SlideShare a Scribd company logo
1 of 88
EMC Zurich Munich 2007


 Circuit Extraction for Transmission Lines
                               Modeling of PCBs
                       Giulio Antonini, Antonio Orlandi
                                   UAq EMC Laboratory
                             Department of Electrical Engineering
                         University of L’Aquila, 67040 AQ, Italy
     e-mail: antonini@ing.univaq.it, orlandi@ing.univaq.it




Munich, September 28, 2007                                          Slide 1 of 88
Introduction




High-speed interconnect modeling: SI and EMC issues
   • Ringing, attenuation, signal delay, distorsion
   • Crosstalk
   • EM radiation and susceptibility
   • Non-linear terminations
   • Incorporation of frequency dependent phenomena (conductor
     and dielectric losses)

Munich, September 28, 2007    EMC Zurich Munich 2007   Slide 2 of 88
Telegrapher’s equations: a brief review
       d
          V (x, s) = − R (s) + sL (s) I (x, s) = −Z (s)I (x, s)
      dx
        d
           I (x, s) = − G (s) + sC (s) V (x, s) = −Y (s)V (x, s)
       dx
 Existing methods for time domain solution
  • Lumped network (closed-form available for HTLN)
   • Method of characteristics
   • Matrix Rational macromodeling (with and without delay extraction)
   • Krylov-based (projection) methods
  • Vector Fitting techniques
Crucial issues
   • Stability
   • Passivity (causality)

Munich, September 28, 2007   EMC Zurich Munich 2007           Slide 3 of 88
Outline 1st part: the half-T ladder
                      network

       Development of the transmission line model by using
  G
       DFF and DFFz polynomials
       Two ports representation
  G

       Extraction of poles and residues in a closed form
  G

       Model order reduction
  G

       Stability and passivity
  G

       Realization
  G

       Numerical results
  G

       Conclusions
  G


Munich, September 28, 2007   EMC Zurich Munich 2007   Slide 4 of 88
Development of the transmission-line model

                              Telegrapher’s equations


                       ∂                           ∂
                          v (x, t) = −Ri (x, t) − L i (x, t)
                       ∂x                          ∂t
                        ∂                           ∂
                          i (x, t) = −Gv (x, t) − C v (x, t)
                       ∂x                           ∂t
R , L , C and G : per unit length parameters, non-negative definite
symmetric matrices of order N , being N + 1 the number of conductors.
In [1] M.Faccio, G.Ferri, A.D’Amico. A New Fast Method for Ladder Net-
works Characterization. IEEE Trans. on Circuits and System, I, 38(11):
1377-1382, September 1991 it was shown that an open-ended half-T lad-
der network can be analytically studied.


Munich, September 28, 2007        EMC Zurich Munich 2007       Slide 5 of 88
Development of the transmission-line model


The voltage at the generic node β in the Laplace-domain can be expressed
as:
                               Pbn−β (K (s))
                     Vβ (s) =     n (K (s)) Vin (s)
                                Pb
being
                                                Z1 (s)
                                        K (s) =
                                                Z2 (s)
      n−β
and Pn (K(s)) an n − β order polynomial in K (s) with 0 ≤ β ≤ n.
More specifically, the voltage at node β is:
                                          n−β
                                              bj,n−β K j (s)
                                          j=0
                             Vβ (s) =                        Vin (s)
                                           n          j (s)
                                           j=0 bj,n K




Munich, September 28, 2007              EMC Zurich Munich 2007         Slide 6 of 88
Development of the transmission-line model


The polynomial coefficients b are generated accordingly to the following
recursive expression
                                            
                              j+i        j+i
                                 =          
                     bi,j =
                              j−i          2j

The general expression of the longitudinal branch current Iβ1 (s) is:

                                      n−β+1
                                            cj,n−β+1 K j+1 (s)
                             1        j=0
                 Iβ1 (s) =                                     Vin (s)
                                          n          j (s)
                           Z1 (s)         j=0 bj,n K
where the polynomial coefficients c are obtained by means of the recursive
expression [2]


Munich, September 28, 2007          EMC Zurich Munich 2007               Slide 7 of 88
Development of the transmission-line model

                                                                     
                                    i+j+1                      i+j+1
                               =               =                     
                        ci,j
                                     j−i                       2j + 1
Longitudinal current can be re-written in a more compact form as:

                                     1 Pcn−β+1 (K(s))
                         Iβ1 (s) =                    Vin (s)
                                           n (K(s))
                                   Z1 (s) Pb

where Pcn−β+1 (K(s)) is a n − β + 1 order polynomial in K (s).
Similarly, the shunt branch current Iβ2 (s) can be expressed as:
                               n−β                               n−β
                                   bj,n−β K j (s)             1 Pb    (K)
                   1           j=0
         Iβ2 (s) =                                Vin       =      n (K) Vin (s)
                                n          j (s)
                   Z2           j=0 bj,n K                    Z2 Pb


Munich, September 28, 2007            EMC Zurich Munich 2007                   Slide 8 of 88
DFF and DFFz polynomials



                                    x                 x
                         Pbn (x) = Un 1 +
                                        − Un−1 1 +
                                    2                 2
                                            x
                           n
                          Pc (x) = Un 1 +
                                            2
From the properties of Chebyshev polynomials it has been proved that [2]
Pbn (x) and Pcn (x) polynomials are orthogonal in the interval [−4, 0] with
respect to the weight functions
                                                       1
                                                            −1
                               Pu (x) = − (x + 4) x    2     2


                                                        1   1
                               Pv (x) = − (x + 4) x     2   2




Munich, September 28, 2007         EMC Zurich Munich 2007          Slide 9 of 88
DFF and DFFz polynomials
                    Extension to MTLs:
             MTL equivalent half-T ladder network
                        Z1                  Z1              Z1              Z1
                   I1                                            b                    In
                                                 b-1
                              1                                                            n
               0


             Vin                  Z2                   Z2            Z2               Z2   Vout




                                          l      l
                        Z 1 (s) = (R + sL) = Z l
                                          n      n
                                            l −1                                 −1
                                                                             l
                        Z 2 (s) =  (G + sC)       =                       Yt
                                            n                                n

                                       K (s) = Z 2 (s)−1 Z 1 (s)


Munich, September 28, 2007                 EMC Zurich Munich 2007                                 Slide 10 of 88
DFF and DFFz polynomials


                                   Extension to MTLs
                                  n
         Pbn (K(s)) =                 bj,n K j (s)        DFF polynomial of order n
                              j=0

                             n
   Pbn−1 (K(s)) =                  bj,n−1 K j (s)         DFF polynomial of order n − 1
                             j=0

                              n
       Pcn (K(s)) =                cj,n K j+1 (s)          DFFz polynomial of order n
                             j=0




Munich, September 28, 2007                 EMC Zurich Munich 2007                Slide 11 of 88
Closed form zeros of DFF and DFFz polynomials

                                   (2j − 1) π
                               2
                                                                         for Pbn (x)
          uj,n = −4sin                                    j = 1···n
                                   (2n + 1) 2
                                      j    π
                              2
                                                                         for Pcn (x)
         vj,n = −4sin                                      j = 1···n
                                   (n + 1) 2
                                                 n
                               Pbn (K(s)) =           (K(s) − uj,n )
                                                j=1

                                                n−1
                             Pbn−1 (K(s)) =           (K(s) − uj,n−1 )
                                                j=1

                                                  n−1
                        Pcn (K(s)) = K(s)                (K(s) − vj,n−1 )
                                                   j=1



Munich, September 28, 2007              EMC Zurich Munich 2007                    Slide 12 of 88
Two port representation


                                ABCD representation
                   n
                       bj,n K j (s)   = Pbn (K(s))
  G A=             j=0

                     n
                         cj,n K j+1 (s)    · Z 2 (s) = Pcn (K(s)) · Z 2 (s)
  G B=               j=0

                     n
                                           · Z −1 (s) = Pcn (K(s)) · Z −1 (s)
                         cj,n K j+1 (s)
  G C=                                         1                       1
                     j=0

                   n−1
                                        = Pbn−1 (K(s))
                       bj,n−1 K j (s)
  G D=             j=0

                                                                                                     
            (Pcn (K(s)) · Z 2 (s))−1 Pbn−1 (K(s)) (Pcn (K(s)) · Z 2 (s))−1
Y =                                                                                                  
            (Pcn (K(s)) · Z 2 (s))−1                            (Pcn (K(s)) · Z 2 (s))−1 Pbn (K(s))



Munich, September 28, 2007             EMC Zurich Munich 2007                    Slide 13 of 88
Two port representation


                      DFF and DFFz polynomials factorization

                              n
            Pbn (K) =              s2 CL + s (GL + CR) + GR − uj,n U
                             j=1

                             n−1
        Pbn−1 (K) =                s2 CL + s (GL + CR) + GR − uj,n−1 U
                             j=1

                             n−1
        Pcn (K) = K                s2 CL + s (GL + CR) + GR − vj,n−1 U
                             j=1


                                                ⇓
                             Y matrix entries factorization


Munich, September 28, 2007             EMC Zurich Munich 2007          Slide 14 of 88
Y matrix entries factorization

                                                                                  −1
                      n−1
Y 11 =                     s2 CL + s (GL + CR) + GR − vj,n−1 U  (R + sL)               ·
                      j=1
                n−1
                       s2 CL + s (GL + CR) + GR − uj,n−1 U
          ·
                j=1

                                                                                   −1
                         n−1
Y 12 = −                     s2 CL + s (GL + CR) + GR − vj,n−1 U  (R + sL)
                         j=1

Y 21 = Y 12
Y 22 = Y 11


Munich, September 28, 2007          EMC Zurich Munich 2007          Slide 15 of 88
Two port representation

                                  Poles extraction

                                                                       
            n−1
 det              s2 CL + s (GL + CR) + GR − vj,n−1 U  (R + sL) = 0
            j=1


                                            ⇓
                                                           
   n−1
          det s2 CL + s (GL + CR) + GR − vj,n−1 U  det (R + sL) = 0
     j=1


                                            ⇓
     Closed-form evaluation of residues ⇒ Spice equivalent circuit
Munich, September 28, 2007         EMC Zurich Munich 2007           Slide 16 of 88
Two port representation


         Poles extraction for single-conductor transmission lines


                   R
         s0     =−
                   L
                                                                        v
                                                            2
                                                                  RG − j,n−1
                         1    RG            1     RG                    ∆l2
       sj,1 = −               +      +            +             −
                         2    LC            4     LC                 LC
                                                                        v
                                                            2
                                                                  RG − j,n−1
                   1          RG            1     RG                    ∆l2
       sj,2     =−            +      −            +             −
                   2          LC            4     LC                 LC

 for j = 1 · · · P , P being the total number of poles.
 All the P + 1 poles have a negative real part → stability ensured


Munich, September 28, 2007         EMC Zurich Munich 2007                   Slide 17 of 88
Model Order Reduction


The set of poles for a given order of the half-T ladder network is
analytically known
 Condition 1
                                  |Im (pi ) | < ωmax
 for i = 1 · · · P , ωmax being the fixed bandwidth of the MOR.
A first set P1 of poles is selected.
 Condition 2
                                 |Residue (pi ) | > th
 for i = 1 · · · P1



Munich, September 28, 2007        EMC Zurich Munich 2007         Slide 18 of 88
Stability, Passivity



                                 Stability
The proposed model is characterized by poles which strictly satisfy this
condition because they represent exactly the poles of a half-T ladder
network which is intrinsically stable.
                                 Passivity
It has been assumed that p.u.l. parameters matrices R, L, C, G are non-
negative definite symmetric matrices. This implies that matrices Z 1 (s)
and Z −1 (s) are positive real (PR) matrices. This ensures that the half-T
       2
ladder network of order n is intrinsically passive (more details in [3]).




Munich, September 28, 2007       EMC Zurich Munich 2007          Slide 19 of 88
Realization


                                     Realization


                             d
                                x (t) = Ax (t) + Bu (t)
                             dt
                                y (t) = Cx (t) + Du (t)

Standard realization procedures can be adopted to obtain the state
space representation A, B, C, D.
Linear and non-linear terminations are described by additional equations.

                                 Circuit synthesis
See 3rd part


Munich, September 28, 2007         EMC Zurich Munich 2007       Slide 20 of 88
Poles location finding: single conductor transmission line

         Frequency independent per unit length parameters (FIPUL)
                order                Tanji in [4]                       DFFLN

                  0                   -1.933837                        -1.933837
                                      -2.706589                        -2.706589
                  1          −1.240641e8 + j8.064423e9         −1.2406408e8 + j8.06235e9
                             −1.240641e8 − j8.064423e9         −1.2406408e8 − j8.06235e9
                             −1.079620e8 + j8.831359e9         −1.0796194e8 + j8.82908e9
                             −1.079620e8 − j8.831359e9         −1.0796194e8 − j8.82908e9
                  2          −1.240495e8 + j1.612970e10       −1.240495e8 + j1.611312e10
                             −1.240495e8 − j1.612970e10       −1.240495e8 − j1.611312e10
                             −1.079766e8 + j1.766434e10       −1.079765e8 + j1.764618e10
                             −1.079766e8 − j1.766434e10       −1.079765e8 − j1.764618e10
                  5          −1.240454e8 + j4.032485e10       −1.240453e8 + j4.006624e10
                             −1.240454e8 − j4.032485e10       −1.240453e8 − j4.006624e10
                         −1.079807e8 + j + 4.416198e10        −1.079806e8 + j4.387875e10
                             −1.079807e8 − j4.416198e10       −1.079806e8 − j4.387875e10



      The proposed method doesn’t use the modal decomposition
.

Munich, September 28, 2007                  EMC Zurich Munich 2007                         Slide 21 of 88
Numerical results

                     One-conductor line with linear terminations (50 Ω) [5]
                                     R = 1776 Ω/m                                       L = 0.5978 µH/m
                                   C = 18.61 pF/m                                                       G = 0 S/m

               11
            x 10                                                                                       0.07
                                                                                                                                                             MOR
                                                                         Order 90
                                                                                                                                                             Spice
                                                                         MOR
       4
                                                                                                                                                             PEEC

                                                                                                       0.06
      3.5


       3
                                                                                                       0.05

      2.5




                                                                                         Voltage [V]
                                                                                                       0.04
       2
Im




      1.5

                                                                                                       0.03
       1


      0.5
                                                                                                       0.02

       0

                                                                                                       0.01
     −0.5
                                                                                                              0   0.5   1   1.5           2   2.5      3      3.5
               −1.4854   −1.4854   −1.4854        −1.4854    −1.4854     −1.4854
                                                                                                                                  Time [s]
                                             Re                                                                                                                      −9
                                                                                    9
                                                                                                                                                               x 10
                                                                              x 10




                    Dominant poles                                                                       Voltage at the output port
Munich, September 28, 2007                                             EMC Zurich Munich 2007                                                       Slide 22 of 88
Numerical results


             Numerical methods used for comparison
1) Transmission Line Theory via IFFT (TLT-IFFT)
2) Half-T Ladder network via IFFT (HTLN-IFFT)
3) DFF and DFFz polynomials via IFFT (DFFLN-IFFT)
4) DFF and DFFz polynomials with MOR via IFFT (DFFLN-MOR-IFFT)
5) DFF and DFFz polynomials without MOR via Pspice (DFFLN-Pspice)
6) DFF and DFFz polynomials with MOR via Pspice (DFFLN-MOR-
    Pspice)
7) DFF and DFFz polynomials with MOR via ODE solver (DFFLN-MOR-
    ODE)


Munich, September 28, 2007      EMC Zurich Munich 2007   Slide 23 of 88
Numerical results

         Two-conductor line with linear terminations (50 Ω) (I)
                                                              3
                                     1


                                                              4
                                     2




                                                                            
                       4.63 0.74                                  337   58.4
           R=                       Ω/m           L=                         nH/m
                       0.74 4.63                           58.4 337
                                                                
                     193     −1.53                             00
       C=                            pF/m               G=       S/m
                   −1.53      193                              00


Munich, September 28, 2007           EMC Zurich Munich 2007                        Slide 24 of 88
Numerical results

                                                                                   HTLN order 129, MOR 32
                               11                                                                                                                    11
                      x 10                                                                                                                        x 10
                  4                                                                                                                      1.5
                                     Order 129                                                                                                                 Order 129
                                     MOR                                                                                                                       MOR
                  3

                                                                                                                                             1

                  2



                                                                                                                                         0.5
                  1
       Im




                                                                                                                                Im
                  0
                                                                                                                                             0

                 −1


                                                                                                                                        −0.5
                 −2



                 −3
                                                                                                                                         −1


                 −4
                 −1.4               −1.3         −1.2       −1.1           −1        −0.9       −0.8       −0.7        −0.6                         −7.4       −7.3       −7.2       −7.1       −7    −6.9   −6.8   −6.7   −6.6    −6.5   −6.4
                                                                           Re                                                                                                                           Re
                                                                                                                         7                                                                                                                          6
                                                                                                                  x 10                                                                                                                           x 10




                                                                                                                                         1
                      1
                                                                                                                                        10
                 10
                                                                                                                                                                                                                                  TLT
                                                                                                           TLT
                                                                                                                                                                                                                                  HTLN
                                                                                                           HTLN
                                                                                                                                                                                                                                  DFFLN
                                                                                                           DFFLN
                                                                                                                                                                                                                                  DFFLN−MOR
                                                                                                           DFFLN−MOR                     0
                                                                                                                                        10
                      0
                 10


                                                                                                                                         −1
                                                                                                                                        10
                      −1
                 10
                                                                                                                              Y14 [S]
       Y11 [S]




                                                                                                                                         −2
                                                                                                                                        10

                      −2
                 10
                                                                                                                                         −3
                                                                                                                                        10



                      −3
                 10
                                                                                                                                         −4
                                                                                                                                        10




                                                                                                                                         −5
                      −4
                                                                                                                                        10
                 10
                                                                                                                                              0            1          2          3          4         5        6     7       8        9       10
                           0         1       2          3          4         5        6     7          8      9        10
                                                                                                                                                                                                Frequency [Hz]
                                                                       Frequency [Hz]                                                                                                                                                         9
                                                                                                                        9
                                                                                                                                                                                                                                          x 10
                                                                                                                  x 10




Munich, September 28, 2007                                                                         EMC Zurich Munich 2007                                                                                                             Slide 25 of 88
Numerical results

                   1.2
                                                                IFFT                                                           1
                                                                MOR
                                                                                                                                                                            IFFT
                                                                                                                                                                            MOR
                    1

                                                                                                                              0.8

                   0.8

                                                                                                                              0.6
Voltage V1 [V]




                   0.6




                                                                                                            Voltage V3 [V]
                                                                                                                              0.4
                   0.4



                                                                                                                              0.2
                   0.2



                                                                                                                               0
                    0




                  −0.2                                                                                                       −0.2
                         0       0.2    0.4    0.6    0.8              1     1.2   1.4   1.6          1.8                           0       0.2    0.4    0.6    0.8              1    1.2    1.4    1.6           1.8
                                                            Time [s]                                                                                                   Time [s]
                                                                                                  −8                                                                                                           −8
                                                                                               x 10                                                                                                         x 10




                   0.05                                                                                                        0.1
                                                                  IFFT                                                                                                       IFFT
                                                                  MOR                                                                                                        MOR
                   0.04                                                                                                       0.08


                   0.03                                                                                                       0.06


                   0.02                                                                                                       0.04


                   0.01                                                                                                       0.02
  Voltage V [V]




                                                                                                            Voltage V4 [V]
           2




                         0                                                                                                          0


                  −0.01                                                                                                      −0.02


                  −0.02                                                                                                      −0.04


                  −0.03                                                                                                      −0.06


                  −0.04                                                                                                      −0.08


                  −0.05                                                                                                       −0.1
                             0    0.2    0.4    0.6    0.8              1    1.2   1.4   1.6          1.8                               0    0.2    0.4    0.6    0.8              1    1.2    1.4    1.6          1.8
                                                             Time [s]                                                                                                   Time [s]
                                                                                                      −8                                                                                                           −8
                                                                                               x 10                                                                                                         x 10
Numerical results

         Two-conductor line with linear terminations (50 Ω) (II)
                                                                    3
                                           1


                                                                    4
                                           2




                                                                                   
                          0.2     0                                     0.28 0.07
             R=                        Ω/m           L=                             µH/m
                             0   0.2                                    0.07 0.28
                                                                               
                       122       −50                                         00
          C=                           pF/m                G=                   S/m
                      −50        122                                         00

Munich, September 28, 2007                 EMC Zurich Munich 2007                          Slide 27 of 88
160 poles, MOR 68

                             0.6                                                                                                 0.6
                                                                                   TLT−IFFT                                                                                TLT−IFFT
                                                                                   HTLN−IFFT                                                                               HTLN−IFFT
                                                                                   DFFLN−IFFT                                                                              DFFLN−IFFT
                                                                                   DFFLN−MOR−IFFT                                                                          DFFLN−MOR−IFFT
                             0.5                                                                                                 0.5
                                                                                   DFFLN−MOR−ODE                                                                           DFFLN−MOR−ODE
                                                                                   DFFLN−MOR−Pspice                                                                        DFFLN−MOR−Pspice


                             0.4                                                                                                 0.4
      Voltage V1 [V]




                                                                                                               Voltage V3 [V]
                             0.3                                                                                                 0.3



                             0.2                                                                                                 0.2



                             0.1                                                                                                 0.1




                              0                                                                                                    0




                        −0.1                                                                                                    −0.1
                                   0       1       2       3               4   5         6              7                              0    1   2   3              4   5          6                7
                                                               Time [s]                                                                                 Time [s]
                                                                                                       −8                                                                                      −8
                                                                                                x 10                                                                                     x 10




                               0.1                                                                                               0.03
                                                                                   TLT−IFFT                                                                                TLT−IFFT
                                                                                   HTLN−IFFT                                                                               HTLN−IFFT
                                                                                   DFFLN−IFFT
                              0.08                                                                                                                                         DFFLN−IFFT
                                                                                   DFFLN−MOR−IFFT                                                                          DFFLN−MOR−IFFT
                                                                                   DFFLN−MOR−ODE                                                                           DFFLN−MOR−ODE
                                                                                                                                 0.02
                                                                                   DFFLN−MOR−Pspice                                                                        DFFLN−MOR−Pspice
                              0.06


                              0.04
                                                                                                                                 0.01

                              0.02
            Voltage V2 [V]




                                                                                                            Voltage V [V]
                                                                                                                     4




                                   0                                                                                               0


                             −0.02

                                                                                                                                −0.01
                             −0.04


                             −0.06
                                                                                                                                −0.02

                             −0.08


                              −0.1                                                                                              −0.03
                                       0       1       2   3               4   5         6             7                                0   1   2   3              4   5         6             7
                                                                Time [s]                                                                                Time [s]
                                                                                                      −8                                                                                      −8
                                                                                                x 10                                                                                    x 10




Munich, September 28, 2007                                                         EMC Zurich Munich 2007                                                                             Slide 28 of 88
Numerical results


   Three-conductor line with linear terminations (resistive loads)




                                                                                        
                   5/12          0      0                                   87   25   23
                                                                                       
                                                                 1
          R=                                  Ω/cm        L = 3600  25              25  µH/cm
                       0        5/12    0                                   85
                                                                                       
                       0         0     5/12                            23   25         87
                                                                                          
                           68    −40    −13                     3/512     0             0
                                                                                          
        C = 324  −40
             1
                                        −40  pF/cm        G=                                mS/cm
                                  95                              0     3/512           0
                                                                                          
                  −13            −40     68                       0       0           3/512




Munich, September 28, 2007                     EMC Zurich Munich 2007                           Slide 29 of 88
Numerical results

                                                                                                                                                                                                                                     0.35
                                                                                                                                          0.5
                                                                                                                                                                                                                                                                                                                           IFFT
                                                                                                                                                                                              IFFT
                                                                                                      IFFT
                                                                                                                                                                                                                                                                                                                           MOR
                                                                                                                                                                                              MOR
                                                                                                      MOR
                                                                                                                                                                                                                                           0.3
                                    0.9
                                                                                                                                          0.4

                                    0.8                                                                                                                                                                                              0.25
                                                                                                                                          0.3
                                    0.7                                                                                                                                                                                                    0.2
                                                                                                                                          0.2
                                    0.6
                                                                                                                                                                                                                                     0.15




                                                                                                                                                                                                                   Voltage V3 [V]
                                                                                                                        Voltage V2 [V]
                   Voltage V [V]




                                                                                                                                          0.1
                                    0.5
                            1




                                                                                                                                                                                                                                           0.1
                                    0.4                                                                                                     0
                                                                                                                                                                                                                                     0.05
                                    0.3
                                                                                                                                         −0.1
                                                                                                                                                                                                                                                     0
                                    0.2
                                                                                                                                         −0.2
                                                                                                                                                                                                                                    −0.05
                                    0.1

                                                                                                                                         −0.3                                                                                        −0.1
                                     0


                                                                                                                                         −0.4
                                   −0.1
                                                                                                                                                                                                                                                         0             0.5         1                  1.5          2               2.5
                                                                                                                                                0   0.5   1                   1.5     2               2.5
                                          0         0.5       1                        1.5       2            2.5
                                                                                                                                                                                                                                                                                       Time [s]
                                                                      Time [s]                                                                                    Time [s]                                                                                                                                                        −8
                                                                                                              −8                                                                                     −8
                                                                                                                                                                                                                                                                                                                            x 10
                                                                                                       x 10                                                                                    x 10




                                                                                                                                                                                                                                                                                                                                         IFFT
                                                                                                                                                                                                 IFFT
                                                                                                     IFFT
                                                                                                                                                                                                                                                                                                                                         MOR
                                                                                                                                                                                                 MOR
                                                                                                     MOR
                  0.9
                                                                                                                                                                                                                                                         0.25
                                                                                                                                          0.2
                  0.8


                                                                                                                                                                                                                                                             0.2
                  0.7                                                                                                                     0.1

                  0.6




                                                                                                                                                                                                                                    Voltage V6 [V]
                                                                                                                                                                                                                                                         0.15
                                                                                                                    Voltage V5 [V]
Voltage V4 [V]




                                                                                                                                           0
                  0.5


                  0.4
                                                                                                                                                                                                                                                             0.1
                                                                                                                                         −0.1

                  0.3

                                                                                                                                                                                                                                                         0.05
                                                                                                                                         −0.2
                  0.2


                  0.1
                                                                                                                                                                                                                                                              0
                                                                                                                                         −0.3
                     0


                                                                                                                                                                                                                                                     −0.05
                                                                                                                                         −0.4
                 −0.1
                                                                                                                                                                                                                                                                   0         0.5        1                    1.5       2                         2.5
                                                                                                                                                0   0.5       1                 1.5       2                  2.5
                              0               0.5         1                      1.5         2               2.5
                                                                                                                                                                                                                                                                                                  Time [s]
                                                                  Time [s]                                                                                         Time [s]                                                                                                                                                                     −8
                                                                                                            −8                                                                                              −8
                                                                                                                                                                                                                                                                                                                                          x 10
                                                                                                      x 10                                                                                            x 10
Numerical results

                Lightning over-voltage on a two-conductor line

                                          V0 (t/τ1 )n −t/τ2
                                 vs (t) =              e
                                                   n+1
                                          η (t/τ1 )
where V0 = 105 V, η = 1, τ1 = 0.5 µs τ2 = 10 µs and n = 2. It has
been considered a 1 m long cable whose p.u.l. parameters are:


                                                                                         
                         0.4      0                                     1.25265 0.87324
              R=                       Ω/m                   L=                           µH/m
                             0   0.4                                    0.87324 1.25265
                                                                                
               17.2799           −12.0461                                      00
  C=                                            pF/m                  G=         S/m
              −12.0461           17.2799                                       00


Munich, September 28, 2007                 EMC Zurich Munich 2007                  Slide 31 of 88
Numerical results



                                                                                                   0.2
                                                           TLT−IFFT                                                                              TLT−IFFT
                                                           HTLN−IFFT                                                                             HTLN−IFFT
                                                           DFFLN−IFFT                                                                            DFFLN−IFFT
                                                           DFFLN−MOR−IFFT                                                                        DFFLN−MOR−IFFT
                                                                                                    0
                    1                                      DFFLN−MOR−ODE                                                                         DFFLN−MOR−ODE



                                                                                                  −0.2
                   0.8




                                                                                 Voltage V4 [V]
                                                                                                  −0.4
                   0.6
  Voltage V2 [V]




                                                                                                  −0.6
                   0.4



                                                                                                  −0.8
                   0.2



                                                                                                   −1
                    0


                         0   0.5   1   1.5   2   2.5   3   3.5     4
                                                                            −5
                                                                                                         0   0.5   1   1.5   2   2.5   3   3.5    4     4.5          5
                                                                       x 10
                                                                                                                                                                  −5
                                                                                                                                                              x 10




                                       Near-end                                                                              Far-end



Munich, September 28, 2007                                       EMC Zurich Munich 2007                                                                 Slide 32 of 88
FDPUL MTL: 316 poles, MOR 69

                                                                          11
                                                                       x 10
                                                                1.5
                                                                                                                                                                   HTLN
                                                                                                                                                                   MOR


                                                                   1




                                                                0.5




                                                          Im
                                                                   0




                                                               −0.5




                                                                −1




                                                               −1.5
                                                                 −12             −10            −8               −6                        −4           −2                  0
                                                                                                                 Re                                                        8
                                                                                                                                                                     x 10




                                                                                                                                 0.2
                                                                                       TLT−IFFT
                                                                                                                                                                                                       TLT−IFFT
                                                                                       DFFLN−MOR−Pspice
                                                                                                                                                                                                       DFFLN−MOR−Pspice
                      2.5
                                                                                                                                0.15


                       2
                                                                                                                                 0.1



                                                                                                                                0.05
                      1.5
       Voltage [V]




                                                                                                                 Voltage [V]




                                                                                                                                  0
                       1


                                                                                                                               −0.05

                      0.5

                                                                                                                                −0.1


                       0
                                                                                                                               −0.15



                     −0.5                                                                                                       −0.2
                            0   0.1   0.2   0.3   0.4     0.5           0.6    0.7      0.8     0.9          1                         0    0.1   0.2        0.3     0.4          0.5      0.6   0.7    0.8     0.9          1
                                                        Time [s]                                                                                                                Time [s]
                                                                                                          −8                                                                                                              −8
                                                                                                      x 10                                                                                                            x 10




Munich, September 28, 2007                                                             EMC Zurich Munich 2007                                                                                                   Slide 33 of 88
Numerical results: non linear terminations
                                                    1                                2
                                                                  four-ports
                                                                                              R24
                                                                   network
                                                    3

                                                                                                            R24=1000M ,
                                                                                     4

                                                                                                            R20=0.01V203
                                                                               R40                R20
                      Rg1                               Rg2
                        +
                                                                                                            R40=0.01V403
                      Vg1                               Vg2
                                                    +




                                            6




                                            5




                                            4
                              Voltage [V]




                                                                                                                            Voltage
                                            3


                                                                                                                            source
                                            2




                                            1




                                            0
                                                0             1       2        3              4         5   6           7
                                                                                                                       -8
                                                                                                                x 10
                                                                                   Time [s]


                            Full model: 80 half-T sections (160 poles)
                      Model Order Reduction (MOR) model: 24 poles



Munich, September 28, 2007                                             EMC Zurich Munich 2007                                         Slide 34 of 88
Numerical results: non linear terminations
                     3                                                                           2.5
                                                        DFFLN-MOR-Pspice                                                              DFFLN-MOR-Pspice


                   2.5
                                                                                                   2



                     2
                                                                                                 1.5
    Voltage [V]




                                                                                  Voltage [V]
                   1.5

                                                                                                   1

                     1


                                                                                                 0.5
                   0.5



                                                                                                   0
                     0




                  -0.5                                                                          -0.5
                         0   1   2   3          4   5         6               7                        0   1   2   3          4   5         6              7
                                                                             -8                                                                           -8
                                                                      x 10                                                                         x 10
                                     Time [s]                                                                      Time [s]
                                                                                                 0.2
                  0.5
                                                                                                                                      DFFLN-MOR-Pspice
                                                        DFFLN-MOR-Pspice

                  0.4
                                                                                                0.15

                  0.3


                                                                                                 0.1
                  0.2


                  0.1
    Voltage [V]




                                                                                  Voltage [V]
                                                                                                0.05

                    0

                                                                                                   0
                  -0.1


                  -0.2                                                                          -0.05


                  -0.3
                                                                                                 -0.1
                  -0.4


                  -0.5                                                                          -0.15
                         0   1   2   3          4   5         6               7                      0     1   2   3          4   5         6             7
                                                                             -8                                                                          -8
                                                                     x 10                                                                          x 10
                                     Time [s]                                                                      Time [s]




Munich, September 28, 2007                                 EMC Zurich Munich 2007                                                        Slide 35 of 88
Composite left/right handed MTLs



               ∂                        1 −1
                  V (z, s) = − R + sLR + CL  I (z, s)
               ∂z                       s
                ∂                       1 −1
                  I (z, s) = − G + sCR + LL  V (z, s)
               ∂z                       s
   • All the transmission lines model can be used.
   • Since the CRLH TL is realized by cascading unit cells, the closed
     form half-T ladder network provides exact results.




Munich, September 28, 2007   EMC Zurich Munich 2007           Slide 36 of 88
Composite left/right handed MTLs
Elementary half-T cell

                             R        LR        CL



                                                     CR   G LL




                                                                     n
                   R=R              LR = LR                CL = CL
                             n                    n
                                                                     n
                   G=G              CR = CR                LL = LL
                             n                       n


Munich, September 28, 2007       EMC Zurich Munich 2007                  Slide 37 of 88
Composite left/right handed MTLs

                                              1
                  Z1 (s) =        R + sLR +                         = Z (s)
                                             sCL                n             n
                                            1
                             =   R + sLR +
                                           sCL
                                              1
                  Y2 (s) =        G + sCR +                         = Y (s)
                                             sLL                n             n
                                            1
                             =   G + sCR +
                                           sLL
Computation of poles

                    s2 LR CL + sCL R + 1 = 0
                    Z1 (s) Y2 (s) − vj,n−1 = 0,              for j = 1 · · · n − 1


Munich, September 28, 2007          EMC Zurich Munich 2007                           Slide 38 of 88
Numerical results: unbalanced CRLH-TL

R = 10−3 Ω, LR = 2.45 nH, CL = 0.68 pF, G = 10−3 S, CR = 0.5 pF,
LL = 3.38 nH, = 6.1 mm
                   5                                                                                               4
                  10
                                                                                                                                                                              HTLN
                                                                                HTLN
                                                                                                                                                                              MOR
                                                                                MOR
                                                                                                                   3

                   0
                  10
                                                                                                                   2



                                                                                                                   1
                   −5
                  10




                                                                                               Phase(Y12) [rad]
      |Y12| [S]




                                                                                                                   0


                   −10
                  10
                                                                                                                  −1



                                                                                                                  −2
                   −15
                  10

                                                                                                                  −3


                   −20
                                                                                                                  −4
                  10
                                                                                                                       0   0.5   1   1.5   2        2.5       3   3.5   4   4.5          5
                         0   0.5   1   1.5   2        2.5       3   3.5   4   4.5          5
                                                                                                                                               Frequency [Hz]
                                                 Frequency [Hz]                                                                                                                      10
                                                                                       10
                                                                                                                                                                                  x 10
                                                                                    x 10




                             Magnitude and phase spectra of admittance Y12 .


Munich, September 28, 2007                                                EMC Zurich Munich 2007                                                                            Slide 39 of 88
Numerical results: unbalanced CRLH-TL

R = 10−3 Ω, LR = 2.45 nH, CL = 0.68 pF, G = 10−3 S, CR = 0.5 pF,
LL = 3.38 nH, = 6.1 mm
                                                                                           8
                    12
                                                                                       x 10
                 x 10
                                                                                 1.5
             4
                                                                                                                    Reference
                                                     HTLN
                                                                                                                    MOR−GE−SH
                                                     MOR
             3
                                                                                  1

             2

                                                                                 0.5
             1




                                                                  Voltage [V]
       Im




                                                                                  0
             0



            −1
                                                                                −0.5


            −2

                                                                                 −1
            −3



                                                                                −1.5
            −4
                                                                                       0       0.5              1                1.5
            −12          −10   −8   −6   −4     −2            0
                                                                                                     Time [s]                   −7
                                    Re                      8
                                                                                                                          x 10
                                                       x 10




    Location of poles in the complex plane and transient output.


Munich, September 28, 2007                    EMC Zurich Munich 2007                                                    Slide 40 of 88
Conclusions

Advantages of the proposed method
  G the analytical knowledge of poles and residues of the half-T ladder
    network allows to obtain a rational representation of MTL Y (s)
    matrix;
  G the dominant poles can be extracted thus leading to a reduced order
    model;
  G the reduced model is easily synthesized into an equivalent circuit
    which is suitable for Spice simulations with linear and non-linear
    terminations;
  G it can be used to generate macro-models of MTLs to be interfaced
    with other tools.


Munich, September 28, 2007    EMC Zurich Munich 2007           Slide 41 of 88
Outline 2nd part: the spectral model
  G Introduction
       Existing techniques to multiconductor transmission lines (MTLs)
    time domain modeling
  G Green’s function based MTLs model
      Sturm-Liouville problem
      Spectral form of the Green’s function
      Eigenvalue problem
      Z matrix computation
  G Numerical results
      MTL with frequency independent per-unit-length parameters
      MTL with frequency dedependent per-unit-length parameters
  G Conclusions


Munich, September 28, 2007   EMC Zurich Munich 2007           Slide 42 of 88
Telegrapher’s equations: a brief review

General solution of Telegrapher’s equations:
                                               
                    V ( , s)             V (0, s)
                             = eΨ(s)           
                    I( , s)              I(0, s)

where

   Ψ(s) = (α(s) + sβ(s))
                                                                          
               0     −R (s)                                 0      −L (s)
                           ,               β(s) =                         
   α(s) =
            −G (s)       0                                −C (s)     0

Closed-form Pad´ rational function is commonly used to approxi-
               e
mate eΨ(s) .


Munich, September 28, 2007   EMC Zurich Munich 2007                   Slide 43 of 88
Telegrapher’s equations: the Green’s function method
Port currents are treated as current sources
        d
           V (x, s) = − R (s) + sL (s) I (x, s) = −Z (s)I (x, s)
       dx
         d
            I (x, s) = − G (s) + sC (s) V (x, s) + I s (x, s)
        dx
                     = −Y (s)V (x, s) + I s (x, s)


                        I s (x, s) = I 0 (s)δ(x) + I (s)δ(x − )

The 2nd differential problem becomes:
 d2
    V (x, s) − γ 2 (s)V (x, s) = −Z (s)I s (x, s) , (γ 2 (s) = Z (s)Y (s))
dx2
with homogeneous boundary conditions:
                                          d                  d
I(x, s) |x=0 = I(x, s) |x=        = 0 =⇒    V (x, s) |x=0 =    V (x, s) |x= = 0
                                         dx                 dx
Munich, September 28, 2007          EMC Zurich Munich 2007          Slide 44 of 88
Telegrapher’s equations: the Green’s function method
Telegrapher’s equations as a vector Sturm-Lioville problem

                             [L + λr(x)] y(x, s) = f (x, s)

with boundary conditions (Dirichlet or Neumann or mixed type)
                      d                                                   d
      α1 y(x, s) + α2 y(x, s) |x=0 = 0;                 β 1 y(x, s) + β 2 y(x, s) |x= = 0
                     dx                                                  dx
Multiconductor transmission lines:
   • L = U d2 /dx2 ,
   • λ = −γ 2 (s) = −Z (s)Y (s)
   • r(x) = U , (U unitary matrix)
   • f (x, s) = −Z (s)I s (x, s)
   • y(x, s) = V (x, s)


Munich, September 28, 2007          EMC Zurich Munich 2007                  Slide 45 of 88
Telegrapher’s equations: the Green’s function method
    Dyadic Green’s function for a vector Sturm-Liouville problem


                             y(x, s) =         G(x, x , s)f (x , s)dx
                                           0
                               N                             N    N
         G x, x , s =               Gj (x, x , s)uj =                 Gij (x, x , s)ui uj
                              j=1                           j=1 i=1

where Gj (x, x , s), j = 1, · · · , N must satisfy

              [L + λr(x)] Gj (x, x , s) = δ(x, x )uj                  j = 1, · · · , N

+ homogeneous boundary conditions
                                              d
                        α1 Gj (x, x , s) + α2 Gj (x, x , s) |x=0 = 0
                                             dx
                                              d
                        α1 Gj (x, x , s) + α2 Gj (x, x , s) |x= = 0
                                             dx
Munich, September 28, 2007               EMC Zurich Munich 2007                          Slide 46 of 88
Telegrapher’s equations: the Green’s function method

Self-adjoint problem =⇒ spectral representation of the Green’s function
                                               ∞
                             Gj (x, x , s) =         anj (x , s)φn (x)
                                               n=0

where [L + λn r(x)] φn (x) = 0 with the same boundary conditions for
Gj (x, x , s).
Uniform MTLs: L = U d2 /dx2 and r(x) = U =⇒ scalar eigenvalue
problem

        [L + λn ] φn (x) = 0          +     homogeneous boundary conditions

Eigenfunctions φn (x), n = 1, · · · , ∞ satisfy the orthogonality condition

               φH (x)r(x)φn (x)dx =                φm (x)r(x)φn (x)dx = δmn U
                m
           0                                   0


Munich, September 28, 2007             EMC Zurich Munich 2007              Slide 47 of 88
Telegrapher’s equations: the Green’s function method
  1. Enforce Gj (x, x , s) to be the solution of the equation

                         [L + λr(x)] Gj (x, x , s) = δ(x, x )uj + b.c.

  2. Use the orthonormality condition
  3. Obtain the vector of amplitude coefficients amj (x , s)

                 amj x , s = (λ − λm )−1 φm (x )uj                           j = 1, · · · , N

  4. Obtain the matrix of amplitude coefficients am (x , s)

                                 am (x , s) = (λ − λm )−1 φm (x )

  5. Obtain the dyadic Green’s function G (x, x , s) as
                                  ∞                                ∞
                                                                         (λ − λn )−1 φn (x )φn (x)
       G x, x , s            =          an (x , s)φn (x) =
                                  n=0                              n=0


Munich, September 28, 2007                EMC Zurich Munich 2007                           Slide 48 of 88
Computation of the eigenfunctions and eigenvalues

                                      d2    2
                                         + kn φn (x) = 0
                                     dx2
       2
where kn = λn + homogenous boundary conditions of the Neumann type
                             d                d
                               φn (x) |x=0 =    φn (x) |x= = 0
                            dx               dx
The solution is
                                    φn (x) = An cos (kn x)
with
   • kn = nπ/                    n = 0, 1, 2, · · ·
                    1
   • A0 =
                    2
   • An =               ,         n = 1, · · · , ∞


Munich, September 28, 2007              EMC Zurich Munich 2007   Slide 49 of 88
Series form of the dyadic Green’s function and
              multiport representation of the MTL
                               ∞                                −1
                                            nπ                                    nπ             nπ
                                                      2
                                     2
                                                                         A2 cos
G(x, x , s) = −                     γ (s) +               U          ·                 x cos          x
                                                                          n
                                             l
                              n=0


V 0 (s) =                G(0, x , s) −Z (s)I s (x , s) dx
                     0
             = G(0, 0, s) −Z (s)I 0 (s) + G(0, , s) −Z (s)I (s)
                    ∞                               −1
                                       nπ   2
                             γ 2 (s) +                    · A2 Z (s)I 0 (s) + A2 cos (nπ) Z (s)I (s)
             =                                  U            n                 n
                                        l
                   n=0

V (s) =                  G( , x , s) −Z (s)I s (x , s) dx
                     0
             = G( , 0, s) −Z (s)I 0 (s) + G( , , s) −Z (s)I (s)
                    ∞                               −1
                                     nπ     2
                              2
                                                          · A2 Z (s)I 0 (s) cos (nπ) + A2 Z (s)I (s)
             =               γ (s) +            U            n                          n
                                      l
                   n=0

Munich, September 28, 2007             EMC Zurich Munich 2007                             Slide 50 of 88
Series form of the dyadic Green’s function and
              multiport representation of the MTL

                                                                                      
                         V 0 (s)             Z 11 (s) Z 12 (s)                   I 0 (s)
                                  =                                    ·              
                         V (s)               Z 21 (s) Z 22 (s)                   I (s)

                                   ∞                                      −1
                                                  nπ              2
                                           2
                                                                               · A2 Z (s)
 Z 11 (s) = Z 22 (s) =                    γ (s) +                     U           n
                                                   l
                                   n=0
                                    ∞                                     −1
                                                  nπ              2
                                           2
                                                                               · A2 Z (s) cos (nπ)
 Z 12 (s) = Z 21 (s) =                    γ (s) +                     U           n
                                                   l
                                   n=0

A rational model can be developed provided a rational representa-
tion of γ(s) and Z (s).



Munich, September 28, 2007               EMC Zurich Munich 2007                                Slide 51 of 88
Poles and residues computation
FIPUL: MTLs with frequency independent per-unit-length parameters

                               Z (s) = R0 + sL0
                               Y (s) = G0 + sC 0

       Z (s) and Y (s) polynomial matrices
FDPUL: MTLs with frequency dependent per-unit-length parameters
                                                PZ
                                                                    B p (s)
                                                           RZ
                      Z (s) = R0 + sL0 +                          =
                                                         s − pq,Z   Ap (s)
                                                q=1
                                                 PY
                                                                    D p (s)
                                                           RY
                     Y (s) = G0 + sC 0 +                          =
                                                         s − pq,Y   Cp (s)
                                                q=1

       Z (s) and Y (s) rational matrices


Munich, September 28, 2007      EMC Zurich Munich 2007                        Slide 52 of 88
Poles and residues computation
   • The poles of the transmission line can be evaluated as the zeros of
     the common polynomial at the denominator of impedances
                                                              nπ   2
                                              2
                             P n (s) = det γ (s) +                     U =0

   • Additional poles may be generated by the per-unit-length longitudinal
     impedance Z (s) in the case of FDPUL-MTLs.
   • FIPUL-MTLs is a special case of FDPUL-MTLs.
   • For FDPUL-MTLs, poles can be evaluated as the solution of the
     following equations
                                                     nπ 2
          Qn (s) = det B p (s)D p (s) + Ap (s)Cp (s)      U =0

               A(s) = 0



Munich, September 28, 2007           EMC Zurich Munich 2007                   Slide 53 of 88
Poles and residues computation
Modes-poles
Each mode n generates several poles, depending on the order of rational
approximation of Z (s) and Y (s) and the number of conductors.

          npoles,n = order [conv(B p , D p )] N = (PZ + PY + 2) N
          ˜

Global number of poles
                      nmodes
  npoles =                     npoles,n = order [conv(B p , D p )] (nmodes + 1) N
                               ˜
                        n=0
              = [PZ + PY + 2] (nmodes + 1) N

Residues matrix of pole pn (k)
                                                                                       
                                                                             (−1)n
                    adj (E(s)) A2 B p (s)Cp (s) |s=pn (k)              1
                                n
                                                                ·                      
     Rk =                      npoles (n)
                                                                     (−1)n     1
                       Qn1                [pn (k)   − pn (l)]
                               l=1
                               l=k

Munich, September 28, 2007             EMC Zurich Munich 2007                      Slide 54 of 88
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines
EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines

More Related Content

What's hot

Meanshift Tracking Presentation
Meanshift Tracking PresentationMeanshift Tracking Presentation
Meanshift Tracking Presentationsandtouch
 
改进的固定点图像复原算法_英文_阎雪飞
改进的固定点图像复原算法_英文_阎雪飞改进的固定点图像复原算法_英文_阎雪飞
改进的固定点图像复原算法_英文_阎雪飞alen yan
 
Kernelization algorithms for graph and other structure modification problems
Kernelization algorithms for graph and other structure modification problemsKernelization algorithms for graph and other structure modification problems
Kernelization algorithms for graph and other structure modification problemsAnthony Perez
 
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...Matt Moores
 
Lesson 22: Optimization I (Section 4 version)
Lesson 22: Optimization I (Section 4 version)Lesson 22: Optimization I (Section 4 version)
Lesson 22: Optimization I (Section 4 version)Matthew Leingang
 
Distributed Parallel Process Particle Swarm Optimization on Fixed Charge Netw...
Distributed Parallel Process Particle Swarm Optimization on Fixed Charge Netw...Distributed Parallel Process Particle Swarm Optimization on Fixed Charge Netw...
Distributed Parallel Process Particle Swarm Optimization on Fixed Charge Netw...Corey Clark, Ph.D.
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxYuji Oyamada
 
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox for Stereo CameraBouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox for Stereo CameraYuji Oyamada
 
CS 354 Acceleration Structures
CS 354 Acceleration StructuresCS 354 Acceleration Structures
CS 354 Acceleration StructuresMark Kilgard
 
Physics of Algorithms Talk
Physics of Algorithms TalkPhysics of Algorithms Talk
Physics of Algorithms Talkjasonj383
 
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...Matt Moores
 
An O(log^2 k)-approximation algorithm for k-vertex connected spanning subgraph
An O(log^2 k)-approximation algorithm for k-vertex connected spanning subgraphAn O(log^2 k)-approximation algorithm for k-vertex connected spanning subgraph
An O(log^2 k)-approximation algorithm for k-vertex connected spanning subgraphlbundit
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingGabriel Peyré
 
SchNet: A continuous-filter convolutional neural network for modeling quantum...
SchNet: A continuous-filter convolutional neural network for modeling quantum...SchNet: A continuous-filter convolutional neural network for modeling quantum...
SchNet: A continuous-filter convolutional neural network for modeling quantum...Kazuki Fujikawa
 
ByteCode 2012 Talk: Quantitative analysis of Java/.Net like programs to under...
ByteCode 2012 Talk: Quantitative analysis of Java/.Net like programs to under...ByteCode 2012 Talk: Quantitative analysis of Java/.Net like programs to under...
ByteCode 2012 Talk: Quantitative analysis of Java/.Net like programs to under...garbervetsky
 
On recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEKOn recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEKedadk
 

What's hot (20)

Meanshift Tracking Presentation
Meanshift Tracking PresentationMeanshift Tracking Presentation
Meanshift Tracking Presentation
 
改进的固定点图像复原算法_英文_阎雪飞
改进的固定点图像复原算法_英文_阎雪飞改进的固定点图像复原算法_英文_阎雪飞
改进的固定点图像复原算法_英文_阎雪飞
 
Kernelization algorithms for graph and other structure modification problems
Kernelization algorithms for graph and other structure modification problemsKernelization algorithms for graph and other structure modification problems
Kernelization algorithms for graph and other structure modification problems
 
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
 
QMC: Transition Workshop - Density Estimation by Randomized Quasi-Monte Carlo...
QMC: Transition Workshop - Density Estimation by Randomized Quasi-Monte Carlo...QMC: Transition Workshop - Density Estimation by Randomized Quasi-Monte Carlo...
QMC: Transition Workshop - Density Estimation by Randomized Quasi-Monte Carlo...
 
Lesson 22: Optimization I (Section 4 version)
Lesson 22: Optimization I (Section 4 version)Lesson 22: Optimization I (Section 4 version)
Lesson 22: Optimization I (Section 4 version)
 
Chapter14
Chapter14Chapter14
Chapter14
 
Distributed Parallel Process Particle Swarm Optimization on Fixed Charge Netw...
Distributed Parallel Process Particle Swarm Optimization on Fixed Charge Netw...Distributed Parallel Process Particle Swarm Optimization on Fixed Charge Netw...
Distributed Parallel Process Particle Swarm Optimization on Fixed Charge Netw...
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration Toolbox
 
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox for Stereo CameraBouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
 
CS 354 Acceleration Structures
CS 354 Acceleration StructuresCS 354 Acceleration Structures
CS 354 Acceleration Structures
 
Er24902905
Er24902905Er24902905
Er24902905
 
UCB 2012-02-28
UCB 2012-02-28UCB 2012-02-28
UCB 2012-02-28
 
Physics of Algorithms Talk
Physics of Algorithms TalkPhysics of Algorithms Talk
Physics of Algorithms Talk
 
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
 
An O(log^2 k)-approximation algorithm for k-vertex connected spanning subgraph
An O(log^2 k)-approximation algorithm for k-vertex connected spanning subgraphAn O(log^2 k)-approximation algorithm for k-vertex connected spanning subgraph
An O(log^2 k)-approximation algorithm for k-vertex connected spanning subgraph
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
 
SchNet: A continuous-filter convolutional neural network for modeling quantum...
SchNet: A continuous-filter convolutional neural network for modeling quantum...SchNet: A continuous-filter convolutional neural network for modeling quantum...
SchNet: A continuous-filter convolutional neural network for modeling quantum...
 
ByteCode 2012 Talk: Quantitative analysis of Java/.Net like programs to under...
ByteCode 2012 Talk: Quantitative analysis of Java/.Net like programs to under...ByteCode 2012 Talk: Quantitative analysis of Java/.Net like programs to under...
ByteCode 2012 Talk: Quantitative analysis of Java/.Net like programs to under...
 
On recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEKOn recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEK
 

Viewers also liked

Colònies al Delta de l'Ebre-novembre 2011
Colònies al Delta de l'Ebre-novembre 2011Colònies al Delta de l'Ebre-novembre 2011
Colònies al Delta de l'Ebre-novembre 2011Maite
 
1 a mgn uta felicidad
1 a mgn uta felicidad1 a mgn uta felicidad
1 a mgn uta felicidadbelasanchez
 
Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 FoilsAntonini
 
Delav formation-delphi-les-composants-avances
Delav formation-delphi-les-composants-avancesDelav formation-delphi-les-composants-avances
Delav formation-delphi-les-composants-avancesCERTyou Formation
 
¡Por fin! Un alto al endeudamiento: Carlos Joaquín
¡Por fin! Un alto al endeudamiento: Carlos Joaquín ¡Por fin! Un alto al endeudamiento: Carlos Joaquín
¡Por fin! Un alto al endeudamiento: Carlos Joaquín Haide Serrano
 
Fiesta entrega trofeos1
Fiesta entrega trofeos1Fiesta entrega trofeos1
Fiesta entrega trofeos1adiab2012
 
Formules Magiques
Formules MagiquesFormules Magiques
Formules MagiquesMaite
 
Skills2Talent Talent Capital Management Software_19 July 2016
Skills2Talent Talent Capital Management Software_19 July 2016Skills2Talent Talent Capital Management Software_19 July 2016
Skills2Talent Talent Capital Management Software_19 July 2016USR INFOTECH SOLUTIONS PVT LTD
 
Session 07 text data.pptx
Session 07 text data.pptxSession 07 text data.pptx
Session 07 text data.pptxSara-Jayne Terp
 
Addressing IPv6
Addressing IPv6Addressing IPv6
Addressing IPv6Fastly
 

Viewers also liked (20)

Hablame del mar
Hablame del marHablame del mar
Hablame del mar
 
Colònies al Delta de l'Ebre-novembre 2011
Colònies al Delta de l'Ebre-novembre 2011Colònies al Delta de l'Ebre-novembre 2011
Colònies al Delta de l'Ebre-novembre 2011
 
Moyer Resume
Moyer ResumeMoyer Resume
Moyer Resume
 
Juan2
Juan2Juan2
Juan2
 
Allan joyce, balmoral tanks
Allan joyce, balmoral tanksAllan joyce, balmoral tanks
Allan joyce, balmoral tanks
 
1 a mgn uta felicidad
1 a mgn uta felicidad1 a mgn uta felicidad
1 a mgn uta felicidad
 
Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 Foils
 
Cap1
Cap1Cap1
Cap1
 
Presentacion
PresentacionPresentacion
Presentacion
 
Delav formation-delphi-les-composants-avances
Delav formation-delphi-les-composants-avancesDelav formation-delphi-les-composants-avances
Delav formation-delphi-les-composants-avances
 
¡Por fin! Un alto al endeudamiento: Carlos Joaquín
¡Por fin! Un alto al endeudamiento: Carlos Joaquín ¡Por fin! Un alto al endeudamiento: Carlos Joaquín
¡Por fin! Un alto al endeudamiento: Carlos Joaquín
 
Economico
EconomicoEconomico
Economico
 
Fiesta entrega trofeos1
Fiesta entrega trofeos1Fiesta entrega trofeos1
Fiesta entrega trofeos1
 
Formules Magiques
Formules MagiquesFormules Magiques
Formules Magiques
 
Reglas
ReglasReglas
Reglas
 
The PeopleWorks Advantage
The PeopleWorks AdvantageThe PeopleWorks Advantage
The PeopleWorks Advantage
 
Skills2Talent Talent Capital Management Software_19 July 2016
Skills2Talent Talent Capital Management Software_19 July 2016Skills2Talent Talent Capital Management Software_19 July 2016
Skills2Talent Talent Capital Management Software_19 July 2016
 
Session 07 text data.pptx
Session 07 text data.pptxSession 07 text data.pptx
Session 07 text data.pptx
 
RSears Transcript
RSears TranscriptRSears Transcript
RSears Transcript
 
Addressing IPv6
Addressing IPv6Addressing IPv6
Addressing IPv6
 

Similar to EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines

IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...ijceronline
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dftmikeproud
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiYuri Anischenko
 
Chapter-05c-Image-Restoration-(Reconstruction-from-Projections).ppt
Chapter-05c-Image-Restoration-(Reconstruction-from-Projections).pptChapter-05c-Image-Restoration-(Reconstruction-from-Projections).ppt
Chapter-05c-Image-Restoration-(Reconstruction-from-Projections).pptVSUDHEER4
 
Social Network Analysis
Social Network AnalysisSocial Network Analysis
Social Network Analysisrik0
 
2.[9 17]comparative analysis between dct & dwt techniques of image compression
2.[9 17]comparative analysis between dct & dwt techniques of image compression2.[9 17]comparative analysis between dct & dwt techniques of image compression
2.[9 17]comparative analysis between dct & dwt techniques of image compressionAlexander Decker
 
2.[9 17]comparative analysis between dct & dwt techniques of image compression
2.[9 17]comparative analysis between dct & dwt techniques of image compression2.[9 17]comparative analysis between dct & dwt techniques of image compression
2.[9 17]comparative analysis between dct & dwt techniques of image compressionAlexander Decker
 
23 industrial engineering
23 industrial engineering23 industrial engineering
23 industrial engineeringmloeb825
 
RNA Secondary Structure Prediction
RNA Secondary Structure PredictionRNA Secondary Structure Prediction
RNA Secondary Structure PredictionSumin Byeon
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingJeremyHeng10
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingJeremyHeng10
 
Neural network precept diagnosis on petrochemical pipelines for quality maint...
Neural network precept diagnosis on petrochemical pipelines for quality maint...Neural network precept diagnosis on petrochemical pipelines for quality maint...
Neural network precept diagnosis on petrochemical pipelines for quality maint...Alexander Decker
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonicsajayrampelli
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixturesChristian Robert
 
Classification Theory
Classification TheoryClassification Theory
Classification TheorySSA KPI
 
Fast dct algorithm using winograd’s method
Fast dct algorithm using winograd’s methodFast dct algorithm using winograd’s method
Fast dct algorithm using winograd’s methodIAEME Publication
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math ColloquiumChristian Robert
 
Unbiased Markov chain Monte Carlo methods
Unbiased Markov chain Monte Carlo methods Unbiased Markov chain Monte Carlo methods
Unbiased Markov chain Monte Carlo methods Pierre Jacob
 

Similar to EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines (20)

IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dft
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nuclei
 
Chapter-05c-Image-Restoration-(Reconstruction-from-Projections).ppt
Chapter-05c-Image-Restoration-(Reconstruction-from-Projections).pptChapter-05c-Image-Restoration-(Reconstruction-from-Projections).ppt
Chapter-05c-Image-Restoration-(Reconstruction-from-Projections).ppt
 
Social Network Analysis
Social Network AnalysisSocial Network Analysis
Social Network Analysis
 
2.[9 17]comparative analysis between dct & dwt techniques of image compression
2.[9 17]comparative analysis between dct & dwt techniques of image compression2.[9 17]comparative analysis between dct & dwt techniques of image compression
2.[9 17]comparative analysis between dct & dwt techniques of image compression
 
2.[9 17]comparative analysis between dct & dwt techniques of image compression
2.[9 17]comparative analysis between dct & dwt techniques of image compression2.[9 17]comparative analysis between dct & dwt techniques of image compression
2.[9 17]comparative analysis between dct & dwt techniques of image compression
 
23 industrial engineering
23 industrial engineering23 industrial engineering
23 industrial engineering
 
RNA Secondary Structure Prediction
RNA Secondary Structure PredictionRNA Secondary Structure Prediction
RNA Secondary Structure Prediction
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
 
Shailaja
ShailajaShailaja
Shailaja
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
 
Neural network precept diagnosis on petrochemical pipelines for quality maint...
Neural network precept diagnosis on petrochemical pipelines for quality maint...Neural network precept diagnosis on petrochemical pipelines for quality maint...
Neural network precept diagnosis on petrochemical pipelines for quality maint...
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonics
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
 
Classification Theory
Classification TheoryClassification Theory
Classification Theory
 
Fast dct algorithm using winograd’s method
Fast dct algorithm using winograd’s methodFast dct algorithm using winograd’s method
Fast dct algorithm using winograd’s method
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math Colloquium
 
Unbiased Markov chain Monte Carlo methods
Unbiased Markov chain Monte Carlo methods Unbiased Markov chain Monte Carlo methods
Unbiased Markov chain Monte Carlo methods
 

Recently uploaded

best weekend places near delhi where you should visit.pdf
best weekend places near delhi where you should visit.pdfbest weekend places near delhi where you should visit.pdf
best weekend places near delhi where you should visit.pdftour guide
 
How to Get Unpublished Flight Deals and Discounts?
How to Get Unpublished Flight Deals and Discounts?How to Get Unpublished Flight Deals and Discounts?
How to Get Unpublished Flight Deals and Discounts?FlyFairTravels
 
Dubai Call Girls O528786472 Call Girls Dubai Big Juicy
Dubai Call Girls O528786472 Call Girls Dubai Big JuicyDubai Call Girls O528786472 Call Girls Dubai Big Juicy
Dubai Call Girls O528786472 Call Girls Dubai Big Juicyhf8803863
 
A Comprehensive Guide to The Types of Dubai Residence Visas.pdf
A Comprehensive Guide to The Types of Dubai Residence Visas.pdfA Comprehensive Guide to The Types of Dubai Residence Visas.pdf
A Comprehensive Guide to The Types of Dubai Residence Visas.pdfDisha Global Tours
 
DARK TRAVEL AGENCY presented by Khuda Bux
DARK TRAVEL AGENCY presented by Khuda BuxDARK TRAVEL AGENCY presented by Khuda Bux
DARK TRAVEL AGENCY presented by Khuda BuxBeEducate
 
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking MenDelhi Call girls
 
Visa Consultant in Lahore || 📞03094429236
Visa Consultant in Lahore || 📞03094429236Visa Consultant in Lahore || 📞03094429236
Visa Consultant in Lahore || 📞03094429236Sherazi Tours
 
Moving to Italy - A Relocation Rollercoaster
Moving to Italy - A Relocation RollercoasterMoving to Italy - A Relocation Rollercoaster
Moving to Italy - A Relocation RollercoasterStefSmulders1
 
Study Consultants in Lahore || 📞03094429236
Study Consultants in Lahore || 📞03094429236Study Consultants in Lahore || 📞03094429236
Study Consultants in Lahore || 📞03094429236Sherazi Tours
 
Top 10 Traditional Indian Handicrafts.pptx
Top 10 Traditional Indian Handicrafts.pptxTop 10 Traditional Indian Handicrafts.pptx
Top 10 Traditional Indian Handicrafts.pptxdishha99
 
"Fly with Ease: Booking Your Flights with Air Europa"
"Fly with Ease: Booking Your Flights with Air Europa""Fly with Ease: Booking Your Flights with Air Europa"
"Fly with Ease: Booking Your Flights with Air Europa"flyn goo
 
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779Delhi Call girls
 
Exploring Sicily Your Comprehensive Ebook Travel Guide
Exploring Sicily Your Comprehensive Ebook Travel GuideExploring Sicily Your Comprehensive Ebook Travel Guide
Exploring Sicily Your Comprehensive Ebook Travel GuideTime for Sicily
 
08448380779 Call Girls In Shahdara Women Seeking Men
08448380779 Call Girls In Shahdara Women Seeking Men08448380779 Call Girls In Shahdara Women Seeking Men
08448380779 Call Girls In Shahdara Women Seeking MenDelhi Call girls
 
BERMUDA Triangle the mystery of life.pptx
BERMUDA Triangle the mystery of life.pptxBERMUDA Triangle the mystery of life.pptx
BERMUDA Triangle the mystery of life.pptxseribangash
 
08448380779 Call Girls In Chirag Enclave Women Seeking Men
08448380779 Call Girls In Chirag Enclave Women Seeking Men08448380779 Call Girls In Chirag Enclave Women Seeking Men
08448380779 Call Girls In Chirag Enclave Women Seeking MenDelhi Call girls
 
9 Days Kenya Ultimate Safari Odyssey with Kibera Holiday Safaris
9 Days Kenya Ultimate Safari Odyssey with Kibera Holiday Safaris9 Days Kenya Ultimate Safari Odyssey with Kibera Holiday Safaris
9 Days Kenya Ultimate Safari Odyssey with Kibera Holiday SafarisKibera Holiday Safaris Safaris
 
08448380779 Call Girls In Chhattarpur Women Seeking Men
08448380779 Call Girls In Chhattarpur Women Seeking Men08448380779 Call Girls In Chhattarpur Women Seeking Men
08448380779 Call Girls In Chhattarpur Women Seeking MenDelhi Call girls
 

Recently uploaded (20)

best weekend places near delhi where you should visit.pdf
best weekend places near delhi where you should visit.pdfbest weekend places near delhi where you should visit.pdf
best weekend places near delhi where you should visit.pdf
 
How to Get Unpublished Flight Deals and Discounts?
How to Get Unpublished Flight Deals and Discounts?How to Get Unpublished Flight Deals and Discounts?
How to Get Unpublished Flight Deals and Discounts?
 
Dubai Call Girls O528786472 Call Girls Dubai Big Juicy
Dubai Call Girls O528786472 Call Girls Dubai Big JuicyDubai Call Girls O528786472 Call Girls Dubai Big Juicy
Dubai Call Girls O528786472 Call Girls Dubai Big Juicy
 
A Comprehensive Guide to The Types of Dubai Residence Visas.pdf
A Comprehensive Guide to The Types of Dubai Residence Visas.pdfA Comprehensive Guide to The Types of Dubai Residence Visas.pdf
A Comprehensive Guide to The Types of Dubai Residence Visas.pdf
 
Call Girls In Munirka 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Munirka 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICECall Girls In Munirka 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Munirka 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
 
DARK TRAVEL AGENCY presented by Khuda Bux
DARK TRAVEL AGENCY presented by Khuda BuxDARK TRAVEL AGENCY presented by Khuda Bux
DARK TRAVEL AGENCY presented by Khuda Bux
 
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men
 
Visa Consultant in Lahore || 📞03094429236
Visa Consultant in Lahore || 📞03094429236Visa Consultant in Lahore || 📞03094429236
Visa Consultant in Lahore || 📞03094429236
 
Moving to Italy - A Relocation Rollercoaster
Moving to Italy - A Relocation RollercoasterMoving to Italy - A Relocation Rollercoaster
Moving to Italy - A Relocation Rollercoaster
 
Study Consultants in Lahore || 📞03094429236
Study Consultants in Lahore || 📞03094429236Study Consultants in Lahore || 📞03094429236
Study Consultants in Lahore || 📞03094429236
 
Top 10 Traditional Indian Handicrafts.pptx
Top 10 Traditional Indian Handicrafts.pptxTop 10 Traditional Indian Handicrafts.pptx
Top 10 Traditional Indian Handicrafts.pptx
 
"Fly with Ease: Booking Your Flights with Air Europa"
"Fly with Ease: Booking Your Flights with Air Europa""Fly with Ease: Booking Your Flights with Air Europa"
"Fly with Ease: Booking Your Flights with Air Europa"
 
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779
 
Exploring Sicily Your Comprehensive Ebook Travel Guide
Exploring Sicily Your Comprehensive Ebook Travel GuideExploring Sicily Your Comprehensive Ebook Travel Guide
Exploring Sicily Your Comprehensive Ebook Travel Guide
 
08448380779 Call Girls In Shahdara Women Seeking Men
08448380779 Call Girls In Shahdara Women Seeking Men08448380779 Call Girls In Shahdara Women Seeking Men
08448380779 Call Girls In Shahdara Women Seeking Men
 
BERMUDA Triangle the mystery of life.pptx
BERMUDA Triangle the mystery of life.pptxBERMUDA Triangle the mystery of life.pptx
BERMUDA Triangle the mystery of life.pptx
 
08448380779 Call Girls In Chirag Enclave Women Seeking Men
08448380779 Call Girls In Chirag Enclave Women Seeking Men08448380779 Call Girls In Chirag Enclave Women Seeking Men
08448380779 Call Girls In Chirag Enclave Women Seeking Men
 
9 Days Kenya Ultimate Safari Odyssey with Kibera Holiday Safaris
9 Days Kenya Ultimate Safari Odyssey with Kibera Holiday Safaris9 Days Kenya Ultimate Safari Odyssey with Kibera Holiday Safaris
9 Days Kenya Ultimate Safari Odyssey with Kibera Holiday Safaris
 
08448380779 Call Girls In Chhattarpur Women Seeking Men
08448380779 Call Girls In Chhattarpur Women Seeking Men08448380779 Call Girls In Chhattarpur Women Seeking Men
08448380779 Call Girls In Chhattarpur Women Seeking Men
 
Call Girls Service !! New Friends Colony!! @9999965857 Delhi 🫦 No Advance VV...
Call Girls Service !! New Friends Colony!! @9999965857 Delhi 🫦 No Advance  VV...Call Girls Service !! New Friends Colony!! @9999965857 Delhi 🫦 No Advance  VV...
Call Girls Service !! New Friends Colony!! @9999965857 Delhi 🫦 No Advance VV...
 

EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines

  • 1. EMC Zurich Munich 2007 Circuit Extraction for Transmission Lines Modeling of PCBs Giulio Antonini, Antonio Orlandi UAq EMC Laboratory Department of Electrical Engineering University of L’Aquila, 67040 AQ, Italy e-mail: antonini@ing.univaq.it, orlandi@ing.univaq.it Munich, September 28, 2007 Slide 1 of 88
  • 2. Introduction High-speed interconnect modeling: SI and EMC issues • Ringing, attenuation, signal delay, distorsion • Crosstalk • EM radiation and susceptibility • Non-linear terminations • Incorporation of frequency dependent phenomena (conductor and dielectric losses) Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 2 of 88
  • 3. Telegrapher’s equations: a brief review d V (x, s) = − R (s) + sL (s) I (x, s) = −Z (s)I (x, s) dx d I (x, s) = − G (s) + sC (s) V (x, s) = −Y (s)V (x, s) dx Existing methods for time domain solution • Lumped network (closed-form available for HTLN) • Method of characteristics • Matrix Rational macromodeling (with and without delay extraction) • Krylov-based (projection) methods • Vector Fitting techniques Crucial issues • Stability • Passivity (causality) Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 3 of 88
  • 4. Outline 1st part: the half-T ladder network Development of the transmission line model by using G DFF and DFFz polynomials Two ports representation G Extraction of poles and residues in a closed form G Model order reduction G Stability and passivity G Realization G Numerical results G Conclusions G Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 4 of 88
  • 5. Development of the transmission-line model Telegrapher’s equations ∂ ∂ v (x, t) = −Ri (x, t) − L i (x, t) ∂x ∂t ∂ ∂ i (x, t) = −Gv (x, t) − C v (x, t) ∂x ∂t R , L , C and G : per unit length parameters, non-negative definite symmetric matrices of order N , being N + 1 the number of conductors. In [1] M.Faccio, G.Ferri, A.D’Amico. A New Fast Method for Ladder Net- works Characterization. IEEE Trans. on Circuits and System, I, 38(11): 1377-1382, September 1991 it was shown that an open-ended half-T lad- der network can be analytically studied. Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 5 of 88
  • 6. Development of the transmission-line model The voltage at the generic node β in the Laplace-domain can be expressed as: Pbn−β (K (s)) Vβ (s) = n (K (s)) Vin (s) Pb being Z1 (s) K (s) = Z2 (s) n−β and Pn (K(s)) an n − β order polynomial in K (s) with 0 ≤ β ≤ n. More specifically, the voltage at node β is: n−β bj,n−β K j (s) j=0 Vβ (s) = Vin (s) n j (s) j=0 bj,n K Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 6 of 88
  • 7. Development of the transmission-line model The polynomial coefficients b are generated accordingly to the following recursive expression    j+i j+i  =  bi,j = j−i 2j The general expression of the longitudinal branch current Iβ1 (s) is: n−β+1 cj,n−β+1 K j+1 (s) 1 j=0 Iβ1 (s) = Vin (s) n j (s) Z1 (s) j=0 bj,n K where the polynomial coefficients c are obtained by means of the recursive expression [2] Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 7 of 88
  • 8. Development of the transmission-line model     i+j+1 i+j+1 = =  ci,j j−i 2j + 1 Longitudinal current can be re-written in a more compact form as: 1 Pcn−β+1 (K(s)) Iβ1 (s) = Vin (s) n (K(s)) Z1 (s) Pb where Pcn−β+1 (K(s)) is a n − β + 1 order polynomial in K (s). Similarly, the shunt branch current Iβ2 (s) can be expressed as: n−β n−β bj,n−β K j (s) 1 Pb (K) 1 j=0 Iβ2 (s) = Vin = n (K) Vin (s) n j (s) Z2 j=0 bj,n K Z2 Pb Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 8 of 88
  • 9. DFF and DFFz polynomials x x Pbn (x) = Un 1 + − Un−1 1 + 2 2 x n Pc (x) = Un 1 + 2 From the properties of Chebyshev polynomials it has been proved that [2] Pbn (x) and Pcn (x) polynomials are orthogonal in the interval [−4, 0] with respect to the weight functions 1 −1 Pu (x) = − (x + 4) x 2 2 1 1 Pv (x) = − (x + 4) x 2 2 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 9 of 88
  • 10. DFF and DFFz polynomials Extension to MTLs: MTL equivalent half-T ladder network Z1 Z1 Z1 Z1 I1 b In b-1 1 n 0 Vin Z2 Z2 Z2 Z2 Vout l l Z 1 (s) = (R + sL) = Z l n n l −1 −1 l Z 2 (s) = (G + sC) = Yt n n K (s) = Z 2 (s)−1 Z 1 (s) Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 10 of 88
  • 11. DFF and DFFz polynomials Extension to MTLs n Pbn (K(s)) = bj,n K j (s) DFF polynomial of order n j=0 n Pbn−1 (K(s)) = bj,n−1 K j (s) DFF polynomial of order n − 1 j=0 n Pcn (K(s)) = cj,n K j+1 (s) DFFz polynomial of order n j=0 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 11 of 88
  • 12. Closed form zeros of DFF and DFFz polynomials (2j − 1) π 2 for Pbn (x) uj,n = −4sin j = 1···n (2n + 1) 2 j π 2 for Pcn (x) vj,n = −4sin j = 1···n (n + 1) 2 n Pbn (K(s)) = (K(s) − uj,n ) j=1 n−1 Pbn−1 (K(s)) = (K(s) − uj,n−1 ) j=1 n−1 Pcn (K(s)) = K(s) (K(s) − vj,n−1 ) j=1 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 12 of 88
  • 13. Two port representation ABCD representation n bj,n K j (s) = Pbn (K(s)) G A= j=0 n cj,n K j+1 (s) · Z 2 (s) = Pcn (K(s)) · Z 2 (s) G B= j=0 n · Z −1 (s) = Pcn (K(s)) · Z −1 (s) cj,n K j+1 (s) G C= 1 1 j=0 n−1 = Pbn−1 (K(s)) bj,n−1 K j (s) G D= j=0   (Pcn (K(s)) · Z 2 (s))−1 Pbn−1 (K(s)) (Pcn (K(s)) · Z 2 (s))−1 Y =  (Pcn (K(s)) · Z 2 (s))−1 (Pcn (K(s)) · Z 2 (s))−1 Pbn (K(s)) Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 13 of 88
  • 14. Two port representation DFF and DFFz polynomials factorization n Pbn (K) = s2 CL + s (GL + CR) + GR − uj,n U j=1 n−1 Pbn−1 (K) = s2 CL + s (GL + CR) + GR − uj,n−1 U j=1 n−1 Pcn (K) = K s2 CL + s (GL + CR) + GR − vj,n−1 U j=1 ⇓ Y matrix entries factorization Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 14 of 88
  • 15. Y matrix entries factorization   −1 n−1 Y 11 =  s2 CL + s (GL + CR) + GR − vj,n−1 U  (R + sL) · j=1 n−1 s2 CL + s (GL + CR) + GR − uj,n−1 U · j=1   −1 n−1 Y 12 = −  s2 CL + s (GL + CR) + GR − vj,n−1 U  (R + sL) j=1 Y 21 = Y 12 Y 22 = Y 11 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 15 of 88
  • 16. Two port representation Poles extraction    n−1 det  s2 CL + s (GL + CR) + GR − vj,n−1 U  (R + sL) = 0 j=1 ⇓   n−1  det s2 CL + s (GL + CR) + GR − vj,n−1 U  det (R + sL) = 0 j=1 ⇓ Closed-form evaluation of residues ⇒ Spice equivalent circuit Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 16 of 88
  • 17. Two port representation Poles extraction for single-conductor transmission lines R s0 =− L v 2 RG − j,n−1 1 RG 1 RG ∆l2 sj,1 = − + + + − 2 LC 4 LC LC v 2 RG − j,n−1 1 RG 1 RG ∆l2 sj,2 =− + − + − 2 LC 4 LC LC for j = 1 · · · P , P being the total number of poles. All the P + 1 poles have a negative real part → stability ensured Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 17 of 88
  • 18. Model Order Reduction The set of poles for a given order of the half-T ladder network is analytically known Condition 1 |Im (pi ) | < ωmax for i = 1 · · · P , ωmax being the fixed bandwidth of the MOR. A first set P1 of poles is selected. Condition 2 |Residue (pi ) | > th for i = 1 · · · P1 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 18 of 88
  • 19. Stability, Passivity Stability The proposed model is characterized by poles which strictly satisfy this condition because they represent exactly the poles of a half-T ladder network which is intrinsically stable. Passivity It has been assumed that p.u.l. parameters matrices R, L, C, G are non- negative definite symmetric matrices. This implies that matrices Z 1 (s) and Z −1 (s) are positive real (PR) matrices. This ensures that the half-T 2 ladder network of order n is intrinsically passive (more details in [3]). Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 19 of 88
  • 20. Realization Realization d x (t) = Ax (t) + Bu (t) dt y (t) = Cx (t) + Du (t) Standard realization procedures can be adopted to obtain the state space representation A, B, C, D. Linear and non-linear terminations are described by additional equations. Circuit synthesis See 3rd part Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 20 of 88
  • 21. Poles location finding: single conductor transmission line Frequency independent per unit length parameters (FIPUL) order Tanji in [4] DFFLN 0 -1.933837 -1.933837 -2.706589 -2.706589 1 −1.240641e8 + j8.064423e9 −1.2406408e8 + j8.06235e9 −1.240641e8 − j8.064423e9 −1.2406408e8 − j8.06235e9 −1.079620e8 + j8.831359e9 −1.0796194e8 + j8.82908e9 −1.079620e8 − j8.831359e9 −1.0796194e8 − j8.82908e9 2 −1.240495e8 + j1.612970e10 −1.240495e8 + j1.611312e10 −1.240495e8 − j1.612970e10 −1.240495e8 − j1.611312e10 −1.079766e8 + j1.766434e10 −1.079765e8 + j1.764618e10 −1.079766e8 − j1.766434e10 −1.079765e8 − j1.764618e10 5 −1.240454e8 + j4.032485e10 −1.240453e8 + j4.006624e10 −1.240454e8 − j4.032485e10 −1.240453e8 − j4.006624e10 −1.079807e8 + j + 4.416198e10 −1.079806e8 + j4.387875e10 −1.079807e8 − j4.416198e10 −1.079806e8 − j4.387875e10 The proposed method doesn’t use the modal decomposition . Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 21 of 88
  • 22. Numerical results One-conductor line with linear terminations (50 Ω) [5] R = 1776 Ω/m L = 0.5978 µH/m C = 18.61 pF/m G = 0 S/m 11 x 10 0.07 MOR Order 90 Spice MOR 4 PEEC 0.06 3.5 3 0.05 2.5 Voltage [V] 0.04 2 Im 1.5 0.03 1 0.5 0.02 0 0.01 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 −1.4854 −1.4854 −1.4854 −1.4854 −1.4854 −1.4854 Time [s] Re −9 9 x 10 x 10 Dominant poles Voltage at the output port Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 22 of 88
  • 23. Numerical results Numerical methods used for comparison 1) Transmission Line Theory via IFFT (TLT-IFFT) 2) Half-T Ladder network via IFFT (HTLN-IFFT) 3) DFF and DFFz polynomials via IFFT (DFFLN-IFFT) 4) DFF and DFFz polynomials with MOR via IFFT (DFFLN-MOR-IFFT) 5) DFF and DFFz polynomials without MOR via Pspice (DFFLN-Pspice) 6) DFF and DFFz polynomials with MOR via Pspice (DFFLN-MOR- Pspice) 7) DFF and DFFz polynomials with MOR via ODE solver (DFFLN-MOR- ODE) Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 23 of 88
  • 24. Numerical results Two-conductor line with linear terminations (50 Ω) (I) 3 1 4 2     4.63 0.74 337 58.4 R=  Ω/m L=  nH/m 0.74 4.63 58.4 337     193 −1.53 00 C=  pF/m G=  S/m −1.53 193 00 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 24 of 88
  • 25. Numerical results HTLN order 129, MOR 32 11 11 x 10 x 10 4 1.5 Order 129 Order 129 MOR MOR 3 1 2 0.5 1 Im Im 0 0 −1 −0.5 −2 −3 −1 −4 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −7.4 −7.3 −7.2 −7.1 −7 −6.9 −6.8 −6.7 −6.6 −6.5 −6.4 Re Re 7 6 x 10 x 10 1 1 10 10 TLT TLT HTLN HTLN DFFLN DFFLN DFFLN−MOR DFFLN−MOR 0 10 0 10 −1 10 −1 10 Y14 [S] Y11 [S] −2 10 −2 10 −3 10 −3 10 −4 10 −5 −4 10 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Frequency [Hz] Frequency [Hz] 9 9 x 10 x 10 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 25 of 88
  • 26. Numerical results 1.2 IFFT 1 MOR IFFT MOR 1 0.8 0.8 0.6 Voltage V1 [V] 0.6 Voltage V3 [V] 0.4 0.4 0.2 0.2 0 0 −0.2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Time [s] Time [s] −8 −8 x 10 x 10 0.05 0.1 IFFT IFFT MOR MOR 0.04 0.08 0.03 0.06 0.02 0.04 0.01 0.02 Voltage V [V] Voltage V4 [V] 2 0 0 −0.01 −0.02 −0.02 −0.04 −0.03 −0.06 −0.04 −0.08 −0.05 −0.1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Time [s] Time [s] −8 −8 x 10 x 10
  • 27. Numerical results Two-conductor line with linear terminations (50 Ω) (II) 3 1 4 2     0.2 0 0.28 0.07 R=  Ω/m L=  µH/m 0 0.2 0.07 0.28     122 −50 00 C=  pF/m G=  S/m −50 122 00 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 27 of 88
  • 28. 160 poles, MOR 68 0.6 0.6 TLT−IFFT TLT−IFFT HTLN−IFFT HTLN−IFFT DFFLN−IFFT DFFLN−IFFT DFFLN−MOR−IFFT DFFLN−MOR−IFFT 0.5 0.5 DFFLN−MOR−ODE DFFLN−MOR−ODE DFFLN−MOR−Pspice DFFLN−MOR−Pspice 0.4 0.4 Voltage V1 [V] Voltage V3 [V] 0.3 0.3 0.2 0.2 0.1 0.1 0 0 −0.1 −0.1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Time [s] Time [s] −8 −8 x 10 x 10 0.1 0.03 TLT−IFFT TLT−IFFT HTLN−IFFT HTLN−IFFT DFFLN−IFFT 0.08 DFFLN−IFFT DFFLN−MOR−IFFT DFFLN−MOR−IFFT DFFLN−MOR−ODE DFFLN−MOR−ODE 0.02 DFFLN−MOR−Pspice DFFLN−MOR−Pspice 0.06 0.04 0.01 0.02 Voltage V2 [V] Voltage V [V] 4 0 0 −0.02 −0.01 −0.04 −0.06 −0.02 −0.08 −0.1 −0.03 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Time [s] Time [s] −8 −8 x 10 x 10 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 28 of 88
  • 29. Numerical results Three-conductor line with linear terminations (resistive loads)     5/12 0 0 87 25 23     1 R=  Ω/cm L = 3600  25 25  µH/cm 0 5/12 0 85     0 0 5/12 23 25 87     68 −40 −13 3/512 0 0     C = 324  −40 1 −40  pF/cm G=  mS/cm 95 0 3/512 0     −13 −40 68 0 0 3/512 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 29 of 88
  • 30. Numerical results 0.35 0.5 IFFT IFFT IFFT MOR MOR MOR 0.3 0.9 0.4 0.8 0.25 0.3 0.7 0.2 0.2 0.6 0.15 Voltage V3 [V] Voltage V2 [V] Voltage V [V] 0.1 0.5 1 0.1 0.4 0 0.05 0.3 −0.1 0 0.2 −0.2 −0.05 0.1 −0.3 −0.1 0 −0.4 −0.1 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 Time [s] Time [s] Time [s] −8 −8 −8 x 10 x 10 x 10 IFFT IFFT IFFT MOR MOR MOR 0.9 0.25 0.2 0.8 0.2 0.7 0.1 0.6 Voltage V6 [V] 0.15 Voltage V5 [V] Voltage V4 [V] 0 0.5 0.4 0.1 −0.1 0.3 0.05 −0.2 0.2 0.1 0 −0.3 0 −0.05 −0.4 −0.1 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 Time [s] Time [s] Time [s] −8 −8 −8 x 10 x 10 x 10
  • 31. Numerical results Lightning over-voltage on a two-conductor line V0 (t/τ1 )n −t/τ2 vs (t) = e n+1 η (t/τ1 ) where V0 = 105 V, η = 1, τ1 = 0.5 µs τ2 = 10 µs and n = 2. It has been considered a 1 m long cable whose p.u.l. parameters are:     0.4 0 1.25265 0.87324 R=  Ω/m L=  µH/m 0 0.4 0.87324 1.25265     17.2799 −12.0461 00 C=  pF/m G=  S/m −12.0461 17.2799 00 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 31 of 88
  • 32. Numerical results 0.2 TLT−IFFT TLT−IFFT HTLN−IFFT HTLN−IFFT DFFLN−IFFT DFFLN−IFFT DFFLN−MOR−IFFT DFFLN−MOR−IFFT 0 1 DFFLN−MOR−ODE DFFLN−MOR−ODE −0.2 0.8 Voltage V4 [V] −0.4 0.6 Voltage V2 [V] −0.6 0.4 −0.8 0.2 −1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 −5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 −5 x 10 Near-end Far-end Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 32 of 88
  • 33. FDPUL MTL: 316 poles, MOR 69 11 x 10 1.5 HTLN MOR 1 0.5 Im 0 −0.5 −1 −1.5 −12 −10 −8 −6 −4 −2 0 Re 8 x 10 0.2 TLT−IFFT TLT−IFFT DFFLN−MOR−Pspice DFFLN−MOR−Pspice 2.5 0.15 2 0.1 0.05 1.5 Voltage [V] Voltage [V] 0 1 −0.05 0.5 −0.1 0 −0.15 −0.5 −0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time [s] Time [s] −8 −8 x 10 x 10 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 33 of 88
  • 34. Numerical results: non linear terminations 1 2 four-ports R24 network 3 R24=1000M , 4 R20=0.01V203 R40 R20 Rg1 Rg2 + R40=0.01V403 Vg1 Vg2 + 6 5 4 Voltage [V] Voltage 3 source 2 1 0 0 1 2 3 4 5 6 7 -8 x 10 Time [s] Full model: 80 half-T sections (160 poles) Model Order Reduction (MOR) model: 24 poles Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 34 of 88
  • 35. Numerical results: non linear terminations 3 2.5 DFFLN-MOR-Pspice DFFLN-MOR-Pspice 2.5 2 2 1.5 Voltage [V] Voltage [V] 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 -8 -8 x 10 x 10 Time [s] Time [s] 0.2 0.5 DFFLN-MOR-Pspice DFFLN-MOR-Pspice 0.4 0.15 0.3 0.1 0.2 0.1 Voltage [V] Voltage [V] 0.05 0 0 -0.1 -0.2 -0.05 -0.3 -0.1 -0.4 -0.5 -0.15 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 -8 -8 x 10 x 10 Time [s] Time [s] Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 35 of 88
  • 36. Composite left/right handed MTLs ∂ 1 −1 V (z, s) = − R + sLR + CL I (z, s) ∂z s ∂ 1 −1 I (z, s) = − G + sCR + LL V (z, s) ∂z s • All the transmission lines model can be used. • Since the CRLH TL is realized by cascading unit cells, the closed form half-T ladder network provides exact results. Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 36 of 88
  • 37. Composite left/right handed MTLs Elementary half-T cell R LR CL CR G LL n R=R LR = LR CL = CL n n n G=G CR = CR LL = LL n n Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 37 of 88
  • 38. Composite left/right handed MTLs 1 Z1 (s) = R + sLR + = Z (s) sCL n n 1 = R + sLR + sCL 1 Y2 (s) = G + sCR + = Y (s) sLL n n 1 = G + sCR + sLL Computation of poles s2 LR CL + sCL R + 1 = 0 Z1 (s) Y2 (s) − vj,n−1 = 0, for j = 1 · · · n − 1 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 38 of 88
  • 39. Numerical results: unbalanced CRLH-TL R = 10−3 Ω, LR = 2.45 nH, CL = 0.68 pF, G = 10−3 S, CR = 0.5 pF, LL = 3.38 nH, = 6.1 mm 5 4 10 HTLN HTLN MOR MOR 3 0 10 2 1 −5 10 Phase(Y12) [rad] |Y12| [S] 0 −10 10 −1 −2 −15 10 −3 −20 −4 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Frequency [Hz] Frequency [Hz] 10 10 x 10 x 10 Magnitude and phase spectra of admittance Y12 . Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 39 of 88
  • 40. Numerical results: unbalanced CRLH-TL R = 10−3 Ω, LR = 2.45 nH, CL = 0.68 pF, G = 10−3 S, CR = 0.5 pF, LL = 3.38 nH, = 6.1 mm 8 12 x 10 x 10 1.5 4 Reference HTLN MOR−GE−SH MOR 3 1 2 0.5 1 Voltage [V] Im 0 0 −1 −0.5 −2 −1 −3 −1.5 −4 0 0.5 1 1.5 −12 −10 −8 −6 −4 −2 0 Time [s] −7 Re 8 x 10 x 10 Location of poles in the complex plane and transient output. Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 40 of 88
  • 41. Conclusions Advantages of the proposed method G the analytical knowledge of poles and residues of the half-T ladder network allows to obtain a rational representation of MTL Y (s) matrix; G the dominant poles can be extracted thus leading to a reduced order model; G the reduced model is easily synthesized into an equivalent circuit which is suitable for Spice simulations with linear and non-linear terminations; G it can be used to generate macro-models of MTLs to be interfaced with other tools. Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 41 of 88
  • 42. Outline 2nd part: the spectral model G Introduction Existing techniques to multiconductor transmission lines (MTLs) time domain modeling G Green’s function based MTLs model Sturm-Liouville problem Spectral form of the Green’s function Eigenvalue problem Z matrix computation G Numerical results MTL with frequency independent per-unit-length parameters MTL with frequency dedependent per-unit-length parameters G Conclusions Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 42 of 88
  • 43. Telegrapher’s equations: a brief review General solution of Telegrapher’s equations:     V ( , s) V (0, s)   = eΨ(s)   I( , s) I(0, s) where Ψ(s) = (α(s) + sβ(s))     0 −R (s) 0 −L (s)  , β(s) =   α(s) = −G (s) 0 −C (s) 0 Closed-form Pad´ rational function is commonly used to approxi- e mate eΨ(s) . Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 43 of 88
  • 44. Telegrapher’s equations: the Green’s function method Port currents are treated as current sources d V (x, s) = − R (s) + sL (s) I (x, s) = −Z (s)I (x, s) dx d I (x, s) = − G (s) + sC (s) V (x, s) + I s (x, s) dx = −Y (s)V (x, s) + I s (x, s) I s (x, s) = I 0 (s)δ(x) + I (s)δ(x − ) The 2nd differential problem becomes: d2 V (x, s) − γ 2 (s)V (x, s) = −Z (s)I s (x, s) , (γ 2 (s) = Z (s)Y (s)) dx2 with homogeneous boundary conditions: d d I(x, s) |x=0 = I(x, s) |x= = 0 =⇒ V (x, s) |x=0 = V (x, s) |x= = 0 dx dx Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 44 of 88
  • 45. Telegrapher’s equations: the Green’s function method Telegrapher’s equations as a vector Sturm-Lioville problem [L + λr(x)] y(x, s) = f (x, s) with boundary conditions (Dirichlet or Neumann or mixed type) d d α1 y(x, s) + α2 y(x, s) |x=0 = 0; β 1 y(x, s) + β 2 y(x, s) |x= = 0 dx dx Multiconductor transmission lines: • L = U d2 /dx2 , • λ = −γ 2 (s) = −Z (s)Y (s) • r(x) = U , (U unitary matrix) • f (x, s) = −Z (s)I s (x, s) • y(x, s) = V (x, s) Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 45 of 88
  • 46. Telegrapher’s equations: the Green’s function method Dyadic Green’s function for a vector Sturm-Liouville problem y(x, s) = G(x, x , s)f (x , s)dx 0 N N N G x, x , s = Gj (x, x , s)uj = Gij (x, x , s)ui uj j=1 j=1 i=1 where Gj (x, x , s), j = 1, · · · , N must satisfy [L + λr(x)] Gj (x, x , s) = δ(x, x )uj j = 1, · · · , N + homogeneous boundary conditions d α1 Gj (x, x , s) + α2 Gj (x, x , s) |x=0 = 0 dx d α1 Gj (x, x , s) + α2 Gj (x, x , s) |x= = 0 dx Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 46 of 88
  • 47. Telegrapher’s equations: the Green’s function method Self-adjoint problem =⇒ spectral representation of the Green’s function ∞ Gj (x, x , s) = anj (x , s)φn (x) n=0 where [L + λn r(x)] φn (x) = 0 with the same boundary conditions for Gj (x, x , s). Uniform MTLs: L = U d2 /dx2 and r(x) = U =⇒ scalar eigenvalue problem [L + λn ] φn (x) = 0 + homogeneous boundary conditions Eigenfunctions φn (x), n = 1, · · · , ∞ satisfy the orthogonality condition φH (x)r(x)φn (x)dx = φm (x)r(x)φn (x)dx = δmn U m 0 0 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 47 of 88
  • 48. Telegrapher’s equations: the Green’s function method 1. Enforce Gj (x, x , s) to be the solution of the equation [L + λr(x)] Gj (x, x , s) = δ(x, x )uj + b.c. 2. Use the orthonormality condition 3. Obtain the vector of amplitude coefficients amj (x , s) amj x , s = (λ − λm )−1 φm (x )uj j = 1, · · · , N 4. Obtain the matrix of amplitude coefficients am (x , s) am (x , s) = (λ − λm )−1 φm (x ) 5. Obtain the dyadic Green’s function G (x, x , s) as ∞ ∞ (λ − λn )−1 φn (x )φn (x) G x, x , s = an (x , s)φn (x) = n=0 n=0 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 48 of 88
  • 49. Computation of the eigenfunctions and eigenvalues d2 2 + kn φn (x) = 0 dx2 2 where kn = λn + homogenous boundary conditions of the Neumann type d d φn (x) |x=0 = φn (x) |x= = 0 dx dx The solution is φn (x) = An cos (kn x) with • kn = nπ/ n = 0, 1, 2, · · · 1 • A0 = 2 • An = , n = 1, · · · , ∞ Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 49 of 88
  • 50. Series form of the dyadic Green’s function and multiport representation of the MTL ∞ −1 nπ nπ nπ 2 2 A2 cos G(x, x , s) = − γ (s) + U · x cos x n l n=0 V 0 (s) = G(0, x , s) −Z (s)I s (x , s) dx 0 = G(0, 0, s) −Z (s)I 0 (s) + G(0, , s) −Z (s)I (s) ∞ −1 nπ 2 γ 2 (s) + · A2 Z (s)I 0 (s) + A2 cos (nπ) Z (s)I (s) = U n n l n=0 V (s) = G( , x , s) −Z (s)I s (x , s) dx 0 = G( , 0, s) −Z (s)I 0 (s) + G( , , s) −Z (s)I (s) ∞ −1 nπ 2 2 · A2 Z (s)I 0 (s) cos (nπ) + A2 Z (s)I (s) = γ (s) + U n n l n=0 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 50 of 88
  • 51. Series form of the dyadic Green’s function and multiport representation of the MTL      V 0 (s) Z 11 (s) Z 12 (s) I 0 (s)  = ·  V (s) Z 21 (s) Z 22 (s) I (s) ∞ −1 nπ 2 2 · A2 Z (s) Z 11 (s) = Z 22 (s) = γ (s) + U n l n=0 ∞ −1 nπ 2 2 · A2 Z (s) cos (nπ) Z 12 (s) = Z 21 (s) = γ (s) + U n l n=0 A rational model can be developed provided a rational representa- tion of γ(s) and Z (s). Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 51 of 88
  • 52. Poles and residues computation FIPUL: MTLs with frequency independent per-unit-length parameters Z (s) = R0 + sL0 Y (s) = G0 + sC 0 Z (s) and Y (s) polynomial matrices FDPUL: MTLs with frequency dependent per-unit-length parameters PZ B p (s) RZ Z (s) = R0 + sL0 + = s − pq,Z Ap (s) q=1 PY D p (s) RY Y (s) = G0 + sC 0 + = s − pq,Y Cp (s) q=1 Z (s) and Y (s) rational matrices Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 52 of 88
  • 53. Poles and residues computation • The poles of the transmission line can be evaluated as the zeros of the common polynomial at the denominator of impedances nπ 2 2 P n (s) = det γ (s) + U =0 • Additional poles may be generated by the per-unit-length longitudinal impedance Z (s) in the case of FDPUL-MTLs. • FIPUL-MTLs is a special case of FDPUL-MTLs. • For FDPUL-MTLs, poles can be evaluated as the solution of the following equations nπ 2 Qn (s) = det B p (s)D p (s) + Ap (s)Cp (s) U =0 A(s) = 0 Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 53 of 88
  • 54. Poles and residues computation Modes-poles Each mode n generates several poles, depending on the order of rational approximation of Z (s) and Y (s) and the number of conductors. npoles,n = order [conv(B p , D p )] N = (PZ + PY + 2) N ˜ Global number of poles nmodes npoles = npoles,n = order [conv(B p , D p )] (nmodes + 1) N ˜ n=0 = [PZ + PY + 2] (nmodes + 1) N Residues matrix of pole pn (k)   (−1)n adj (E(s)) A2 B p (s)Cp (s) |s=pn (k) 1 n ·  Rk = npoles (n) (−1)n 1 Qn1 [pn (k) − pn (l)] l=1 l=k Munich, September 28, 2007 EMC Zurich Munich 2007 Slide 54 of 88