 0 0 1                                       L R C G L R C G L R C G L R C G 2 1 2 1 2 1 2 1 . Applying Heaviside condition C G L R  we obtain                                                                        0 0 ),( ),( 0 0 ),( ),( 1 0 0 1 ),( ),( txI txV L R L R x txI x txV LC LC t txI t txV . (10) The new initial conditions we obtain from (4): )()()()0,()0,()0,( 000 xVxiLxuCxiLxuCxV  ,   ,0x (11) )()()()0,()0,()0,( 000 xIxiLxuCxiLxuCxI  ,   ,0x . (12) One can simplify (10) by the substitution: ),(),( ),(),( txIetxJ txVetxW t L R t L R   Or ),(),( ),(),( txJetxI txWetxV t L R t L R     . (13) Substituting in (8) we obtain ).,( 2 1 ),( 2 1 ),( ),( 2 1 ),( 2 1 ),( txJe L txWe L txi txJe C txWe C txu t L R t L R t L R t L R     (14) Then with respect to the variables ),( txW and ),( txJ (10) looks like: .0 ),(1),( ,0 ),(1),(             x txJ LCt txJ x txW LCt txW (15)
  • 5.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1414 | Page The mixed problem for (1) - (4) can be reduced to an initial value problem for a neutral system. The neutral system is a nonlinear one in view of the nonlinear characteristics of the RGLC-elements. From now on we propose two manners to obtain a neutral system for unknown voltage and current functions. First manner: The solution of (15) is a pair of functions  vtxtxW W ),( and  vtxtxJ J ),( , where W and ФJ are arbitrary smooth functions. From (14) we obtain          . 2 ),( 2 ),( vtxvtx L e txi vtxvtx C e txu JW t L R JW t L R     (16) Hence    .),(),()( ),(),()( txuCtxiLevtx txiLtxuCevtx t L R J t L R W   (17) For x we obtain    .),(),()( ),(),()( tuCtiLevt tiLtuCevt t L R J t L R W   (18) Let us put  vTTtvttvtvt /'/''  and then replacing t by Tt ' in the first equation of (18) we get  )',()',()'( )'( TtiLTtuCevt Tt L R W   . For the second equation of (18) we put  vTTtvttvtvt /''/''''  And then we have .)](Λ)(Λ[)''( )''( ,t''-TuC-,t''-TiLevt Tt L R J   So we obtain  ),(),()( )( TtiLTtuCevt Tt L R W   (19)  ),(),()( )( TtuCTtiLevt Tt L R J   . (20) From (16) by x = 0 we have          . 2 ),0( 2 ),0( vtvt L e ti vtvt C e tu JW t L R JW t L R     (21) Substituting )( vtW  and )(vtJ from (19) and (20) into (21) we obtain:                    TtuCTtiLeTtiLTtuCe C tu L TtR L TtR ,,,, 2 1 ),0( )()(                    TtuCTtiLeTtiLTtuCe C ti L TtR L TtR ,,,, 2 1 ),0( )()( .
  • 6.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1415 | Page Substitute the above expressions into the boundary conditions (1), (2) we have           , )( ~ )( )( ~ 2 ,,,,)( 00 000 000 00 000 0 0 )( 0 )( 00 CG CG CG CG CG L TtR L TtR CG du uCd uG du uCd Z TtuTtiZeTtiZTtue dt tdu                         , /)),0(( ~ 2 )(2)(2,,,, ,,,, 2 1 000 0000 )( 0 )( 0 )( 0 )( 0 CG CG L TtR L TtR L TtR L TtR ditiLd tEtuTtuTtiZeTtiZTtue TtuTtiZeTtiZTtue dt d Z                        11111 11111 /)( ~ )(),()( CGCG CGCG duuCd uGti dt tdu   , . /)),(( ~ )()(),(),( 111 111 CG CG ditiLd tEtutu dt tdi     Let us put Tt  .Then we arrive at a system that we cannot formulate an initial value problem. Second manner We proceed from (14) and obtain ),0( 2 1 ),0( 2 1 ),0( ),0( 2 1 ),0( 2 1 ),0( tJe L tWe L ti tJe C tWe C tu t L R t L R t L R t L R     And ).,( 2 1 ),( 2 1 ),( ),( 2 1 ),( 2 1 ),( tJe L tWe L ti tJe C tWe C tu t L R t L R t L R t L R     Substituting in (2.1) and (2.2) we obtain 00000 00000 /)( ~ 2 ))((2),0(),0()( CGCG CG t L R t L R CG duuCdL tuGLtJetWe dt tdu    ; 000 00000 /)),0(( ~ )(2)(2),0(),0( ),0(),0( CG CG t L R t L R t L R t L R ditiLd tELtuLtJeZtWeZ tJetWe dt d              ; 11111 11111 /)(2 ))((2),(),()( CGCG CG t L R t L R CG duudCL tuGLtJetWe dt tdu    ; 111 11100 /)),(( ~ )(2)(2),(),( ),(),( CG CG t L R t L R t L R t L R ditiLd tELtuLtJeZtWeZ tJetWe dt d               . But ),(),0(),,(),0(),(),0(),,(),0( TtJtJtWTtWtJTtJTtWtW  . We choose ),()(),(),0( tJtJtWtW  to be unknown functions and then the above system becomes
  • 7.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1416 | Page . /)),(( ~ )(2)(2)()( )()( ; /)(2 ))((2)()()( ; /)),0(( ~ )(2)(2)()( )()( ; /)( ~ 2 ))((2)()()( 111 1110 )( 0)( 11111 111 )( 11 000 000 )( 00)( 00000 000 )( 00 CG CG t L R Tt L R t L R Tt L R CGCG CG t L R Tt L R CG CG CG Tt L R t L R Tt L R t L R CGCG CG Tt L R t L R CG ditiLd tELtuLtJeZTtWeZ tJeTtWe dt d duudCL tuGLtJeTtWe dt tdu ditiLd tELtuLTtJeZtWeZ TtJetWe dt d duuCdL tuGLTtJetWe dt tdu                                  (22) We notice that if (22) has a periodic solution  )(),(),(),( 1100 tJtutWtu CGCG Then functions )(),( tJetWe t L R t L R  are oscillatory ones and vanishing exponentially at infinity. Therefore we put )()(),()( tJetJtWetW t L R t L R    and then we can state the problem for existence-uniqueness of an oscillatory solution vanishing at infinity of the following system (we denote by )(),( tJtW  again by )(),( tJtW ) and obtain: );;[, /)),(( ~ )(2)(2)()()()( );;[, /)(2 ))((2)()()( );;[, /)),0(( ~ )(2)(2)()()()( );;[, /)( ~ 2 ))((2)()()( 111 11100 11111 11111 000 00000 00000 00000                  Tt ditiLd tELtuLtJZTtWZ dt TtdW dt tdJ Tt duudCL tuGLtJTtW dt tdu Tt ditiLd tELtuLTtJZtWZ dt TtdJ dt tdW Tt duuCdL tuGLTtJtW dt tdu CG CG CGCG CGCG CG CG CGCG CGCG (23) ,)(,)( 11110000 T CGCG T CGCG uTuuTu  ],0[, )()( , )()( ),()(),()( 00 00 Tt dt tdJ dt tdJ dt tdW dt tdW tJtJtWtW  . IV. ANALYSIS OF THE ARISING NONLINEARITIES First we precise the definition domains of the functions: )1,0(, )).(()( ~  p dt uuCd dt uCd pp Where   h p h pp h p p p u c u c uC      /1 )( , ]3,2[,0,0  hc pp are constants and  100 ,min  u . We have to show an interval for u where h p h pppp u u cuCuuC   )(.)( ~ Has a strictly positive lower bound. First we calculate the derivatives
  • 8.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1417 | Page   ; )( 1 h h p h ppp u h c du udC        h h p h ppp u h h h c du uCd 21 2 2 1)(      ;  du udC uuC du uCd p p p )( )( )( ~       hpp h pphp h pphp h pp uu h h cu h u cuc 1 11 11 1                ;         . 1221 1 11)( ~ 1 2 22 2 1 2 1 1 2 2 hp p h pp hpphp h pp p u uhhh h c u h u h h u h h c du uCd                                         Since              10100 1 , 1 min,min h h h h u  the derivative 0 )( ~  du uCd p . Then   .0ˆ,min].[:)( ~ min 0 0 0 0 0 0 00                  p h p h pp h p h pp h p h ppp C c ccuuC        Further on we have              . 12212)( ~ 21 0 2 0 2 1 0 21 1 0            h h p p h pp hp h pp hp h ppp h huhc h ch u h c du uCd               . 212 )1( 21 0 2 0 21 0 2 00 p h h p p h pp h h p p h pp C h hc h hhc              For          1000 ,, 1 min h h u  it follows     )1( 01 0 1 ˆ11)( ~ pp h h p h pp p h h p h ppp C h hc u h h u c du uCd                         . Therefore     ,ˆ )1( )( ~ ],[:)( ~ min 1 1 0 0 000 p hp p h pp pp C hh h c CuuC                 )2( 1 2 0 0 22 21 2 22 22 2 122122)( ~ p hp p h pp hp p h ppp C hhh h c u uhhh h c du uCd            . For the I-V characteristics we assume )1,0(,)( 1 )(    piriR m n np np and    m n np np iliL 0 )( )( then ..)(.)( ~ 0 )(    m n np npp iliiLiiL For )( ~ iLp we get     m n np n m n np n m n np np pp ilnilinliiL di idL i di iLd 1 )( 1 )( 1 1)( )1()( )()( ~ . Assumptions (C):   ; 2 ),0( 0 00 0      JWe tu T   ; 2 ),( 0 00 0      JWe tu T   0 0 00 0 2 ),0(    Z JWe ti T ,   0 0 00 0 2 ),(    Z JWe ti T . Assumptions (L): ,0ˆ)1( )( ~ )1( 1 )( 0    p m n np n p Liln di iLd i
  • 9.
    International Journal ofModern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1410-1418 ISSN: 2249-6645 www.ijmer.com 1418 | Page )2( 1 1 1 0 )( 2 2 )1( 1 0 )( )1( )( ~ ,)1( )( ~ p m n np n p p m n np n p Llnn di iLd Lln di iLd        . Assumptions (G): .)()(,)()( 1 11 )1( 111 1 00 )0( 000    m n n LRnLR m n n LRnLR igiGigiG V. CONCLUSION Here we have investigated lossy transmission lines terminated by circuits different from parallel or in series connected RGLC-elements. It turned out that in this case one obtains more number of equations which leads to more complicated boundary conditions at both ends of the line. First difficulty is to find independent unknown functions − voltages and currents and to obtain a system of neutral differential equations. We show that just oscillatory solutions are specific for the lossy transmission lines and in the second part of the paper we formulate conditions for existence-uniqueness of an oscillatory solution. They can be easily applied to concrete problem because they are explicit type conditions − just inequalities between specific parameters of the line and characteristics of the circuit. REFERENCES [1] G. Miano, and A. Maffucci, Transmission lines and lumped circuits (Academic Press, NY, 2-nd ed., 2010) [2] D. Pozar, Microwave engineering (J. Wiley & Sons, NY, 1998). [3] C.R. Paul, Analysis of multi-conductor transmission lines (A Wiley-Inter science Publication, J. Wiley &Sons, NY, 1994). [4] S. Ramom, J.R. Whinnery, and T.van Duzer, Fields and waves in communication electronics (J. Wiley & Sons, Inc. NY, 1994). [5] S. Rosenstark, Transmission lines in computer engineering (Mc Grow-Hill, NY, 1994). [6] P. Vizmuller, RF design guide systems, circuits and equations (Artech House, Inc., Boston - London, 1995). [7] P.C. Magnusson, G.C. Alexander, and V.K. Tripathi, Transmission lines and wave propagation (CRC Press. Boka Raton, 3rd ed., 1992). [8] J. Dunlop, and D.G. Smith, Telecommunications engineering (Chapman & Hall, London, 1994). [9] V. Damgov, Nonlinear and parametric phenomena: Theory and applications in radio physical and mechanical systems (World Scientific: New Jersey, London, Singapore, 2004). [10] V.G. Angelov, and M. Hristov, Distortion less lossy transmission lines terminated by in series connected RCL-loads. Circuits and Systems, 2(4), 2011, 297-310. [11] V.G. Angelov, and D.Tz. Angelova, Oscillatory solutions of neutral equations with polynomial nonlinearities, in Recent Advances in Oscillation Theory − special issue published in International Journal of Differential Equations, Volume 2011, Article ID 949547, 2011, 12 pages. [12] V.G. Angelov, Periodic regimes for distortion less lossy transmission lines terminated by parallel connected RCL-loads, in Transmission Lines: Theory, Types and Applications, (Nova Science Publishers, Inc., 2011) 259-293. [13] V.G. Angelov, Oscillations in lossy transmission lines terminated by in series connected nonlinear RCL-loads, International Journal of Theoretical and Mathematical Physics, 2(5), (2012). [14] V.G. Angelov, Various applications of fixed point theorems in uniform spaces. 10Th International Conference on Fixed Point Theory and its Applications. Cluj-Napoca, 2012. [15] V.G. Angelov, Lossless transmission lines terminated by in series connected RL-loads parallel to C-load. International Journal of Theoretical and Mathematical Physics, 3(1), 2013. [16] V.G. Angelov, A method for analysis of transmission lines terminated by nonlinear loads (submitted for publication). [17] V.G. Angelov, Fixed points in uniform spaces and applications (Cluj University Press “Babes-Bolyia”, Romania, 2009).