SlideShare a Scribd company logo
www.studentyogi.com                                                                                 www.studentyogi.com

         Code No: RR220403
                                                                                        Set No. 1
            II B.Tech II Semester Supplimentary Examinations, Apr/May 2008
                           E M WAVES AND TRANSMISSION LINES
         ( Common to Electronics & Communication Engineering and Electronics &
                                               Telematics)
         Time: 3 hours                                                         Max Marks: 80
                                     Answer any FIVE Questions
                                   All Questions carry equal marks



           1. (a) State the Coulomb’s law in SI units and indicate the parameters used in the
                     equations with the aid of a diagram.                                                   [6]
               (b) Point charges 1 and 2 are respectively located at (4, 0, -3) and (2, 0, 1). If
                      2 = 4 nC, nd 1 such that.                                                            [10]
                      i. The E at (5, 0, 6) has no Z-component.
                     ii. The force on a test charge at (5, 0, 6) has no X-component.

           2. An in nitely long straight conducting rod of radius ‘a’ carries a current of I in +
                 direction. Using Ampere’s Circuital Law, nd in all regions and sketch the
              variation of H as a function of radial distance. If I = 3 mA. and a = 2 cm., nd
              and at ( 0, 1cm., 0) and (0, 4cm., 0).                                                      [16]

           3. (a) In free space = m Sin (wt + z) x. Determine and displacement current
                    density.                                                                                [8]
               (b) Region 1, for which r 1 = 3 is de ned by 0 and region 2, 0 has
                     r2 = 5 given 1 = 4 x + 3 y 6 z (A/m). Determine 2 for 0 and the
                    angles that 1 and 2 make with the interface.                                            [8]

           4. Prove that under the condition of no re ection at an interface, the sum of the
               Brewster angle and the angle of refraction is 2 for parallel polarization for the
               case of re ection by a perfect conductor under oblique incident, with neat sketches.
                                                                                                          [16]

           5. (a) De ne and di erentiate between the terms: Instantaneous average and com-
                    plex poynting vectors, giving their mathematical expressions. [8]
               (b) An EM wave of 3 2 Power density is incident normally from air on a
                    perfect dielectric boundary. If the resulting VSWR is 2.2, nd the re ected
                    and transmitted powers.                                                                 [8]

           6. (a) Explain the factors on which cut o frequency of a parallel plate wave guide
                    depend.                                                                                 [8]
               (b) Obtain the frequency in terms of cut o frequency c at which the attenuation
                    constant due to conductor losses for the n mode is minimum for a parallel
                    plate wave-guide.                                                                       [8]

           7. (a) Derive a relation between re ection coe cient and characteristic impedance.
www.studentyogi.com                                                                         www.studentyogi.com

         Code No: RR220403
                                                                                   Set No. 1
               (b) Determine the re ection coe cients when                                         [8]
                     i. L = 0
                     ii. L = short circuit
                    iii. L = open circuit.
                    iv. Also nd out the magnitude of re ection coe cient when L is purely
                         reactive.

           8. (a) Explain how UHF lines can be treated as circuit elements, giving the necessary
                    equivalent circuits.                                                           [8]
               (b) A loss less line of 100 is terminated by a load which pro duces SWR = 3. The
                     rst Maxima is found to be occurring at 320 cm. If f = 300 MHz, determine
                    load impedance.                                                                [8]
www.studentyogi.com                                                                                www.studentyogi.com

         Code No: RR220403
                                                                                                Set No. 2
            II B.Tech II Semester Supplimentary Examinations, Apr/May 2008
                           E M WAVES AND TRANSMISSION LINES
         ( Common to Electronics & Communication Engineering and Electronics &
                                               Telematics)
         Time: 3 hours                                                         Max Marks: 80
                                     Answer any FIVE Questions
                                   All Questions carry equal marks



           1. (a) State Gauss’s law. Using divergence theorem and Gauss’s law, relate the
                     displacement density D to the volume charge density . [8]
               (b) A sphere of radius “a” is lled with a uniform charge density of ‘ v’ c/ 3.
                    Determine the electric eld inside and outside the sphere. [8]

           2. (a) De ne Ampere’s Force Law and establish the associated relations. [6]
               (b) A long coaxial cable has an inner conductor carrying a current of 1 mA. along
                    + direction , its axis coinciding with Z-axis. Its inner conductor diameter is
                    6 mm. If its outer conductor has an inside diameter of 12 mm. and a thickness
                    of 2 mm., determine at (0, 0, 0), (0, 1.5 mm, 0), (0, 4.5 mm, 0) and (0, 1
                    cm, 0). (No derivations)                                                                [10]

           3. (a) In a perfect dielectric medium, the EM wave has maximum value for E of 10
                     V/m with r = 1 and r = 4. Find the velo city of the wave, peak poynting
                     vector, average poynting vector, impedance of the medium and peak value of
                     the magnetic eld.                                                                        [6]
               (b) What is the inconsistency in Ampere’s Law? How it is recti ed by Maxwell?
                                                                                                             [5]
               (c) Show that the total displacement current between the condenser plates con-
                    nected to an alternating voltage sources is exactly the same as the value of
                    charging current (conduction current).                                                    [5]

           4. (a) De ne uniform plane wave.                                                                   [5]
               (b) Prove that uniform plane wave does not have eld components in the direction
                    of the propagation.                                                                       [6]
               (c) Determine the intrinsic impedance of free space.                                           [5]

           5. (a) State and Prove Poynting Theorem.                                                         [10]
               (b) A Plane wave traveling in a free space has an average poynting vector of 5
                    watts/ 2. Find the average energy density.                                                [6]

           6. Starting from Maxwell’s equations, derive the expressions for the E and H eld
               components for TE waves in a parallel plane wave guide.                                      [16]

           7. (a) List out types of transmission lines and draw their schematic diagrams. [5]
www.studentyogi.com                                                                      www.studentyogi.com

         Code No: RR220403
                                                                                   Set No. 2
               (b) Draw the directions of electric and magnetic elds in parallel plate and coaxial
                    lines.                                                                           [5]
               (c) A transmission line in which no distortion is present has the following parame-
                   ters Z0= 50 = 20mNP m = 0 6 0 Determine R, L, G, C and wavelength
                   at 0.1 GHz.                                                                       [6]

           8. (a) Draw the equivalent circuits of a transmission lines when [8]
                      i. length of the transmission line, 1 4, with shorted load
                     ii. when 1 4, with open end
                    iii. 1 = 4.
               (b) Find out VSWR if                                                                  [8]
                      i. 0 = 100 , L = 80
                     ii. when 0 = 80 , L = 100
www.studentyogi.com                                                                          www.studentyogi.com

         Code No: RR220403
                                                                                          Set No. 3
            II B.Tech II Semester Supplimentary Examinations, Apr/May 2008
                           E M WAVES AND TRANSMISSION LINES
         ( Common to Electronics & Communication Engineering and Electronics &
                                               Telematics)
         Time: 3 hours                                                         Max Marks: 80
                                     Answer any FIVE Questions
                                   All Questions carry equal marks



           1. (a) Derive the boundary conditions for the tangential and normal components of
                    Electrostatic elds at the boundary between two perfect dielectrics. [8]
               (b) x-z-plane is a boundary between two dielectrics. Region 0 contains dielec-
                    tric material r1 = 2 5 while region 0 has dielectric with r2= 4 0 If
                    E = -30ax+50ay+70azv m nd normal and tangential components of the E
                     eld on both sides of the boundary.                                                [8]

           2. (a) Find the eld at the centre of a circular loop of radius ‘a’ , carrying a current
                     I along in z = 0 plane.                                                           [5]
               (b) Determine the magnetic ux , for the surface described by [6]
                      i. = 1 0 = = 2 0 = = 2
                     ii. a sphere of radius 2 m., if the magenic eld is of the form = 1

               (c) A conducting plane at y = 1 carries a surface current of 10 mA/m. Find H
                   and B at (0, 0, 0) and at (2, 2, 2).                                                [5]

           3. (a) In a perfect dielectric medium, the EM wave has maximum value for E of 10
                     V/m with r = 1 and r = 4. Find the velo city of the wave, peak poynting
                     vector, average poynting vector, impedance of the medium and peak value of
                     the magnetic eld.                                                                 [6]
               (b) What is the inconsistency in Ampere’s Law? How it is recti ed by Maxwell?
                                                                                                      [5]
               (c) Show that the total displacement current between the condenser plates con-
                    nected to an alternating voltage sources is exactly the same as the value of
                    charging current (conduction current).                                             [5]

           4. (a) What is polarization of an EM wave? Distinguish between di erent types of
                    polarizations? Prove that the polarization is circular when the two components
                    of electric eld are equal and are 90o apart.                                       [8]
               (b) A plane EM wave is normally incident on the boundary between two di-
                    electrics. What must be the ratio of refractive indices of the two media in
                    order that the re ected and transmitted waves may have average Power of
                    equal magnitude?                                                                   [8]

           5. (a) State and Prove Poynting Theorem.                                                   [10]
www.studentyogi.com                                                                      www.studentyogi.com

         Code No: RR220403
                                                                                   Set No. 3
               (b) A Plane wave traveling in a free space has an average poynting vector of 5
                    watts/ 2. Find the average energy density.                                         [6]

           6. For a Parallel plane wave guide of 3 cm seperation, determine all the propogation
               characteristics, for a signal at 10 GHz, for                                          [8+8]

               (a) 10 waves
               (b) TEM waves

                    Explain the terms used.

           7. (a) List out types of transmission lines and draw their schematic diagrams. [5]
               (b) Draw the directions of electric and magnetic elds in parallel plate and coaxial
                    lines.                                                                             [5]
               (c) A transmission line in which no distortion is present has the following parame-
                   ters Z0= 50 = 20mNP m = 0 6 0 Determine R, L, G, C and wavelength
                   at 0.1 GHz.                                                                         [6]

           8. (a) Draw the equivalent circuits of a transmission lines when [8]
                      i. length of the transmission line, 1 4, with shorted load
                     ii. when 1 4, with open end
                    iii. 1 = 4.
               (b) Find out VSWR if                                                                    [8]
                      i. 0 = 100 , L = 80
                     ii. when 0 = 80 , L = 100
www.studentyogi.com                                                                            www.studentyogi.com

         Code No: RR220403
                                                                                     Set No. 4
            II B.Tech II Semester Supplimentary Examinations, Apr/May 2008
                           E M WAVES AND TRANSMISSION LINES
         ( Common to Electronics & Communication Engineering and Electronics &
                                               Telematics)
         Time: 3 hours                                                         Max Marks: 80
                                     Answer any FIVE Questions
                                   All Questions carry equal marks


           1. (a) Explain the following terms:                                                         [8]
                      i. Homogeneous and isotropic medium and
                     ii. Line, surface and volume charge distributions.
               (b) A circular ring of radius ‘a’ carries uniform charge L C/m and is in xy-plane.
                    Find the Electric Field at Point (0, 0, 2) along its axis.                         [8]
           2. (a) Using the relation for of a nite straight wire, obtain the expressions for the
                     elds due to a semi in nite wire and in nite wire located on z-axis, carrying
                    a current I.                                                                       [8]
               (b) In a conducting medium =y2 z X + 2( + 1) Y - ( + 1)z2 Z A/m.
                    Find the current density at (1,0,-3) and calculate the current passing through
                    Y = 1 plane, 0 = = 1 0 = = 1.                                                      [8]
           3. (a) Derive Maxwell’s equations in integral form and di erential form for time
                    varying elds.                                                                      [8]
               (b) Explain how the concept of Displacement current was introduced by Maxwell
                    to account for the production of Magnetic elds in the empty space. [8]
           4. (a) Derive the expression for attenuation and phase constants of uniform plane
                    wave.                                                                              [8]
               (b) If r = 9 = 0 for the medium in which a wave with frequency f = 0.3
                    GHz is propagating, determine propagation constant and intrinsic impedance
                    of the medium when                                                                 [8]
                      i. = 0 and
                     ii. = 10 mho/m.
           5. (a) State and Prove Poynting Theorem.                                                   [10]
               (b) A Plane wave traveling in a free space has an average poynting vector of 5
                    watts/ 2. Find the average energy density.                                         [6]
           6. (a) Explain attenuation in parallel-plate wave guides. Also draw attenuation
                    versus frequency characteristics of waves guided between parallel conducting
                    plates.                                                                            [8]
               (b) A parallel-plate wave guide made of two perfectly conducting in nite planes
                    spaced 3cm apart in air operates at a frequency of 10GHz. Find the maximum
                    time average power that can be propagated per unit width of the guide for
www.studentyogi.com                                                                      www.studentyogi.com

         Code No: RR220403
                                                                                Set No. 4
           7. (a) What are the salient aspects of primary constants of a two wire transmission
                    line.                                                                           [8]
               (b) A lossless transmission line used in a TV receiver has a capacitance of 50 PF/
                    m and an inductance of 200 nH/m. Find out the characteristic impedance for
                    10 meter long section of the line and 500 meter section.                        [8]

           8. (a) Explain the principle of Impedance matching with Quarter wave Transformer?
                                                                                                    [8]
               (b) A 100 loss less line connects a signal of 100 KHz to a load of 140 . The
                    load power is 100mW . Calculate                                                 [8]
                      i. Voltage Re ection coe cient,
                     ii. VSWR,
                    iii. Position of Max Max min min.

More Related Content

What's hot

Copy of chapter 10
Copy of chapter 10Copy of chapter 10
Copy of chapter 10Chethan Nt
 
Cbse physisc question paper 2014
Cbse physisc question paper 2014Cbse physisc question paper 2014
Cbse physisc question paper 2014Anushri Kocher
 
Electronic bands structure and gap in mid-infrared detector InAs/GaSb type II...
Electronic bands structure and gap in mid-infrared detector InAs/GaSb type II...Electronic bands structure and gap in mid-infrared detector InAs/GaSb type II...
Electronic bands structure and gap in mid-infrared detector InAs/GaSb type II...
IJERA Editor
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)mycbseguide
 
R05010401 N E T W O R K A N A L Y S I S
R05010401  N E T W O R K  A N A L Y S I SR05010401  N E T W O R K  A N A L Y S I S
R05010401 N E T W O R K A N A L Y S I S
guestd436758
 
Emf unit wise au part b
Emf unit wise  au part bEmf unit wise  au part b
Emf unit wise au part b
sivaragavi_s
 
Electrical dictionary.1
Electrical dictionary.1Electrical dictionary.1
Electrical dictionary.1sameeksha9
 
12th physics-solution set 3
12th physics-solution set 312th physics-solution set 3
12th physics-solution set 3
vandna123
 
13925cbse guess 5
13925cbse guess 513925cbse guess 5
13925cbse guess 5ashikjose
 
Da32633636
Da32633636Da32633636
Da32633636
IJERA Editor
 
A novel method for mounting gunn diode in active slot ring
A novel method for mounting gunn diode in active slot ringA novel method for mounting gunn diode in active slot ring
A novel method for mounting gunn diode in active slot ring
Alexander Decker
 
Cbs board xii-physics 2014 set 3
Cbs board xii-physics 2014 set 3Cbs board xii-physics 2014 set 3
Cbs board xii-physics 2014 set 3
vandna123
 
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
Kyle Poe
 
Andreev levels
Andreev levelsAndreev levels
Andreev levels
Manuel Morgado
 

What's hot (16)

Copy of chapter 10
Copy of chapter 10Copy of chapter 10
Copy of chapter 10
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 
Cbse physisc question paper 2014
Cbse physisc question paper 2014Cbse physisc question paper 2014
Cbse physisc question paper 2014
 
Electronic bands structure and gap in mid-infrared detector InAs/GaSb type II...
Electronic bands structure and gap in mid-infrared detector InAs/GaSb type II...Electronic bands structure and gap in mid-infrared detector InAs/GaSb type II...
Electronic bands structure and gap in mid-infrared detector InAs/GaSb type II...
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)
 
R05010401 N E T W O R K A N A L Y S I S
R05010401  N E T W O R K  A N A L Y S I SR05010401  N E T W O R K  A N A L Y S I S
R05010401 N E T W O R K A N A L Y S I S
 
Emf unit wise au part b
Emf unit wise  au part bEmf unit wise  au part b
Emf unit wise au part b
 
Electrical dictionary.1
Electrical dictionary.1Electrical dictionary.1
Electrical dictionary.1
 
12th physics-solution set 3
12th physics-solution set 312th physics-solution set 3
12th physics-solution set 3
 
13925cbse guess 5
13925cbse guess 513925cbse guess 5
13925cbse guess 5
 
Da32633636
Da32633636Da32633636
Da32633636
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
A novel method for mounting gunn diode in active slot ring
A novel method for mounting gunn diode in active slot ringA novel method for mounting gunn diode in active slot ring
A novel method for mounting gunn diode in active slot ring
 
Cbs board xii-physics 2014 set 3
Cbs board xii-physics 2014 set 3Cbs board xii-physics 2014 set 3
Cbs board xii-physics 2014 set 3
 
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
 
Andreev levels
Andreev levelsAndreev levels
Andreev levels
 

Viewers also liked

M I C R O P R O C E S S O R S A N D I N T E R F A C I N G J N T U M O D E...
M I C R O P R O C E S S O R S  A N D  I N T E R F A C I N G  J N T U  M O D E...M I C R O P R O C E S S O R S  A N D  I N T E R F A C I N G  J N T U  M O D E...
M I C R O P R O C E S S O R S A N D I N T E R F A C I N G J N T U M O D E...guest3f9c6b
 
English Jntu Model Paper{Www.Studentyogi.Com}
English Jntu Model Paper{Www.Studentyogi.Com}English Jntu Model Paper{Www.Studentyogi.Com}
English Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Mass Transfer Operations I Jntu Model Paper{Www.Studentyogi.Com}
Mass Transfer Operations I Jntu Model Paper{Www.Studentyogi.Com}Mass Transfer Operations I Jntu Model Paper{Www.Studentyogi.Com}
Mass Transfer Operations I Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Mass transfer operations_-_robert_treybal
Mass transfer operations_-_robert_treybalMass transfer operations_-_robert_treybal
Mass transfer operations_-_robert_treybal
Dharminder Singh Sekhon
 

Viewers also liked (7)

M I C R O P R O C E S S O R S A N D I N T E R F A C I N G J N T U M O D E...
M I C R O P R O C E S S O R S  A N D  I N T E R F A C I N G  J N T U  M O D E...M I C R O P R O C E S S O R S  A N D  I N T E R F A C I N G  J N T U  M O D E...
M I C R O P R O C E S S O R S A N D I N T E R F A C I N G J N T U M O D E...
 
English Jntu Model Paper{Www.Studentyogi.Com}
English Jntu Model Paper{Www.Studentyogi.Com}English Jntu Model Paper{Www.Studentyogi.Com}
English Jntu Model Paper{Www.Studentyogi.Com}
 
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
 
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Linear Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
 
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
 
Mass Transfer Operations I Jntu Model Paper{Www.Studentyogi.Com}
Mass Transfer Operations I Jntu Model Paper{Www.Studentyogi.Com}Mass Transfer Operations I Jntu Model Paper{Www.Studentyogi.Com}
Mass Transfer Operations I Jntu Model Paper{Www.Studentyogi.Com}
 
Mass transfer operations_-_robert_treybal
Mass transfer operations_-_robert_treybalMass transfer operations_-_robert_treybal
Mass transfer operations_-_robert_treybal
 

Similar to Emwavesandtransmission Lines Jntu Model Paper{Www.Studentyogi.Com}

Electromagneticwavesandtransmissionlines Jntu Model Paper{Www.Studentyogi.Com}
Electromagneticwavesandtransmissionlines Jntu Model Paper{Www.Studentyogi.Com}Electromagneticwavesandtransmissionlines Jntu Model Paper{Www.Studentyogi.Com}
Electromagneticwavesandtransmissionlines Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
20404 Electromagnetic Waves And Transmission Lines
20404 Electromagnetic Waves And Transmission Lines20404 Electromagnetic Waves And Transmission Lines
20404 Electromagnetic Waves And Transmission Lines
guestac67362
 
11903 Electromagnetic Waves And Transmission Lines
11903 Electromagnetic Waves And Transmission Lines11903 Electromagnetic Waves And Transmission Lines
11903 Electromagnetic Waves And Transmission Lines
guestac67362
 
Antennas And Wave Propagation
Antennas And Wave PropagationAntennas And Wave Propagation
Antennas And Wave Propagation
guestac67362
 
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
R05010501 B A S I C E L E C T R I C A L E N G I N E E R I N G
R05010501  B A S I C  E L E C T R I C A L  E N G I N E E R I N GR05010501  B A S I C  E L E C T R I C A L  E N G I N E E R I N G
R05010501 B A S I C E L E C T R I C A L E N G I N E E R I N G
guestd436758
 
Basic electronic devices and circuits
Basic electronic devices and circuitsBasic electronic devices and circuits
Basic electronic devices and circuits
guestac67362
 
Basicelectronicdevicesandcircuits Jntu Model Paper{Www.Studentyogi.Com}
Basicelectronicdevicesandcircuits Jntu Model Paper{Www.Studentyogi.Com}Basicelectronicdevicesandcircuits Jntu Model Paper{Www.Studentyogi.Com}
Basicelectronicdevicesandcircuits Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Basic electronic devices and circuits Jntu Model Paper{Www.Studentyogi.Com}
Basic electronic devices and circuits Jntu Model Paper{Www.Studentyogi.Com}Basic electronic devices and circuits Jntu Model Paper{Www.Studentyogi.Com}
Basic electronic devices and circuits Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Physics sqp
Physics sqpPhysics sqp
Physics sqp
B Bhuvanesh
 
Electrical Circuits Analysis Jntu Model Paper{Www.Studentyogi.Com}
Electrical Circuits Analysis Jntu Model Paper{Www.Studentyogi.Com}Electrical Circuits Analysis Jntu Model Paper{Www.Studentyogi.Com}
Electrical Circuits Analysis Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
E L E C T R I C A L C I R C U I T S A N A L Y S I S J N T U M O D E L P ...
E L E C T R I C A L  C I R C U I T S  A N A L Y S I S  J N T U  M O D E L  P ...E L E C T R I C A L  C I R C U I T S  A N A L Y S I S  J N T U  M O D E L  P ...
E L E C T R I C A L C I R C U I T S A N A L Y S I S J N T U M O D E L P ...guest3f9c6b
 
Class 12 Cbse Physics Sample Paper 2010 Model 3
Class 12 Cbse Physics Sample Paper 2010 Model 3Class 12 Cbse Physics Sample Paper 2010 Model 3
Class 12 Cbse Physics Sample Paper 2010 Model 3
Sunaina Rawat
 
C O M M U N I C A T I O N T H E O R Y J N T U M O D E L P A P E R{Www
C O M M U N I C A T I O N  T H E O R Y  J N T U  M O D E L  P A P E R{WwwC O M M U N I C A T I O N  T H E O R Y  J N T U  M O D E L  P A P E R{Www
C O M M U N I C A T I O N T H E O R Y J N T U M O D E L P A P E R{Wwwguest3f9c6b
 
E L E C T R I C A L M E A S U R E M E N T S J N T U M O D E L P A P E R{Www
E L E C T R I C A L  M E A S U R E M E N T S  J N T U  M O D E L  P A P E R{WwwE L E C T R I C A L  M E A S U R E M E N T S  J N T U  M O D E L  P A P E R{Www
E L E C T R I C A L M E A S U R E M E N T S J N T U M O D E L P A P E R{Wwwguest3f9c6b
 
Electrical Measurements Jntu Model Paper{Www.Studentyogi.Com}
Electrical Measurements Jntu Model Paper{Www.Studentyogi.Com}Electrical Measurements Jntu Model Paper{Www.Studentyogi.Com}
Electrical Measurements Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Physics sqp
Physics sqpPhysics sqp
Physics sqp
jiteshtuteja
 
CBSE Sample Paper 2015 of Class XII Physics
CBSE Sample Paper 2015 of Class XII PhysicsCBSE Sample Paper 2015 of Class XII Physics
CBSE Sample Paper 2015 of Class XII Physics
KV no 1 AFS Jodhpur raj.
 

Similar to Emwavesandtransmission Lines Jntu Model Paper{Www.Studentyogi.Com} (20)

Electromagneticwavesandtransmissionlines Jntu Model Paper{Www.Studentyogi.Com}
Electromagneticwavesandtransmissionlines Jntu Model Paper{Www.Studentyogi.Com}Electromagneticwavesandtransmissionlines Jntu Model Paper{Www.Studentyogi.Com}
Electromagneticwavesandtransmissionlines Jntu Model Paper{Www.Studentyogi.Com}
 
20404 Electromagnetic Waves And Transmission Lines
20404 Electromagnetic Waves And Transmission Lines20404 Electromagnetic Waves And Transmission Lines
20404 Electromagnetic Waves And Transmission Lines
 
11903 Electromagnetic Waves And Transmission Lines
11903 Electromagnetic Waves And Transmission Lines11903 Electromagnetic Waves And Transmission Lines
11903 Electromagnetic Waves And Transmission Lines
 
Awp
AwpAwp
Awp
 
Antennas And Wave Propagation
Antennas And Wave PropagationAntennas And Wave Propagation
Antennas And Wave Propagation
 
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
 
R05010501 B A S I C E L E C T R I C A L E N G I N E E R I N G
R05010501  B A S I C  E L E C T R I C A L  E N G I N E E R I N GR05010501  B A S I C  E L E C T R I C A L  E N G I N E E R I N G
R05010501 B A S I C E L E C T R I C A L E N G I N E E R I N G
 
nothing
nothingnothing
nothing
 
Basic electronic devices and circuits
Basic electronic devices and circuitsBasic electronic devices and circuits
Basic electronic devices and circuits
 
Basicelectronicdevicesandcircuits Jntu Model Paper{Www.Studentyogi.Com}
Basicelectronicdevicesandcircuits Jntu Model Paper{Www.Studentyogi.Com}Basicelectronicdevicesandcircuits Jntu Model Paper{Www.Studentyogi.Com}
Basicelectronicdevicesandcircuits Jntu Model Paper{Www.Studentyogi.Com}
 
Basic electronic devices and circuits Jntu Model Paper{Www.Studentyogi.Com}
Basic electronic devices and circuits Jntu Model Paper{Www.Studentyogi.Com}Basic electronic devices and circuits Jntu Model Paper{Www.Studentyogi.Com}
Basic electronic devices and circuits Jntu Model Paper{Www.Studentyogi.Com}
 
Physics sqp
Physics sqpPhysics sqp
Physics sqp
 
Electrical Circuits Analysis Jntu Model Paper{Www.Studentyogi.Com}
Electrical Circuits Analysis Jntu Model Paper{Www.Studentyogi.Com}Electrical Circuits Analysis Jntu Model Paper{Www.Studentyogi.Com}
Electrical Circuits Analysis Jntu Model Paper{Www.Studentyogi.Com}
 
E L E C T R I C A L C I R C U I T S A N A L Y S I S J N T U M O D E L P ...
E L E C T R I C A L  C I R C U I T S  A N A L Y S I S  J N T U  M O D E L  P ...E L E C T R I C A L  C I R C U I T S  A N A L Y S I S  J N T U  M O D E L  P ...
E L E C T R I C A L C I R C U I T S A N A L Y S I S J N T U M O D E L P ...
 
Class 12 Cbse Physics Sample Paper 2010 Model 3
Class 12 Cbse Physics Sample Paper 2010 Model 3Class 12 Cbse Physics Sample Paper 2010 Model 3
Class 12 Cbse Physics Sample Paper 2010 Model 3
 
C O M M U N I C A T I O N T H E O R Y J N T U M O D E L P A P E R{Www
C O M M U N I C A T I O N  T H E O R Y  J N T U  M O D E L  P A P E R{WwwC O M M U N I C A T I O N  T H E O R Y  J N T U  M O D E L  P A P E R{Www
C O M M U N I C A T I O N T H E O R Y J N T U M O D E L P A P E R{Www
 
E L E C T R I C A L M E A S U R E M E N T S J N T U M O D E L P A P E R{Www
E L E C T R I C A L  M E A S U R E M E N T S  J N T U  M O D E L  P A P E R{WwwE L E C T R I C A L  M E A S U R E M E N T S  J N T U  M O D E L  P A P E R{Www
E L E C T R I C A L M E A S U R E M E N T S J N T U M O D E L P A P E R{Www
 
Electrical Measurements Jntu Model Paper{Www.Studentyogi.Com}
Electrical Measurements Jntu Model Paper{Www.Studentyogi.Com}Electrical Measurements Jntu Model Paper{Www.Studentyogi.Com}
Electrical Measurements Jntu Model Paper{Www.Studentyogi.Com}
 
Physics sqp
Physics sqpPhysics sqp
Physics sqp
 
CBSE Sample Paper 2015 of Class XII Physics
CBSE Sample Paper 2015 of Class XII PhysicsCBSE Sample Paper 2015 of Class XII Physics
CBSE Sample Paper 2015 of Class XII Physics
 

More from guest3f9c6b

Embedded Systems Jntu Model Paper{Www.Studentyogi.Com}
Embedded Systems Jntu Model Paper{Www.Studentyogi.Com}Embedded Systems Jntu Model Paper{Www.Studentyogi.Com}
Embedded Systems Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Electronic Devices And Circuits Jntu Model Paper{Www.Studentyogi.Com}
Electronic Devices And Circuits Jntu Model Paper{Www.Studentyogi.Com}Electronic Devices And Circuits Jntu Model Paper{Www.Studentyogi.Com}
Electronic Devices And Circuits Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}
Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}
Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Electrical Machines Ii Jntu Model Paper{Www.Studentyogi.Com}
Electrical Machines Ii Jntu Model Paper{Www.Studentyogi.Com}Electrical Machines Ii Jntu Model Paper{Www.Studentyogi.Com}
Electrical Machines Ii Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Digital Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Digital Ic Applications Jntu Model Paper{Www.Studentyogi.Com}Digital Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Digital Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Designofmachinemembers I Jntu Model Paper{Www.Studentyogi.Com}
Designofmachinemembers I Jntu Model Paper{Www.Studentyogi.Com}Designofmachinemembers I Jntu Model Paper{Www.Studentyogi.Com}
Designofmachinemembers I Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Digital Communications Jntu Model Paper{Www.Studentyogi.Com}
Digital Communications Jntu Model Paper{Www.Studentyogi.Com}Digital Communications Jntu Model Paper{Www.Studentyogi.Com}
Digital Communications Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
Databasemanagementsystems Jntu Model Paper{Www.Studentyogi.Com}
Databasemanagementsystems Jntu Model Paper{Www.Studentyogi.Com}Databasemanagementsystems Jntu Model Paper{Www.Studentyogi.Com}
Databasemanagementsystems Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Decision Support Systems Jntu Model Paper{Www.Studentyogi.Com}
Decision Support Systems Jntu Model Paper{Www.Studentyogi.Com}Decision Support Systems Jntu Model Paper{Www.Studentyogi.Com}
Decision Support Systems Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Control Systems Jntu Model Paper{Www.Studentyogi.Com}Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Control Systems Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Computer Programming Jntu Model Paper{Www.Studentyogi.Com}
Computer Programming Jntu Model Paper{Www.Studentyogi.Com}Computer Programming Jntu Model Paper{Www.Studentyogi.Com}
Computer Programming Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Computer Organization Jntu Model Paper{Www.Studentyogi.Com}
Computer Organization Jntu Model Paper{Www.Studentyogi.Com}Computer Organization Jntu Model Paper{Www.Studentyogi.Com}
Computer Organization Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Computer Networks Jntu Model Paper{Www.Studentyogi.Com}
Computer Networks Jntu Model Paper{Www.Studentyogi.Com}Computer Networks Jntu Model Paper{Www.Studentyogi.Com}
Computer Networks Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Computer Graphics Jntu Model Paper{Www.Studentyogi.Com}
Computer Graphics Jntu Model Paper{Www.Studentyogi.Com}Computer Graphics Jntu Model Paper{Www.Studentyogi.Com}
Computer Graphics Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Computerapplicationinchemicalengineering Jntu Model Paper{Www.Studentyogi.Com}
Computerapplicationinchemicalengineering Jntu Model Paper{Www.Studentyogi.Com}Computerapplicationinchemicalengineering Jntu Model Paper{Www.Studentyogi.Com}
Computerapplicationinchemicalengineering Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Client Server Computing Jntu Model Paper{Www.Studentyogi.Com}
Client  Server Computing Jntu Model Paper{Www.Studentyogi.Com}Client  Server Computing Jntu Model Paper{Www.Studentyogi.Com}
Client Server Computing Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Cellular And Mobile Communications Supplementary [ 2007 ] Jntu Model Paper{...
Cellular And Mobile Communications   Supplementary [ 2007 ] Jntu Model Paper{...Cellular And Mobile Communications   Supplementary [ 2007 ] Jntu Model Paper{...
Cellular And Mobile Communications Supplementary [ 2007 ] Jntu Model Paper{...guest3f9c6b
 
Chemicalreactionengineering I Jntu Model Paper{Www.Studentyogi.Com}
Chemicalreactionengineering I Jntu Model Paper{Www.Studentyogi.Com}Chemicalreactionengineering I Jntu Model Paper{Www.Studentyogi.Com}
Chemicalreactionengineering I Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 

More from guest3f9c6b (20)

Embedded Systems Jntu Model Paper{Www.Studentyogi.Com}
Embedded Systems Jntu Model Paper{Www.Studentyogi.Com}Embedded Systems Jntu Model Paper{Www.Studentyogi.Com}
Embedded Systems Jntu Model Paper{Www.Studentyogi.Com}
 
Electronic Devices And Circuits Jntu Model Paper{Www.Studentyogi.Com}
Electronic Devices And Circuits Jntu Model Paper{Www.Studentyogi.Com}Electronic Devices And Circuits Jntu Model Paper{Www.Studentyogi.Com}
Electronic Devices And Circuits Jntu Model Paper{Www.Studentyogi.Com}
 
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
 
Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}
Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}
Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}
 
Electrical Machines Ii Jntu Model Paper{Www.Studentyogi.Com}
Electrical Machines Ii Jntu Model Paper{Www.Studentyogi.Com}Electrical Machines Ii Jntu Model Paper{Www.Studentyogi.Com}
Electrical Machines Ii Jntu Model Paper{Www.Studentyogi.Com}
 
Digital Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Digital Ic Applications Jntu Model Paper{Www.Studentyogi.Com}Digital Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
Digital Ic Applications Jntu Model Paper{Www.Studentyogi.Com}
 
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
 
Designofmachinemembers I Jntu Model Paper{Www.Studentyogi.Com}
Designofmachinemembers I Jntu Model Paper{Www.Studentyogi.Com}Designofmachinemembers I Jntu Model Paper{Www.Studentyogi.Com}
Designofmachinemembers I Jntu Model Paper{Www.Studentyogi.Com}
 
Digital Communications Jntu Model Paper{Www.Studentyogi.Com}
Digital Communications Jntu Model Paper{Www.Studentyogi.Com}Digital Communications Jntu Model Paper{Www.Studentyogi.Com}
Digital Communications Jntu Model Paper{Www.Studentyogi.Com}
 
Databasemanagementsystems Jntu Model Paper{Www.Studentyogi.Com}
Databasemanagementsystems Jntu Model Paper{Www.Studentyogi.Com}Databasemanagementsystems Jntu Model Paper{Www.Studentyogi.Com}
Databasemanagementsystems Jntu Model Paper{Www.Studentyogi.Com}
 
Decision Support Systems Jntu Model Paper{Www.Studentyogi.Com}
Decision Support Systems Jntu Model Paper{Www.Studentyogi.Com}Decision Support Systems Jntu Model Paper{Www.Studentyogi.Com}
Decision Support Systems Jntu Model Paper{Www.Studentyogi.Com}
 
Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Control Systems Jntu Model Paper{Www.Studentyogi.Com}Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Control Systems Jntu Model Paper{Www.Studentyogi.Com}
 
Computer Programming Jntu Model Paper{Www.Studentyogi.Com}
Computer Programming Jntu Model Paper{Www.Studentyogi.Com}Computer Programming Jntu Model Paper{Www.Studentyogi.Com}
Computer Programming Jntu Model Paper{Www.Studentyogi.Com}
 
Computer Organization Jntu Model Paper{Www.Studentyogi.Com}
Computer Organization Jntu Model Paper{Www.Studentyogi.Com}Computer Organization Jntu Model Paper{Www.Studentyogi.Com}
Computer Organization Jntu Model Paper{Www.Studentyogi.Com}
 
Computer Networks Jntu Model Paper{Www.Studentyogi.Com}
Computer Networks Jntu Model Paper{Www.Studentyogi.Com}Computer Networks Jntu Model Paper{Www.Studentyogi.Com}
Computer Networks Jntu Model Paper{Www.Studentyogi.Com}
 
Computer Graphics Jntu Model Paper{Www.Studentyogi.Com}
Computer Graphics Jntu Model Paper{Www.Studentyogi.Com}Computer Graphics Jntu Model Paper{Www.Studentyogi.Com}
Computer Graphics Jntu Model Paper{Www.Studentyogi.Com}
 
Computerapplicationinchemicalengineering Jntu Model Paper{Www.Studentyogi.Com}
Computerapplicationinchemicalengineering Jntu Model Paper{Www.Studentyogi.Com}Computerapplicationinchemicalengineering Jntu Model Paper{Www.Studentyogi.Com}
Computerapplicationinchemicalengineering Jntu Model Paper{Www.Studentyogi.Com}
 
Client Server Computing Jntu Model Paper{Www.Studentyogi.Com}
Client  Server Computing Jntu Model Paper{Www.Studentyogi.Com}Client  Server Computing Jntu Model Paper{Www.Studentyogi.Com}
Client Server Computing Jntu Model Paper{Www.Studentyogi.Com}
 
Cellular And Mobile Communications Supplementary [ 2007 ] Jntu Model Paper{...
Cellular And Mobile Communications   Supplementary [ 2007 ] Jntu Model Paper{...Cellular And Mobile Communications   Supplementary [ 2007 ] Jntu Model Paper{...
Cellular And Mobile Communications Supplementary [ 2007 ] Jntu Model Paper{...
 
Chemicalreactionengineering I Jntu Model Paper{Www.Studentyogi.Com}
Chemicalreactionengineering I Jntu Model Paper{Www.Studentyogi.Com}Chemicalreactionengineering I Jntu Model Paper{Www.Studentyogi.Com}
Chemicalreactionengineering I Jntu Model Paper{Www.Studentyogi.Com}
 

Recently uploaded

Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 

Recently uploaded (20)

Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 

Emwavesandtransmission Lines Jntu Model Paper{Www.Studentyogi.Com}

  • 1. www.studentyogi.com www.studentyogi.com Code No: RR220403 Set No. 1 II B.Tech II Semester Supplimentary Examinations, Apr/May 2008 E M WAVES AND TRANSMISSION LINES ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1. (a) State the Coulomb’s law in SI units and indicate the parameters used in the equations with the aid of a diagram. [6] (b) Point charges 1 and 2 are respectively located at (4, 0, -3) and (2, 0, 1). If 2 = 4 nC, nd 1 such that. [10] i. The E at (5, 0, 6) has no Z-component. ii. The force on a test charge at (5, 0, 6) has no X-component. 2. An in nitely long straight conducting rod of radius ‘a’ carries a current of I in + direction. Using Ampere’s Circuital Law, nd in all regions and sketch the variation of H as a function of radial distance. If I = 3 mA. and a = 2 cm., nd and at ( 0, 1cm., 0) and (0, 4cm., 0). [16] 3. (a) In free space = m Sin (wt + z) x. Determine and displacement current density. [8] (b) Region 1, for which r 1 = 3 is de ned by 0 and region 2, 0 has r2 = 5 given 1 = 4 x + 3 y 6 z (A/m). Determine 2 for 0 and the angles that 1 and 2 make with the interface. [8] 4. Prove that under the condition of no re ection at an interface, the sum of the Brewster angle and the angle of refraction is 2 for parallel polarization for the case of re ection by a perfect conductor under oblique incident, with neat sketches. [16] 5. (a) De ne and di erentiate between the terms: Instantaneous average and com- plex poynting vectors, giving their mathematical expressions. [8] (b) An EM wave of 3 2 Power density is incident normally from air on a perfect dielectric boundary. If the resulting VSWR is 2.2, nd the re ected and transmitted powers. [8] 6. (a) Explain the factors on which cut o frequency of a parallel plate wave guide depend. [8] (b) Obtain the frequency in terms of cut o frequency c at which the attenuation constant due to conductor losses for the n mode is minimum for a parallel plate wave-guide. [8] 7. (a) Derive a relation between re ection coe cient and characteristic impedance.
  • 2. www.studentyogi.com www.studentyogi.com Code No: RR220403 Set No. 1 (b) Determine the re ection coe cients when [8] i. L = 0 ii. L = short circuit iii. L = open circuit. iv. Also nd out the magnitude of re ection coe cient when L is purely reactive. 8. (a) Explain how UHF lines can be treated as circuit elements, giving the necessary equivalent circuits. [8] (b) A loss less line of 100 is terminated by a load which pro duces SWR = 3. The rst Maxima is found to be occurring at 320 cm. If f = 300 MHz, determine load impedance. [8]
  • 3. www.studentyogi.com www.studentyogi.com Code No: RR220403 Set No. 2 II B.Tech II Semester Supplimentary Examinations, Apr/May 2008 E M WAVES AND TRANSMISSION LINES ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1. (a) State Gauss’s law. Using divergence theorem and Gauss’s law, relate the displacement density D to the volume charge density . [8] (b) A sphere of radius “a” is lled with a uniform charge density of ‘ v’ c/ 3. Determine the electric eld inside and outside the sphere. [8] 2. (a) De ne Ampere’s Force Law and establish the associated relations. [6] (b) A long coaxial cable has an inner conductor carrying a current of 1 mA. along + direction , its axis coinciding with Z-axis. Its inner conductor diameter is 6 mm. If its outer conductor has an inside diameter of 12 mm. and a thickness of 2 mm., determine at (0, 0, 0), (0, 1.5 mm, 0), (0, 4.5 mm, 0) and (0, 1 cm, 0). (No derivations) [10] 3. (a) In a perfect dielectric medium, the EM wave has maximum value for E of 10 V/m with r = 1 and r = 4. Find the velo city of the wave, peak poynting vector, average poynting vector, impedance of the medium and peak value of the magnetic eld. [6] (b) What is the inconsistency in Ampere’s Law? How it is recti ed by Maxwell? [5] (c) Show that the total displacement current between the condenser plates con- nected to an alternating voltage sources is exactly the same as the value of charging current (conduction current). [5] 4. (a) De ne uniform plane wave. [5] (b) Prove that uniform plane wave does not have eld components in the direction of the propagation. [6] (c) Determine the intrinsic impedance of free space. [5] 5. (a) State and Prove Poynting Theorem. [10] (b) A Plane wave traveling in a free space has an average poynting vector of 5 watts/ 2. Find the average energy density. [6] 6. Starting from Maxwell’s equations, derive the expressions for the E and H eld components for TE waves in a parallel plane wave guide. [16] 7. (a) List out types of transmission lines and draw their schematic diagrams. [5]
  • 4. www.studentyogi.com www.studentyogi.com Code No: RR220403 Set No. 2 (b) Draw the directions of electric and magnetic elds in parallel plate and coaxial lines. [5] (c) A transmission line in which no distortion is present has the following parame- ters Z0= 50 = 20mNP m = 0 6 0 Determine R, L, G, C and wavelength at 0.1 GHz. [6] 8. (a) Draw the equivalent circuits of a transmission lines when [8] i. length of the transmission line, 1 4, with shorted load ii. when 1 4, with open end iii. 1 = 4. (b) Find out VSWR if [8] i. 0 = 100 , L = 80 ii. when 0 = 80 , L = 100
  • 5. www.studentyogi.com www.studentyogi.com Code No: RR220403 Set No. 3 II B.Tech II Semester Supplimentary Examinations, Apr/May 2008 E M WAVES AND TRANSMISSION LINES ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1. (a) Derive the boundary conditions for the tangential and normal components of Electrostatic elds at the boundary between two perfect dielectrics. [8] (b) x-z-plane is a boundary between two dielectrics. Region 0 contains dielec- tric material r1 = 2 5 while region 0 has dielectric with r2= 4 0 If E = -30ax+50ay+70azv m nd normal and tangential components of the E eld on both sides of the boundary. [8] 2. (a) Find the eld at the centre of a circular loop of radius ‘a’ , carrying a current I along in z = 0 plane. [5] (b) Determine the magnetic ux , for the surface described by [6] i. = 1 0 = = 2 0 = = 2 ii. a sphere of radius 2 m., if the magenic eld is of the form = 1 (c) A conducting plane at y = 1 carries a surface current of 10 mA/m. Find H and B at (0, 0, 0) and at (2, 2, 2). [5] 3. (a) In a perfect dielectric medium, the EM wave has maximum value for E of 10 V/m with r = 1 and r = 4. Find the velo city of the wave, peak poynting vector, average poynting vector, impedance of the medium and peak value of the magnetic eld. [6] (b) What is the inconsistency in Ampere’s Law? How it is recti ed by Maxwell? [5] (c) Show that the total displacement current between the condenser plates con- nected to an alternating voltage sources is exactly the same as the value of charging current (conduction current). [5] 4. (a) What is polarization of an EM wave? Distinguish between di erent types of polarizations? Prove that the polarization is circular when the two components of electric eld are equal and are 90o apart. [8] (b) A plane EM wave is normally incident on the boundary between two di- electrics. What must be the ratio of refractive indices of the two media in order that the re ected and transmitted waves may have average Power of equal magnitude? [8] 5. (a) State and Prove Poynting Theorem. [10]
  • 6. www.studentyogi.com www.studentyogi.com Code No: RR220403 Set No. 3 (b) A Plane wave traveling in a free space has an average poynting vector of 5 watts/ 2. Find the average energy density. [6] 6. For a Parallel plane wave guide of 3 cm seperation, determine all the propogation characteristics, for a signal at 10 GHz, for [8+8] (a) 10 waves (b) TEM waves Explain the terms used. 7. (a) List out types of transmission lines and draw their schematic diagrams. [5] (b) Draw the directions of electric and magnetic elds in parallel plate and coaxial lines. [5] (c) A transmission line in which no distortion is present has the following parame- ters Z0= 50 = 20mNP m = 0 6 0 Determine R, L, G, C and wavelength at 0.1 GHz. [6] 8. (a) Draw the equivalent circuits of a transmission lines when [8] i. length of the transmission line, 1 4, with shorted load ii. when 1 4, with open end iii. 1 = 4. (b) Find out VSWR if [8] i. 0 = 100 , L = 80 ii. when 0 = 80 , L = 100
  • 7. www.studentyogi.com www.studentyogi.com Code No: RR220403 Set No. 4 II B.Tech II Semester Supplimentary Examinations, Apr/May 2008 E M WAVES AND TRANSMISSION LINES ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1. (a) Explain the following terms: [8] i. Homogeneous and isotropic medium and ii. Line, surface and volume charge distributions. (b) A circular ring of radius ‘a’ carries uniform charge L C/m and is in xy-plane. Find the Electric Field at Point (0, 0, 2) along its axis. [8] 2. (a) Using the relation for of a nite straight wire, obtain the expressions for the elds due to a semi in nite wire and in nite wire located on z-axis, carrying a current I. [8] (b) In a conducting medium =y2 z X + 2( + 1) Y - ( + 1)z2 Z A/m. Find the current density at (1,0,-3) and calculate the current passing through Y = 1 plane, 0 = = 1 0 = = 1. [8] 3. (a) Derive Maxwell’s equations in integral form and di erential form for time varying elds. [8] (b) Explain how the concept of Displacement current was introduced by Maxwell to account for the production of Magnetic elds in the empty space. [8] 4. (a) Derive the expression for attenuation and phase constants of uniform plane wave. [8] (b) If r = 9 = 0 for the medium in which a wave with frequency f = 0.3 GHz is propagating, determine propagation constant and intrinsic impedance of the medium when [8] i. = 0 and ii. = 10 mho/m. 5. (a) State and Prove Poynting Theorem. [10] (b) A Plane wave traveling in a free space has an average poynting vector of 5 watts/ 2. Find the average energy density. [6] 6. (a) Explain attenuation in parallel-plate wave guides. Also draw attenuation versus frequency characteristics of waves guided between parallel conducting plates. [8] (b) A parallel-plate wave guide made of two perfectly conducting in nite planes spaced 3cm apart in air operates at a frequency of 10GHz. Find the maximum time average power that can be propagated per unit width of the guide for
  • 8. www.studentyogi.com www.studentyogi.com Code No: RR220403 Set No. 4 7. (a) What are the salient aspects of primary constants of a two wire transmission line. [8] (b) A lossless transmission line used in a TV receiver has a capacitance of 50 PF/ m and an inductance of 200 nH/m. Find out the characteristic impedance for 10 meter long section of the line and 500 meter section. [8] 8. (a) Explain the principle of Impedance matching with Quarter wave Transformer? [8] (b) A 100 loss less line connects a signal of 100 KHz to a load of 140 . The load power is 100mW . Calculate [8] i. Voltage Re ection coe cient, ii. VSWR, iii. Position of Max Max min min.