SlideShare a Scribd company logo
1 of 12
1
RectangularWaveguide
In the lastlecture,we have coonsidered the case of guidedwave between apairof infiniteconducting
planes.Inthislecture,we consdierarectangularwave guide whichconsistsof ahollow pipe of infinite
extentbutof rectangular cross sectionof dimension π‘Ž Γ— 𝑏.The longdirectionwill be takentobe the z
direction.
Unlike inthe previouscase πœ• πœ•π‘¦β„ isnotzero inthiscase. However,asthe propagationdirection
isalongthe z direction,we have
πœ•
πœ•π‘§
β†’ βˆ’π›Ύ and
πœ•
πœ•π‘‘
β†’ π‘–πœ”. We can write the Maxwell’scurl
equationsas
πœ•π»π‘§
πœ•π‘¦
+ 𝛾𝐻 𝑦 = π‘–πœ”πœ–πΈ π‘₯
βˆ’π›Ύπ» π‘₯ βˆ’
πœ•π»π‘§
πœ•π‘₯
= π‘–πœ”πœ–πΈ 𝑦
πœ•π» 𝑦
πœ•π‘₯
βˆ’
πœ•π» π‘₯
πœ•π‘¦
= π‘–πœ”πœ–πΈ 𝑧
The secondsetof equationsare obtainedfromthe Faraday’slaw,(thesecanbe writtendown
fromabove by 𝐸 ↔ 𝐻, πœ– β†’ βˆ’πœ‡
πœ•πΈ 𝑧
πœ•π‘¦
+ 𝛾𝐸 𝑦 = βˆ’π‘–πœ”πœ‡π» π‘₯
βˆ’π›ΎπΈ π‘₯ βˆ’
πœ•πΈ 𝑧
πœ•π‘₯
= βˆ’π‘–πœ”πœ‡π» 𝑦
πœ•πΈ 𝑦
πœ•π‘₯
βˆ’
πœ•πΈ π‘₯
πœ•π‘¦
= βˆ’π‘–πœ”πœ‡π»π‘§
Wave Guides
Lecture37: Electromagnetic Theory
Professor D. K. Ghosh, Physics Department, I.I.T., Bombay
z
xy
b
a
2
As inthe case of parallel plate waveguides,we canexpressall the fieldquantitiesintermsof
the derivatives of 𝐸 𝑧and𝐻𝑧. Forinstance,we have,
π‘–πœ”πœ–πΈ π‘₯ = 𝛾𝐻 𝑦 +
πœ•π»π‘§
πœ•π‘¦
=
𝛾
π‘–πœ”πœ‡
( 𝛾𝐸 π‘₯ +
πœ•πΈ 𝑧
πœ•π‘₯
)+
πœ•π»π‘§
πœ•π‘¦
whichgives,
( π‘–πœ”πœ– βˆ’
𝛾2
π‘–πœ”πœ‡
) 𝐸 π‘₯ =
𝛾
π‘–πœ”πœ‡
πœ•πΈ 𝑧
πœ•π‘₯
+
πœ•π»π‘§
πœ•π‘¦
so that
𝐸 π‘₯ = βˆ’
𝛾
π‘˜2
πœ•πΈ 𝑧
πœ•π‘₯
βˆ’
π‘–πœ”πœ‡
π‘˜2
πœ•π»π‘§
πœ•π‘¦
(1)
where
π‘˜2 = 𝛾2 + πœ”2 πœ‡πœ–
The other componentscanbe similarly writtendown,
𝐸 𝑦 = βˆ’
𝛾
π‘˜2
πœ•πΈ 𝑧
πœ•π‘¦
βˆ’
π‘–πœ”πœ‡
π‘˜2
πœ•π»π‘§
πœ•π‘₯
(2)
𝐻 π‘₯ =
π‘–πœ”πœ–
π‘˜2
πœ•πΈ 𝑧
πœ•π‘¦
βˆ’
𝛾
π‘˜2
πœ•π»π‘§
πœ•π‘₯
(3)
𝐻 𝑦 = βˆ’
π‘–πœ”πœ–
π‘˜2
πœ•πΈ 𝑧
πœ•π‘₯
βˆ’
𝛾
π‘˜2
πœ•π»π‘§
πœ•π‘¦
(4)
As before,we willlookintothe TEmode indetail.Since 𝐸 𝑧 = 0,we need tosolve for 𝐻𝑧 from
the Helmholtzequation,
(
πœ•2
πœ•π‘₯2 +
πœ•2
πœ•π‘¦2 + π‘˜2) 𝐻𝑧( π‘₯, 𝑦) = 0 (5)
Rememberthatthe complete solutionisobtainedbymultiplyingwith π‘’βˆ’π›Ύπ‘§+π‘–πœ”π‘‘. We solve
equation(5) usingthe technique of separationof variableswhichwe came acrossearlier.Let
𝐻𝑧( π‘₯, 𝑦) = 𝑋( π‘₯) π‘Œ(𝑦)
Substitutingthisin(5) anddividingby π‘‹π‘Œ throughout, we get,
1
𝑋
𝑑2 𝑋
𝑑π‘₯2 + π‘˜2 = βˆ’
1
π‘Œ
𝑑2 π‘Œ
𝑑𝑦2 ≑ π‘˜ 𝑦
2
where π‘˜ 𝑦 isa constant. We furtherdefine π‘˜ π‘₯
2 = π‘˜2 βˆ’ π‘˜ 𝑦
2
3
We nowhave twosecondorderequations,
𝑑2 𝑋
𝑑π‘₯2 + π‘˜ π‘₯
2 𝑋 = 0
𝑑2 π‘Œ
𝑑𝑦2 + π‘˜ 𝑦
2 π‘Œ = 0
The solutionsof these equationsare well known
𝑋( π‘₯) = 𝐢1 cos π‘˜ π‘₯ π‘₯ + 𝐢2 sin π‘˜ π‘₯ π‘₯
π‘Œ( 𝑦) = 𝐢3 cos π‘˜ 𝑦 𝑦 + 𝐢4 sin π‘˜ 𝑦 𝑦
Thisgives,
𝐻𝑧( π‘₯, 𝑦) = 𝐢1 𝐢3cos π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦+ 𝐢1 𝐢4 cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦
+𝐢2 𝐢3sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 + 𝐢2 𝐢4 𝑠𝑖𝑛 π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦
The boundaryconditionsthatmust be satisfiedtodeterminethe constants isthe vanishingof
the tangential componentof the electricfieldonthe plates.Inthiscase,we have twopairsof
plates.The tangential directiononthe platesat π‘₯ = 0and π‘₯ = π‘Ž isthe y direction,sothatthe y
componentof the electricfield
𝐸 𝑦 = 0 at π‘₯ = 0, π‘Ž
. Likewise, onthe platesat 𝑦 = 0 and 𝑦 = 𝑏,
𝐸 π‘₯ = 0 at 𝑦 = 0, 𝑏
We needfirsttoevaluate 𝐸 π‘₯ and 𝐸 𝑦 usingequations(1) and(2) and thensubstitute the
boundaryconditions. Since 𝐸 𝑧 = 0,we canwrite eqn.(1) and (2) as
𝐸 π‘₯ = βˆ’
π‘–πœ”πœ‡
π‘˜2
πœ•π»π‘§
πœ•π‘¦
𝐸 𝑦 = βˆ’
π‘–πœ”πœ‡
π‘˜2
πœ•π»π‘§
πœ•π‘₯
𝐸 π‘₯ = βˆ’
π‘–πœ”πœ‡
π‘˜2 [βˆ’πΆ1 𝐢3 ky cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 + 𝐢1 𝐢4 π‘˜ 𝑦 cos π‘˜ π‘₯ π‘₯ cos π‘˜ 𝑦 𝑦
βˆ’πΆ2 𝐢3kysin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 + 𝐢2 𝐢4 π‘˜ 𝑦 sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦
𝐸 𝑦 = βˆ’
π‘–πœ”πœ‡
π‘˜2 [βˆ’πΆ1 𝐢3kx sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 βˆ’ 𝐢1 𝐢4 π‘˜ π‘₯sin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦
+𝐢2 𝐢3kxcos π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 + 𝐢2 𝐢4 π‘˜ π‘₯ π‘π‘œπ‘  π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦]
Since 𝐸 𝑦 = 0 at π‘₯ = 0, we musthave 𝐢2 = 0 and thenwe get,
𝐸 𝑦 = βˆ’
π‘–πœ”πœ‡
π‘˜2 [βˆ’πΆ1 𝐢3kx sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 π‘¦βˆ’ 𝐢1 𝐢4 π‘˜ π‘₯ sin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦]
Further,since 𝐸 π‘₯ = 0 at y=0, we have 𝐢4 = 0. Combiningthese,we get,ondefiningaconstant
𝐢 = 𝐢1 𝐢3
4
𝐸 π‘₯ =
π‘–πœ”πœ‡
π‘˜2 πΆπ‘˜ 𝑦 cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦
𝐸 𝑦 =
π‘–πœ”πœ‡
π‘˜2 πΆπ‘˜ π‘₯ sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦
and
𝐻𝑧 = 𝐢 cos π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦
We still have the boundaryconditions, 𝐸 π‘₯ = 0 at 𝑦 = 𝑏 and 𝐸 𝑦 = 0 at π‘₯ = π‘Žtobe satisfied. The
formergives π‘˜ 𝑦 =
π‘›πœ‹
𝑏
while the lattergives π‘˜ π‘₯ =
π‘šπœ‹
π‘Ž
,where mandn are integers.Thuswe have,
𝐻𝑧 = 𝐢 cos(
π‘šπœ‹
π‘Ž
π‘₯) cos(
π‘›πœ‹π‘¦
𝑏
)
and
π‘˜2 = π‘˜ π‘₯
2 + π‘˜ 𝑦
2 = (
π‘šπœ‹
π‘Ž
)
2
+ (
π‘›πœ‹
𝑏
)
2
However,π‘˜2 = πœ”2 πœ‡πœ– + 𝛾2,sothat,
𝛾 = √(
π‘šπœ‹
π‘Ž
)
2
+ (
π‘›πœ‹
𝑏
)
2
βˆ’ πœ”2 πœ‡πœ–
For propagationtotake place, 𝛾 must be imaginary,sothat the cutoff frequencybelow which
propagationdoesnottake place isgivenby
πœ” 𝑐 =
1
√ πœ‡πœ–
√(
π‘šπœ‹
π‘Ž
)
2
+ (
π‘›πœ‹
𝑏
)
2
The minimumcutoff isforTE1,0 (or TE0,1 ) mode whichare knownas dominantmode. For
these modes 𝐸 π‘₯ (or 𝐸 𝑦) iszero.
TM Modes
We will notbe derivingthe equationsforthe TMmodesforwhich 𝐻𝑧 = 0 . Inthiscase, the
solutionfor 𝐸 𝑧,becomes,
𝐸 𝑧 = 𝐸 𝑧0 sin (
π‘šπœ‹
π‘Ž
)sin (
π‘›πœ‹
𝑏
)
As the solutionisintermsof productof sine functions,neithermnorn can be zeroin thiscase.
Thisis whythe lowestTE mode isthe dominantmode.
For propagatingsolutions,we have,
𝛽 = √ πœ”2 πœ‡πœ– βˆ’ (
π‘šπœ‹
π‘Ž
)
2
βˆ’ (
π‘›πœ‹
𝑏
)
2
= √ πœ‡πœ–βˆš πœ”2 βˆ’ πœ” 𝑐
2
where,
πœ” 𝑐 =
1
√ πœ‡πœ–
√(
π‘šπœ‹
π‘Ž
)
2
+ (
π‘›πœ‹
𝑏
)
2
5
We have, πœ”2 =
𝛽2
πœ‡πœ–
+ πœ” 𝑐
2.Differentiatingbothsides,we have,
πœ”
π‘‘πœ”
𝑑𝛽
=
1
πœ‡πœ–
𝛽
The group velocityof the wave isgivenby
𝑣𝑔 =
π‘‘πœ”
𝑑𝛽
=
𝛽
πœ”πœ‡πœ–
=
√ πœ‡πœ–βˆšπœ”2 βˆ’ πœ” 𝑐
2
πœ”πœ‡πœ–
=
1
√ πœ‡πœ–
√1 βˆ’
πœ” 𝑐
2
πœ”2
whichisless thanthe speedof light.The phase velocity,however,isgivenby
𝑣 πœ™ =
πœ”
𝛽
=
πœ”
√ πœ‡πœ–βˆšπœ”2 βˆ’ πœ” 𝑐
2
=
1
√ πœ‡πœ–
1
√1 βˆ’
πœ” 𝑐
2
πœ”2
It may be notedthat 𝑣 πœ™ 𝑣𝑔 =
1
πœ‡πœ–
, whichinvacuumequal the square velocityof light.
For propagatingTE mode,we have,from(1) and (4) using 𝐸 𝑧 = 0
𝐸 π‘₯
𝐻 𝑦
=
π‘–πœ”πœ‡
𝛾
=
πœ”πœ‡
𝛽
= √
πœ‡
πœ–
1
√1 βˆ’
πœ” 𝑐
2
πœ”2
≑ πœ‚ 𝑇𝐸
where πœ‚ 𝑇𝐸 isthe characteristicimpedance forthe TE mode.Itisseenthat the characteristic
impedance isresistive. Likewise,
𝐸 𝑦
𝐻 π‘₯
= βˆ’πœ‚ 𝑇𝐸
Power Transmission
We have seenthatinthe propagatingmode,the intrinsicimpedance isresistive,indicatingthat
there will be average flowof power. The PoyntingvectorforTE mode isgivenby
〈 𝑆βŒͺ =
1
2
Re〈 𝐸⃗ Γ— 𝐻⃗⃗ βˆ—βŒͺ
=
1
2
Re( 𝐸 π‘₯ 𝐻𝑦
βˆ— βˆ’ 𝐸 𝑦 𝐻π‘₯
βˆ—)
=
1
2πœ‚ 𝑇𝐸
(| 𝐸 π‘₯
2| + | 𝐸 𝑦
2|)
Substitutingthe expressionsforthe field components,the average powerflow throughthe x y
plane isgivenby
〈 𝑃βŒͺ = ∫ 〈 𝑆βŒͺ 𝑑π‘₯ 𝑑𝑦 =
1
2πœ‚ 𝑇𝐸
∫ ∫ (| 𝐸π‘₯
2| + | 𝐸 𝑦
2|) 𝑑π‘₯ 𝑑𝑦
𝑏
0
π‘Ž
0
=
1
2πœ‚ 𝑇𝐸
𝐢2 πœ”2 πœ‡2
π‘˜4
[(
π‘›πœ‹
𝑏
)
2
∫ ∫ cos2 (
π‘šπœ‹
π‘Ž
π‘₯) sin2 (
π‘›πœ‹
𝑏
𝑦) 𝑑π‘₯ 𝑑𝑦
𝑏
0
π‘Ž
0
+ (
π‘šπœ‹
π‘Ž
)
2
∫ ∫ sin2 (
π‘šπœ‹
π‘Ž
π‘₯) cos2 (
π‘›πœ‹
𝑏
𝑦) 𝑑π‘₯ 𝑑𝑦
𝑏
0
π‘Ž
0
]
6
=
1
2πœ‚ 𝑇𝐸
𝐢2 πœ”2 πœ‡2
π‘˜4
[(
π‘šπœ‹
π‘Ž
)
2
+ (
π‘›πœ‹
𝑏
)
2
]
π‘Žπ‘
4
ImpossibilityofTEM mode in Rectangular waveguides
We have seenthat in a parallel plate waveguide,aTEMmode for whichboththe electricand
magneticfieldsare perpendiculartothe directionof propagation,exists.This,howeverisnot
true of rectangularwave guide,orforthat matter forany hollow conductorwave guide without
an innerconductor.
We knowthatlinesof H are closedloops.Since there isnozcomponentof the magneticfield,
such loopsmustlie inthe x-yplane.However,aloopinthe x-yplane,accordingtoAmpere’s
law,impliesanaxial current.If there isnoinnerconductor,there cannotbe a real current.The
onlyotherpossibilitythenisadisplacementcurrent. However,anaxial displacementcurrent
requiresanaxial componentof the electricfield,whichiszeroforthe TEM mode.ThusTEM
mode cannot existinahollowconductor.(forthe parallel plate waveguides,thisrestriction
doesnotapplyas the fieldlinesclose atinfinity.)
ResonatingCavity
In a rectangularwaveguide we hadahollow tube withfoursidesclosedand apropagation
directionwhichwasinfinitelylong.We wil now close the thirdside andconsider
electromagneticwave trappedinsidearectangularparallopipedof dimension π‘Ž Γ— 𝑏 Γ— 𝑑 with
wallsbeingmade of perfectorconductor.(The thirddimensionistakenasd so as notto confuse
withthe speedof lightc).
Resonantingcavitiesare useful forstoringelectromagneticenergyjustasLCcircuit doesbutthe
formerhas an advantage inbeinglesslossyandhavingafrequencyrange muchhigher,above
100 MHz.
The Helmholtzequationforanyof the components 𝐸 𝛼 of the electricfieldcanbe writtenas
βˆ‡2 𝐸 𝛼 = βˆ’πœ”2 πœ‡πœ–πΈ 𝛼
We write thisinCartesiananduse the technique of separationof variables,
𝐸 𝛼( π‘₯, 𝑦, 𝑧) = 𝑋 𝛼( π‘₯) π‘Œπ›Ό( 𝑦) 𝑍 𝛼(𝑧)
Introducingthisintothe equationanddividingby 𝑋 𝛼( π‘₯) π‘Œπ›Ό( 𝑦) 𝑍 𝛼(𝑧),we get,
1
𝑋 𝛼
πœ•2 𝑋 𝛼
πœ•π‘₯2 +
1
π‘Œπ›Ό
πœ•2 π‘Œπ›Ό
πœ•π‘¦2 +
1
𝑍 𝛼
πœ•2 𝑍 𝛼
πœ•π‘§2 = βˆ’πœ”2 πœ‡πœ–
Since eachof the three termson the rightis a functionof an independentvariable,whilethe
righthand side isa constant,we musthave each of the three termsequalingaconstantsuch
that the three constantsadd up to the constanton the right. Let,
πœ•2 𝑋 𝛼
πœ•π‘₯2 = βˆ’π‘˜ π‘₯
2 𝑋 𝛼
7
πœ•2 π‘Œπ›Ό
πœ•π‘¦2 = βˆ’π‘˜ 𝑦
2 π‘Œπ›Ό
πœ•2 𝑍 𝛼
πœ•π‘§2 = βˆ’π‘˜ 𝑧
2 𝑍 𝛼
such that π‘˜ π‘₯
2 + π‘˜ 𝑦
2 + π‘˜ 𝑧
2 = πœ”2 πœ‡πœ–.
As eachof the equationshasa solutionintermsof linearcombinationof sine andcosine
functions,we write the solutionforthe electricfieldas
𝐸 𝛼 = (𝐴 𝛼 cos π‘˜ π‘₯ π‘₯ + 𝐡 𝛼 sin π‘˜ π‘₯ π‘₯)(𝐢 𝛼 cos π‘˜ 𝑦 𝑦 + 𝐷 𝛼 sin π‘˜ 𝑦 𝑦)(𝐹cos π‘˜ 𝑧 𝑧 + 𝐺 𝛼 sin π‘˜ 𝑧 𝑧)
Tha tangential componentof above mustvanishatthe metal boundary. Thisimplies,
1. At π‘₯ = 0 and at π‘₯ = π‘Ž , 𝐸 𝑦 and 𝐸 𝑧 = 0 for all valuesof 𝑦, 𝑧,
2. At 𝑦 = 0 and 𝑦 = 𝑏, 𝐸 π‘₯ and 𝐸 𝑧 = 0 forall valuesof π‘₯, 𝑧,
3. At 𝑧 = 0 and z=d, 𝐸 π‘₯ and 𝐸 𝑦 = 0 for all valuesof π‘₯, 𝑦
Let usconsider 𝐸 π‘₯ whichmustbe zero at 𝑦 = 0, 𝑦 = 𝑏, 𝑧 = 0, 𝑧 = 𝑑. Thisisposible if
𝐸 π‘₯ = 𝐸 π‘₯0(𝐴 π‘₯ cos π‘˜ π‘₯ π‘₯ + 𝐡 π‘₯ sin π‘˜ π‘₯ π‘₯)sin π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧
with π‘˜ 𝑦 =
π‘šπœ‹
𝑏
and π‘˜ 𝑧 =
π‘›πœ‹
𝑑
. Here m and n are non-zerointegers.
In a similarway,we have,
𝐸 𝑦 = 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯ (𝐢 𝑦 cos π‘˜ 𝑦 𝑦 + 𝐷 𝑦 sin π‘˜ 𝑦 𝑦)sin π‘˜ 𝑧 𝑧
𝐸 𝑧 = 𝐸 𝑧0sin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 (𝐹𝑧 cos π‘˜ 𝑧 𝑧 + 𝐺𝑧 sin π‘˜ 𝑧 𝑧)
with π‘˜ π‘₯ =
π‘™πœ‹
π‘Ž
, with 𝑙 beingnon-zerointeger.
We nowuse
βˆ‡ β‹… 𝐸⃗ =
πœ•πΈ π‘₯
πœ•π‘₯
+
πœ•πΈ 𝑦
πœ•π‘¦
+
πœ•πΈ 𝑧
πœ•π‘§
= 0
Thisrelationmustbe satisfiedfor all valuesof 𝒙, π’š, 𝒛 withinthe cavity. Thisrequires,
𝐸 π‘₯0(βˆ’π΄ π‘₯ π‘˜ π‘₯ sin π‘˜ π‘₯ π‘₯
+ 𝐡 π‘₯ π‘˜ π‘₯cos π‘˜ π‘₯ π‘₯)sin π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧
+ 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯(βˆ’πΆ 𝑦 π‘˜ 𝑦 sin π‘˜ 𝑦 𝑦
+ 𝐷 𝑦 π‘˜ 𝑦 cos π‘˜ 𝑦 𝑦)sin π‘˜ 𝑧 𝑧 + 𝐸 𝑧0 sin π‘˜ π‘₯ π‘₯𝑠𝑖𝑛 π‘˜ 𝑦 𝑦(βˆ’πΉπ‘§ π‘˜ 𝑧 sin π‘˜ 𝑧 𝑧
+ 𝐺𝑧 π‘˜ 𝑧 cos π‘˜ 𝑧 𝑧) = 0
Let uschoose some special pointsand try to satisfythisequation.Let π‘₯ = 0, 𝑦, 𝑧 arbitrary,
Thisrequires 𝐡 π‘₯ = 0.Likewise,taking 𝑦 = 0,x,z arbitrary,we require 𝐷 𝑦 = 0 andfinally, 𝑧 = 0,
π‘₯, 𝑦 arbitrary gives 𝐺𝑧 = 0.
Withthese our solutionsforthe componentsof the electricfieldbecomes,
𝐸 π‘₯ = 𝐸 π‘₯0cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧
𝐸 𝑦 = 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧
𝐸 𝑧 = 𝐸 𝑧0 sin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦cos π‘˜ 𝑧 𝑧
where we have redefinedourconstants 𝐸 π‘₯0,𝐸 𝑦0 and 𝐸 𝑧0.
8
We alsohave,
π‘˜ π‘₯ =
π‘™πœ‹
π‘Ž
, π‘˜ 𝑦 =
π‘šπœ‹
𝑏
, π‘˜ 𝑧 =
π‘›πœ‹
𝑑
the integers 𝑙, π‘š, 𝑛 cannotbe simultaneouslyzeroforthenthe fieldwill identicallyvanish.
Note furtherthatsince βˆ‡ β‹… 𝐸⃗ = 0 must be satisfiedeverywhere withinthe cavity,we musthave,
calculatingthe divergence explicitlyfromthe above expressions,
π‘˜ π‘₯ 𝐸 π‘₯0 + π‘˜ 𝑦 𝐸𝑦0 + π‘˜ 𝑧 𝐸𝑧0 = 0
Thisrequiresthat π‘˜βƒ— is perpendicularto 𝐸⃗ .
One can see that the modeswithinacavitycan existonlywithprescribed β€œresonant”frequency
correspondingtothe setof integers 𝑙, π‘š, 𝑛
πœ” =
1
√ πœ‡πœ–
[(
π‘™πœ‹
π‘Ž
)
2
+ (
π‘šπœ‹
𝑏
)
2
+ (
π‘›πœ‹
𝑑
)
2
]
1
2
Thoughthere isnothinglike apropagationdirectionhere,one cantake the longestdimension
(sayd) to be the propagationdirection.
We can have modeslike 𝑇𝐸𝑙,π‘š,𝑛 correspondingtothe set 𝑙, π‘š, 𝑛 for which 𝐸 𝑧 = 0.For thisset
we get,
𝐸 π‘₯ = 𝐸 π‘₯0cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧
𝐸 𝑦 = 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧
with π‘˜ π‘₯ 𝐸π‘₯0 + π‘˜ 𝑦 𝐸𝑦0 = 0. The magneticfieldcomponentscanbe obtainedfromthe Faraday’s
law,
𝐻 π‘₯ =
1
βˆ’π‘–πœ”πœ‡
(βˆ’
πœ•πΈ 𝑦
πœ•π‘§
) =
π‘˜ 𝑧
π‘–πœ”πœ‡
𝐸 𝑦0sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 cos π‘˜ 𝑧 𝑧
𝐻 𝑦 =
1
βˆ’π‘–πœ”πœ‡
(
πœ•πΈ π‘₯
πœ•π‘§
) = βˆ’
π‘˜ 𝑧
π‘–πœ”πœ‡
𝐸 π‘₯0cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦cos π‘˜ 𝑧 𝑧
𝐻𝑧 =
1
βˆ’π‘–πœ”πœ‡
(
πœ•πΈ 𝑦
πœ•π‘₯
βˆ’
πœ•πΈ π‘₯
πœ•π‘¦
) = βˆ’
1
π‘–πœ”πœ‡
(𝐸 𝑦0 π‘˜ π‘₯ βˆ’ 𝐸 π‘₯0 π‘˜ 𝑦)cos π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧
,
Wave Guides
Lecture37: Electromagnetic Theory
Professor D. K. Ghosh, Physics Department, I.I.T., Bombay
9
Tutorial Assignment
1. A rectangularwaveguidehasdimensions8cm x 4 cm. Determine all the modesthatcan
propagate whenthe operatingfrequencyis (a) 1 GHz, (b) 3 GHz and (c) 8 GHz.
2. Two signals,one of frequency10 GHz and the otherof 12 GHz are simultaneouslylaunchedin
an air filledrectangularwaveguideof dimension2cm x 1 cm. Findthe time interval betweenthe
arrival of the signalsata distance of 10 m fromthe commonplace of theirlaunch.
3. What shouldbe the thirddimensionof acavityhavinga lengthof 1 cm x 1 cm whichcan
operate ina TE103 mode at 24 GHZ?
Solutionsto Tutorial Assignments
1. The cutoff frequencyfor(m,n) mode is πœˆπ‘ =
𝑐
2πœ‹
√(
π‘šπœ‹
π‘Ž
)
2
+ (
π‘›πœ‹
𝑏
)
2
= 1.5 Γ— 1010√
π‘š2
64
+
𝑛2
16
.Some
of the lowestcutoffsare asunder(inGHz) :
m n Cutoff frequency(GHz)
0 1 3.75
0 2 7.5
0 3 11.25
1 0 1.875
1 1 4.192
1 2 7.731
1 3 11.405
2 0 3.75
2 1 5.30
2 2 8.39
3 0 5.625
3 1 6.76
3 2 9.375
4 0 7.5
4 1 8.38
5 0 9.375
10
At 1 GHz, nopropagationtakesplace. At3 GHz onlyTE10 mode propagates(recall noTM mode is
possible wheneitherof the indicesiszero.) At8GHz, we have TE01, TE02, TE10, TE11, TE12, TE20,
TE21, TE30, TE31, TE40, TM11, TM12, TM21 and TM31, i.e.a total of 14 modespropagating.
2. The cutoff frequencyisgivenby
𝑓𝑐 =
𝑐
2
√(
π‘š
π‘Ž
)
2
+ (
𝑛
𝑏
)
2
= 7.5 𝐺𝐻𝑧
The propagationof the wave isgivenbythe groupvelocity 𝑣𝑔 = π‘βˆš1 βˆ’ (
𝑓𝑐
𝑓
)
2
,whichis 1.98x 108
and 2.07x108
m/s respectivelyforf=10 GHz and12 GHz respectively.Thusthe difference in
speedis9x 106
m/s,resultinginatime difference of approximately10-5
sin travelling10m.
3. The operatingfrequency is givenby
πœ” =
1
√ πœ‡πœ–
[(
π‘™πœ‹
π‘Ž
)
2
+ (
π‘šπœ‹
𝑏
)
2
+ (
π‘›πœ‹
𝑑
)
2
]
1
2
Substituting 𝑙 = 1, π‘š = 0, 𝑛 = 3,we get 𝑑 = 2.4cm.
Wave guides
Lecture37: Electromagnetic Theory
Professor D. K. Ghosh, Physics Department, I.I.T., Bombay
11
SelfAssessmentQuestions
1. A rectangular,airfilled waveguide hasdimension2cm x 1 cm. For whatrange of
frequencies,there isaβ€œsingle mode”operationinthe guide?
2. The cutoff frequencyfora TE10 mode inan airfilledwaveguide is1.875 GHz. What would
be the cutoff frequencyof thismode if the guide were tobe filledwithadielectricof
permittivity 9πœ–0?
3. In an air filledwaveguideof dimension2cm x 2 cm, the x componentof the electricfieldis
givenby
𝐸 π‘₯ = βˆ’8sin (
2πœ‹π‘¦
π‘Ž
)sin(πœ”π‘‘ βˆ’ 100𝑧)
Identifythe propagatingmode,determine the frequencyof operation and find 𝐻𝑧 and 𝐸 𝑧.
Solutionsto SelfAssessmentQuestions
1. The cutoff frequencyfor(m,n) mode is πœˆπ‘ =
𝑐
2πœ‹
√(
π‘šπœ‹
π‘Ž
)
2
+ (
π‘›πœ‹
𝑏
)
2
= 1.5 Γ— 1010√
π‘š2
4
+ 𝑛2.
Substitutingvalues,the cutoff for (1,0) mode is7.5 GHz andfor (2,0) is15 GHz. The frequency
for (0,1) is also15 GHz. All othermodeshave highercutoff.Thusin orderthat onlyone mode
propagates,the operatingfrequencyshouldbe inthe range 7.5 < 𝜈 < 15 GHz. In thisrange,
onlyTE10 mode operates.Recall thatthere isnoTM mode witheitherof the indicesbeingzero.
2. The cutoff frequencyisproportional to
1
√ πœ‡πœ–
.Thusthe frequencywouldbe reducedbyafactor of
3 makingit625 MHz.
3. Since one of the standingwave factoris missing,one of the mode indicesiszero.Thusitisa TE
mode.The electricfieldof TEmn mode isgivenby (witha=b)
𝐸 π‘₯ =
π‘–πœ”πœ‡
π‘˜2 πΆπ‘˜ 𝑦 cos(
π‘šπœ‹π‘₯
π‘Ž
)sin (
π‘›πœ‹π‘¦
π‘Ž
)sin(𝛽𝑧 βˆ’ πœ”π‘‘)
Thus the mode isTE02 mode. From the relation π‘˜ π‘₯
2 + π‘˜ 𝑦
2 + 𝛽2 =
πœ”2
𝑐2
.Given π‘˜ π‘₯ = 0, π‘˜ 𝑦 =
2πœ‹
0.02
=
100πœ‹, 𝛽 = 100,
πœ”2
𝑐2 = (100πœ‹)2 + (100)2
12
the operatingfrequencyis15.74 GHz.
Since π‘˜ π‘₯ = 0, 𝐸 𝑦 = 0 . Further,bydefinitionforTE mode 𝐸 𝑧 = 0.
Here we have π‘˜2 = π‘˜ π‘₯
2 + π‘˜ 𝑦
2 = π‘˜ 𝑦
2. The ratio
|
𝐻𝑧
𝐸 π‘₯
| =
π‘˜2
πœ”πœ‡π‘˜ 𝑦
=
π‘˜ 𝑦
πœ”πœ‡
= 0.0025
so that
𝐻𝑧 = 0.020cos(
2πœ‹
π‘Ž
𝑦) cos (πœ”π‘‘ βˆ’ 100𝑧) A/m

More Related Content

What's hot

Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsSolo Hermelin
Β 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2SEENET-MTP
Β 
Frequency analyis i
Frequency analyis iFrequency analyis i
Frequency analyis ifoxtrot jp R
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasdfoxtrot jp R
Β 
I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2SEENET-MTP
Β 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikamiranteogbonna
Β 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equationsVenkata.Manish Reddy
Β 
Maths partial differential equation Poster
Maths partial differential equation PosterMaths partial differential equation Poster
Maths partial differential equation PosterEr. Ashish Pandey
Β 
Phase transition and casimir effect
Phase transition and casimir effectPhase transition and casimir effect
Phase transition and casimir effectnguyenthamhn
Β 
Capitulo 12, 7ma ediciΓ³n
Capitulo 12, 7ma ediciΓ³nCapitulo 12, 7ma ediciΓ³n
Capitulo 12, 7ma ediciΓ³nSohar Carr
Β 
Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics The Chinese University of Hong Kong
Β 
6). oscillatory motion (finished)
6). oscillatory motion (finished)6). oscillatory motion (finished)
6). oscillatory motion (finished)PhysicsLover
Β 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccfoxtrot jp R
Β 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applicationsMuhammad Zulfazli
Β 
Capitulo 10, 7ma ediciΓ³n
Capitulo 10, 7ma ediciΓ³nCapitulo 10, 7ma ediciΓ³n
Capitulo 10, 7ma ediciΓ³nSohar Carr
Β 
Vibration of Continuous Structures
Vibration of Continuous StructuresVibration of Continuous Structures
Vibration of Continuous StructuresMohammad Tawfik
Β 
Soal latihan1mekanika
Soal latihan1mekanikaSoal latihan1mekanika
Soal latihan1mekanikamiranteogbonna
Β 
Higher Differential Equation
Higher Differential EquationHigher Differential Equation
Higher Differential Equationgtuautonomous
Β 

What's hot (18)

Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Β 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2
Β 
Frequency analyis i
Frequency analyis iFrequency analyis i
Frequency analyis i
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
Β 
I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2
Β 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanika
Β 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equations
Β 
Maths partial differential equation Poster
Maths partial differential equation PosterMaths partial differential equation Poster
Maths partial differential equation Poster
Β 
Phase transition and casimir effect
Phase transition and casimir effectPhase transition and casimir effect
Phase transition and casimir effect
Β 
Capitulo 12, 7ma ediciΓ³n
Capitulo 12, 7ma ediciΓ³nCapitulo 12, 7ma ediciΓ³n
Capitulo 12, 7ma ediciΓ³n
Β 
Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics
Β 
6). oscillatory motion (finished)
6). oscillatory motion (finished)6). oscillatory motion (finished)
6). oscillatory motion (finished)
Β 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbacc
Β 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applications
Β 
Capitulo 10, 7ma ediciΓ³n
Capitulo 10, 7ma ediciΓ³nCapitulo 10, 7ma ediciΓ³n
Capitulo 10, 7ma ediciΓ³n
Β 
Vibration of Continuous Structures
Vibration of Continuous StructuresVibration of Continuous Structures
Vibration of Continuous Structures
Β 
Soal latihan1mekanika
Soal latihan1mekanikaSoal latihan1mekanika
Soal latihan1mekanika
Β 
Higher Differential Equation
Higher Differential EquationHigher Differential Equation
Higher Differential Equation
Β 

Similar to Waveguides

Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...AIMST University
Β 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximationDHRUBANKA Sarma
Β 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisJAGARANCHAKMA2
Β 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Hassaan Saleem
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxHassaan Saleem
Β 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.dhrubanka
Β 
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsUniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsIOSR Journals
Β 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodSEMINARGROOT
Β 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)PhysicsLover
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
Β 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxHassaan Saleem
Β 
A05330107
A05330107A05330107
A05330107IOSR-JEN
Β 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
Β 
Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivationHassaan Saleem
Β 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...Wasswaderrick3
Β 

Similar to Waveguides (20)

Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Β 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
Β 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysis
Β 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptx
Β 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.
Β 
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsUniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Β 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's method
Β 
lec5.ppt
lec5.pptlec5.ppt
lec5.ppt
Β 
C0560913
C0560913C0560913
C0560913
Β 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
Β 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptx
Β 
A05330107
A05330107A05330107
A05330107
Β 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
Β 
Lecture 3
Lecture 3Lecture 3
Lecture 3
Β 
Lecture 3
Lecture 3Lecture 3
Lecture 3
Β 
Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivation
Β 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
Β 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
Β 

Recently uploaded

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerAnamika Sarkar
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
Β 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
Β 

Recently uploaded (20)

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
Β 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
Β 

Waveguides

  • 1. 1 RectangularWaveguide In the lastlecture,we have coonsidered the case of guidedwave between apairof infiniteconducting planes.Inthislecture,we consdierarectangularwave guide whichconsistsof ahollow pipe of infinite extentbutof rectangular cross sectionof dimension π‘Ž Γ— 𝑏.The longdirectionwill be takentobe the z direction. Unlike inthe previouscase πœ• πœ•π‘¦β„ isnotzero inthiscase. However,asthe propagationdirection isalongthe z direction,we have πœ• πœ•π‘§ β†’ βˆ’π›Ύ and πœ• πœ•π‘‘ β†’ π‘–πœ”. We can write the Maxwell’scurl equationsas πœ•π»π‘§ πœ•π‘¦ + 𝛾𝐻 𝑦 = π‘–πœ”πœ–πΈ π‘₯ βˆ’π›Ύπ» π‘₯ βˆ’ πœ•π»π‘§ πœ•π‘₯ = π‘–πœ”πœ–πΈ 𝑦 πœ•π» 𝑦 πœ•π‘₯ βˆ’ πœ•π» π‘₯ πœ•π‘¦ = π‘–πœ”πœ–πΈ 𝑧 The secondsetof equationsare obtainedfromthe Faraday’slaw,(thesecanbe writtendown fromabove by 𝐸 ↔ 𝐻, πœ– β†’ βˆ’πœ‡ πœ•πΈ 𝑧 πœ•π‘¦ + 𝛾𝐸 𝑦 = βˆ’π‘–πœ”πœ‡π» π‘₯ βˆ’π›ΎπΈ π‘₯ βˆ’ πœ•πΈ 𝑧 πœ•π‘₯ = βˆ’π‘–πœ”πœ‡π» 𝑦 πœ•πΈ 𝑦 πœ•π‘₯ βˆ’ πœ•πΈ π‘₯ πœ•π‘¦ = βˆ’π‘–πœ”πœ‡π»π‘§ Wave Guides Lecture37: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay z xy b a
  • 2. 2 As inthe case of parallel plate waveguides,we canexpressall the fieldquantitiesintermsof the derivatives of 𝐸 𝑧and𝐻𝑧. Forinstance,we have, π‘–πœ”πœ–πΈ π‘₯ = 𝛾𝐻 𝑦 + πœ•π»π‘§ πœ•π‘¦ = 𝛾 π‘–πœ”πœ‡ ( 𝛾𝐸 π‘₯ + πœ•πΈ 𝑧 πœ•π‘₯ )+ πœ•π»π‘§ πœ•π‘¦ whichgives, ( π‘–πœ”πœ– βˆ’ 𝛾2 π‘–πœ”πœ‡ ) 𝐸 π‘₯ = 𝛾 π‘–πœ”πœ‡ πœ•πΈ 𝑧 πœ•π‘₯ + πœ•π»π‘§ πœ•π‘¦ so that 𝐸 π‘₯ = βˆ’ 𝛾 π‘˜2 πœ•πΈ 𝑧 πœ•π‘₯ βˆ’ π‘–πœ”πœ‡ π‘˜2 πœ•π»π‘§ πœ•π‘¦ (1) where π‘˜2 = 𝛾2 + πœ”2 πœ‡πœ– The other componentscanbe similarly writtendown, 𝐸 𝑦 = βˆ’ 𝛾 π‘˜2 πœ•πΈ 𝑧 πœ•π‘¦ βˆ’ π‘–πœ”πœ‡ π‘˜2 πœ•π»π‘§ πœ•π‘₯ (2) 𝐻 π‘₯ = π‘–πœ”πœ– π‘˜2 πœ•πΈ 𝑧 πœ•π‘¦ βˆ’ 𝛾 π‘˜2 πœ•π»π‘§ πœ•π‘₯ (3) 𝐻 𝑦 = βˆ’ π‘–πœ”πœ– π‘˜2 πœ•πΈ 𝑧 πœ•π‘₯ βˆ’ 𝛾 π‘˜2 πœ•π»π‘§ πœ•π‘¦ (4) As before,we willlookintothe TEmode indetail.Since 𝐸 𝑧 = 0,we need tosolve for 𝐻𝑧 from the Helmholtzequation, ( πœ•2 πœ•π‘₯2 + πœ•2 πœ•π‘¦2 + π‘˜2) 𝐻𝑧( π‘₯, 𝑦) = 0 (5) Rememberthatthe complete solutionisobtainedbymultiplyingwith π‘’βˆ’π›Ύπ‘§+π‘–πœ”π‘‘. We solve equation(5) usingthe technique of separationof variableswhichwe came acrossearlier.Let 𝐻𝑧( π‘₯, 𝑦) = 𝑋( π‘₯) π‘Œ(𝑦) Substitutingthisin(5) anddividingby π‘‹π‘Œ throughout, we get, 1 𝑋 𝑑2 𝑋 𝑑π‘₯2 + π‘˜2 = βˆ’ 1 π‘Œ 𝑑2 π‘Œ 𝑑𝑦2 ≑ π‘˜ 𝑦 2 where π‘˜ 𝑦 isa constant. We furtherdefine π‘˜ π‘₯ 2 = π‘˜2 βˆ’ π‘˜ 𝑦 2
  • 3. 3 We nowhave twosecondorderequations, 𝑑2 𝑋 𝑑π‘₯2 + π‘˜ π‘₯ 2 𝑋 = 0 𝑑2 π‘Œ 𝑑𝑦2 + π‘˜ 𝑦 2 π‘Œ = 0 The solutionsof these equationsare well known 𝑋( π‘₯) = 𝐢1 cos π‘˜ π‘₯ π‘₯ + 𝐢2 sin π‘˜ π‘₯ π‘₯ π‘Œ( 𝑦) = 𝐢3 cos π‘˜ 𝑦 𝑦 + 𝐢4 sin π‘˜ 𝑦 𝑦 Thisgives, 𝐻𝑧( π‘₯, 𝑦) = 𝐢1 𝐢3cos π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦+ 𝐢1 𝐢4 cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 +𝐢2 𝐢3sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 + 𝐢2 𝐢4 𝑠𝑖𝑛 π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 The boundaryconditionsthatmust be satisfiedtodeterminethe constants isthe vanishingof the tangential componentof the electricfieldonthe plates.Inthiscase,we have twopairsof plates.The tangential directiononthe platesat π‘₯ = 0and π‘₯ = π‘Ž isthe y direction,sothatthe y componentof the electricfield 𝐸 𝑦 = 0 at π‘₯ = 0, π‘Ž . Likewise, onthe platesat 𝑦 = 0 and 𝑦 = 𝑏, 𝐸 π‘₯ = 0 at 𝑦 = 0, 𝑏 We needfirsttoevaluate 𝐸 π‘₯ and 𝐸 𝑦 usingequations(1) and(2) and thensubstitute the boundaryconditions. Since 𝐸 𝑧 = 0,we canwrite eqn.(1) and (2) as 𝐸 π‘₯ = βˆ’ π‘–πœ”πœ‡ π‘˜2 πœ•π»π‘§ πœ•π‘¦ 𝐸 𝑦 = βˆ’ π‘–πœ”πœ‡ π‘˜2 πœ•π»π‘§ πœ•π‘₯ 𝐸 π‘₯ = βˆ’ π‘–πœ”πœ‡ π‘˜2 [βˆ’πΆ1 𝐢3 ky cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 + 𝐢1 𝐢4 π‘˜ 𝑦 cos π‘˜ π‘₯ π‘₯ cos π‘˜ 𝑦 𝑦 βˆ’πΆ2 𝐢3kysin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 + 𝐢2 𝐢4 π‘˜ 𝑦 sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 𝐸 𝑦 = βˆ’ π‘–πœ”πœ‡ π‘˜2 [βˆ’πΆ1 𝐢3kx sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 βˆ’ 𝐢1 𝐢4 π‘˜ π‘₯sin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 +𝐢2 𝐢3kxcos π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 + 𝐢2 𝐢4 π‘˜ π‘₯ π‘π‘œπ‘  π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦] Since 𝐸 𝑦 = 0 at π‘₯ = 0, we musthave 𝐢2 = 0 and thenwe get, 𝐸 𝑦 = βˆ’ π‘–πœ”πœ‡ π‘˜2 [βˆ’πΆ1 𝐢3kx sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 π‘¦βˆ’ 𝐢1 𝐢4 π‘˜ π‘₯ sin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦] Further,since 𝐸 π‘₯ = 0 at y=0, we have 𝐢4 = 0. Combiningthese,we get,ondefiningaconstant 𝐢 = 𝐢1 𝐢3
  • 4. 4 𝐸 π‘₯ = π‘–πœ”πœ‡ π‘˜2 πΆπ‘˜ 𝑦 cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 𝐸 𝑦 = π‘–πœ”πœ‡ π‘˜2 πΆπ‘˜ π‘₯ sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 and 𝐻𝑧 = 𝐢 cos π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 We still have the boundaryconditions, 𝐸 π‘₯ = 0 at 𝑦 = 𝑏 and 𝐸 𝑦 = 0 at π‘₯ = π‘Žtobe satisfied. The formergives π‘˜ 𝑦 = π‘›πœ‹ 𝑏 while the lattergives π‘˜ π‘₯ = π‘šπœ‹ π‘Ž ,where mandn are integers.Thuswe have, 𝐻𝑧 = 𝐢 cos( π‘šπœ‹ π‘Ž π‘₯) cos( π‘›πœ‹π‘¦ 𝑏 ) and π‘˜2 = π‘˜ π‘₯ 2 + π‘˜ 𝑦 2 = ( π‘šπœ‹ π‘Ž ) 2 + ( π‘›πœ‹ 𝑏 ) 2 However,π‘˜2 = πœ”2 πœ‡πœ– + 𝛾2,sothat, 𝛾 = √( π‘šπœ‹ π‘Ž ) 2 + ( π‘›πœ‹ 𝑏 ) 2 βˆ’ πœ”2 πœ‡πœ– For propagationtotake place, 𝛾 must be imaginary,sothat the cutoff frequencybelow which propagationdoesnottake place isgivenby πœ” 𝑐 = 1 √ πœ‡πœ– √( π‘šπœ‹ π‘Ž ) 2 + ( π‘›πœ‹ 𝑏 ) 2 The minimumcutoff isforTE1,0 (or TE0,1 ) mode whichare knownas dominantmode. For these modes 𝐸 π‘₯ (or 𝐸 𝑦) iszero. TM Modes We will notbe derivingthe equationsforthe TMmodesforwhich 𝐻𝑧 = 0 . Inthiscase, the solutionfor 𝐸 𝑧,becomes, 𝐸 𝑧 = 𝐸 𝑧0 sin ( π‘šπœ‹ π‘Ž )sin ( π‘›πœ‹ 𝑏 ) As the solutionisintermsof productof sine functions,neithermnorn can be zeroin thiscase. Thisis whythe lowestTE mode isthe dominantmode. For propagatingsolutions,we have, 𝛽 = √ πœ”2 πœ‡πœ– βˆ’ ( π‘šπœ‹ π‘Ž ) 2 βˆ’ ( π‘›πœ‹ 𝑏 ) 2 = √ πœ‡πœ–βˆš πœ”2 βˆ’ πœ” 𝑐 2 where, πœ” 𝑐 = 1 √ πœ‡πœ– √( π‘šπœ‹ π‘Ž ) 2 + ( π‘›πœ‹ 𝑏 ) 2
  • 5. 5 We have, πœ”2 = 𝛽2 πœ‡πœ– + πœ” 𝑐 2.Differentiatingbothsides,we have, πœ” π‘‘πœ” 𝑑𝛽 = 1 πœ‡πœ– 𝛽 The group velocityof the wave isgivenby 𝑣𝑔 = π‘‘πœ” 𝑑𝛽 = 𝛽 πœ”πœ‡πœ– = √ πœ‡πœ–βˆšπœ”2 βˆ’ πœ” 𝑐 2 πœ”πœ‡πœ– = 1 √ πœ‡πœ– √1 βˆ’ πœ” 𝑐 2 πœ”2 whichisless thanthe speedof light.The phase velocity,however,isgivenby 𝑣 πœ™ = πœ” 𝛽 = πœ” √ πœ‡πœ–βˆšπœ”2 βˆ’ πœ” 𝑐 2 = 1 √ πœ‡πœ– 1 √1 βˆ’ πœ” 𝑐 2 πœ”2 It may be notedthat 𝑣 πœ™ 𝑣𝑔 = 1 πœ‡πœ– , whichinvacuumequal the square velocityof light. For propagatingTE mode,we have,from(1) and (4) using 𝐸 𝑧 = 0 𝐸 π‘₯ 𝐻 𝑦 = π‘–πœ”πœ‡ 𝛾 = πœ”πœ‡ 𝛽 = √ πœ‡ πœ– 1 √1 βˆ’ πœ” 𝑐 2 πœ”2 ≑ πœ‚ 𝑇𝐸 where πœ‚ 𝑇𝐸 isthe characteristicimpedance forthe TE mode.Itisseenthat the characteristic impedance isresistive. Likewise, 𝐸 𝑦 𝐻 π‘₯ = βˆ’πœ‚ 𝑇𝐸 Power Transmission We have seenthatinthe propagatingmode,the intrinsicimpedance isresistive,indicatingthat there will be average flowof power. The PoyntingvectorforTE mode isgivenby 〈 𝑆βŒͺ = 1 2 Re〈 𝐸⃗ Γ— 𝐻⃗⃗ βˆ—βŒͺ = 1 2 Re( 𝐸 π‘₯ 𝐻𝑦 βˆ— βˆ’ 𝐸 𝑦 𝐻π‘₯ βˆ—) = 1 2πœ‚ 𝑇𝐸 (| 𝐸 π‘₯ 2| + | 𝐸 𝑦 2|) Substitutingthe expressionsforthe field components,the average powerflow throughthe x y plane isgivenby 〈 𝑃βŒͺ = ∫ 〈 𝑆βŒͺ 𝑑π‘₯ 𝑑𝑦 = 1 2πœ‚ 𝑇𝐸 ∫ ∫ (| 𝐸π‘₯ 2| + | 𝐸 𝑦 2|) 𝑑π‘₯ 𝑑𝑦 𝑏 0 π‘Ž 0 = 1 2πœ‚ 𝑇𝐸 𝐢2 πœ”2 πœ‡2 π‘˜4 [( π‘›πœ‹ 𝑏 ) 2 ∫ ∫ cos2 ( π‘šπœ‹ π‘Ž π‘₯) sin2 ( π‘›πœ‹ 𝑏 𝑦) 𝑑π‘₯ 𝑑𝑦 𝑏 0 π‘Ž 0 + ( π‘šπœ‹ π‘Ž ) 2 ∫ ∫ sin2 ( π‘šπœ‹ π‘Ž π‘₯) cos2 ( π‘›πœ‹ 𝑏 𝑦) 𝑑π‘₯ 𝑑𝑦 𝑏 0 π‘Ž 0 ]
  • 6. 6 = 1 2πœ‚ 𝑇𝐸 𝐢2 πœ”2 πœ‡2 π‘˜4 [( π‘šπœ‹ π‘Ž ) 2 + ( π‘›πœ‹ 𝑏 ) 2 ] π‘Žπ‘ 4 ImpossibilityofTEM mode in Rectangular waveguides We have seenthat in a parallel plate waveguide,aTEMmode for whichboththe electricand magneticfieldsare perpendiculartothe directionof propagation,exists.This,howeverisnot true of rectangularwave guide,orforthat matter forany hollow conductorwave guide without an innerconductor. We knowthatlinesof H are closedloops.Since there isnozcomponentof the magneticfield, such loopsmustlie inthe x-yplane.However,aloopinthe x-yplane,accordingtoAmpere’s law,impliesanaxial current.If there isnoinnerconductor,there cannotbe a real current.The onlyotherpossibilitythenisadisplacementcurrent. However,anaxial displacementcurrent requiresanaxial componentof the electricfield,whichiszeroforthe TEM mode.ThusTEM mode cannot existinahollowconductor.(forthe parallel plate waveguides,thisrestriction doesnotapplyas the fieldlinesclose atinfinity.) ResonatingCavity In a rectangularwaveguide we hadahollow tube withfoursidesclosedand apropagation directionwhichwasinfinitelylong.We wil now close the thirdside andconsider electromagneticwave trappedinsidearectangularparallopipedof dimension π‘Ž Γ— 𝑏 Γ— 𝑑 with wallsbeingmade of perfectorconductor.(The thirddimensionistakenasd so as notto confuse withthe speedof lightc). Resonantingcavitiesare useful forstoringelectromagneticenergyjustasLCcircuit doesbutthe formerhas an advantage inbeinglesslossyandhavingafrequencyrange muchhigher,above 100 MHz. The Helmholtzequationforanyof the components 𝐸 𝛼 of the electricfieldcanbe writtenas βˆ‡2 𝐸 𝛼 = βˆ’πœ”2 πœ‡πœ–πΈ 𝛼 We write thisinCartesiananduse the technique of separationof variables, 𝐸 𝛼( π‘₯, 𝑦, 𝑧) = 𝑋 𝛼( π‘₯) π‘Œπ›Ό( 𝑦) 𝑍 𝛼(𝑧) Introducingthisintothe equationanddividingby 𝑋 𝛼( π‘₯) π‘Œπ›Ό( 𝑦) 𝑍 𝛼(𝑧),we get, 1 𝑋 𝛼 πœ•2 𝑋 𝛼 πœ•π‘₯2 + 1 π‘Œπ›Ό πœ•2 π‘Œπ›Ό πœ•π‘¦2 + 1 𝑍 𝛼 πœ•2 𝑍 𝛼 πœ•π‘§2 = βˆ’πœ”2 πœ‡πœ– Since eachof the three termson the rightis a functionof an independentvariable,whilethe righthand side isa constant,we musthave each of the three termsequalingaconstantsuch that the three constantsadd up to the constanton the right. Let, πœ•2 𝑋 𝛼 πœ•π‘₯2 = βˆ’π‘˜ π‘₯ 2 𝑋 𝛼
  • 7. 7 πœ•2 π‘Œπ›Ό πœ•π‘¦2 = βˆ’π‘˜ 𝑦 2 π‘Œπ›Ό πœ•2 𝑍 𝛼 πœ•π‘§2 = βˆ’π‘˜ 𝑧 2 𝑍 𝛼 such that π‘˜ π‘₯ 2 + π‘˜ 𝑦 2 + π‘˜ 𝑧 2 = πœ”2 πœ‡πœ–. As eachof the equationshasa solutionintermsof linearcombinationof sine andcosine functions,we write the solutionforthe electricfieldas 𝐸 𝛼 = (𝐴 𝛼 cos π‘˜ π‘₯ π‘₯ + 𝐡 𝛼 sin π‘˜ π‘₯ π‘₯)(𝐢 𝛼 cos π‘˜ 𝑦 𝑦 + 𝐷 𝛼 sin π‘˜ 𝑦 𝑦)(𝐹cos π‘˜ 𝑧 𝑧 + 𝐺 𝛼 sin π‘˜ 𝑧 𝑧) Tha tangential componentof above mustvanishatthe metal boundary. Thisimplies, 1. At π‘₯ = 0 and at π‘₯ = π‘Ž , 𝐸 𝑦 and 𝐸 𝑧 = 0 for all valuesof 𝑦, 𝑧, 2. At 𝑦 = 0 and 𝑦 = 𝑏, 𝐸 π‘₯ and 𝐸 𝑧 = 0 forall valuesof π‘₯, 𝑧, 3. At 𝑧 = 0 and z=d, 𝐸 π‘₯ and 𝐸 𝑦 = 0 for all valuesof π‘₯, 𝑦 Let usconsider 𝐸 π‘₯ whichmustbe zero at 𝑦 = 0, 𝑦 = 𝑏, 𝑧 = 0, 𝑧 = 𝑑. Thisisposible if 𝐸 π‘₯ = 𝐸 π‘₯0(𝐴 π‘₯ cos π‘˜ π‘₯ π‘₯ + 𝐡 π‘₯ sin π‘˜ π‘₯ π‘₯)sin π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧 with π‘˜ 𝑦 = π‘šπœ‹ 𝑏 and π‘˜ 𝑧 = π‘›πœ‹ 𝑑 . Here m and n are non-zerointegers. In a similarway,we have, 𝐸 𝑦 = 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯ (𝐢 𝑦 cos π‘˜ 𝑦 𝑦 + 𝐷 𝑦 sin π‘˜ 𝑦 𝑦)sin π‘˜ 𝑧 𝑧 𝐸 𝑧 = 𝐸 𝑧0sin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦 (𝐹𝑧 cos π‘˜ 𝑧 𝑧 + 𝐺𝑧 sin π‘˜ 𝑧 𝑧) with π‘˜ π‘₯ = π‘™πœ‹ π‘Ž , with 𝑙 beingnon-zerointeger. We nowuse βˆ‡ β‹… 𝐸⃗ = πœ•πΈ π‘₯ πœ•π‘₯ + πœ•πΈ 𝑦 πœ•π‘¦ + πœ•πΈ 𝑧 πœ•π‘§ = 0 Thisrelationmustbe satisfiedfor all valuesof 𝒙, π’š, 𝒛 withinthe cavity. Thisrequires, 𝐸 π‘₯0(βˆ’π΄ π‘₯ π‘˜ π‘₯ sin π‘˜ π‘₯ π‘₯ + 𝐡 π‘₯ π‘˜ π‘₯cos π‘˜ π‘₯ π‘₯)sin π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧 + 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯(βˆ’πΆ 𝑦 π‘˜ 𝑦 sin π‘˜ 𝑦 𝑦 + 𝐷 𝑦 π‘˜ 𝑦 cos π‘˜ 𝑦 𝑦)sin π‘˜ 𝑧 𝑧 + 𝐸 𝑧0 sin π‘˜ π‘₯ π‘₯𝑠𝑖𝑛 π‘˜ 𝑦 𝑦(βˆ’πΉπ‘§ π‘˜ 𝑧 sin π‘˜ 𝑧 𝑧 + 𝐺𝑧 π‘˜ 𝑧 cos π‘˜ 𝑧 𝑧) = 0 Let uschoose some special pointsand try to satisfythisequation.Let π‘₯ = 0, 𝑦, 𝑧 arbitrary, Thisrequires 𝐡 π‘₯ = 0.Likewise,taking 𝑦 = 0,x,z arbitrary,we require 𝐷 𝑦 = 0 andfinally, 𝑧 = 0, π‘₯, 𝑦 arbitrary gives 𝐺𝑧 = 0. Withthese our solutionsforthe componentsof the electricfieldbecomes, 𝐸 π‘₯ = 𝐸 π‘₯0cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧 𝐸 𝑦 = 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧 𝐸 𝑧 = 𝐸 𝑧0 sin π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦cos π‘˜ 𝑧 𝑧 where we have redefinedourconstants 𝐸 π‘₯0,𝐸 𝑦0 and 𝐸 𝑧0.
  • 8. 8 We alsohave, π‘˜ π‘₯ = π‘™πœ‹ π‘Ž , π‘˜ 𝑦 = π‘šπœ‹ 𝑏 , π‘˜ 𝑧 = π‘›πœ‹ 𝑑 the integers 𝑙, π‘š, 𝑛 cannotbe simultaneouslyzeroforthenthe fieldwill identicallyvanish. Note furtherthatsince βˆ‡ β‹… 𝐸⃗ = 0 must be satisfiedeverywhere withinthe cavity,we musthave, calculatingthe divergence explicitlyfromthe above expressions, π‘˜ π‘₯ 𝐸 π‘₯0 + π‘˜ 𝑦 𝐸𝑦0 + π‘˜ 𝑧 𝐸𝑧0 = 0 Thisrequiresthat π‘˜βƒ— is perpendicularto 𝐸⃗ . One can see that the modeswithinacavitycan existonlywithprescribed β€œresonant”frequency correspondingtothe setof integers 𝑙, π‘š, 𝑛 πœ” = 1 √ πœ‡πœ– [( π‘™πœ‹ π‘Ž ) 2 + ( π‘šπœ‹ 𝑏 ) 2 + ( π‘›πœ‹ 𝑑 ) 2 ] 1 2 Thoughthere isnothinglike apropagationdirectionhere,one cantake the longestdimension (sayd) to be the propagationdirection. We can have modeslike 𝑇𝐸𝑙,π‘š,𝑛 correspondingtothe set 𝑙, π‘š, 𝑛 for which 𝐸 𝑧 = 0.For thisset we get, 𝐸 π‘₯ = 𝐸 π‘₯0cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧 𝐸 𝑦 = 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧 with π‘˜ π‘₯ 𝐸π‘₯0 + π‘˜ 𝑦 𝐸𝑦0 = 0. The magneticfieldcomponentscanbe obtainedfromthe Faraday’s law, 𝐻 π‘₯ = 1 βˆ’π‘–πœ”πœ‡ (βˆ’ πœ•πΈ 𝑦 πœ•π‘§ ) = π‘˜ 𝑧 π‘–πœ”πœ‡ 𝐸 𝑦0sin π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦 cos π‘˜ 𝑧 𝑧 𝐻 𝑦 = 1 βˆ’π‘–πœ”πœ‡ ( πœ•πΈ π‘₯ πœ•π‘§ ) = βˆ’ π‘˜ 𝑧 π‘–πœ”πœ‡ 𝐸 π‘₯0cos π‘˜ π‘₯ π‘₯sin π‘˜ 𝑦 𝑦cos π‘˜ 𝑧 𝑧 𝐻𝑧 = 1 βˆ’π‘–πœ”πœ‡ ( πœ•πΈ 𝑦 πœ•π‘₯ βˆ’ πœ•πΈ π‘₯ πœ•π‘¦ ) = βˆ’ 1 π‘–πœ”πœ‡ (𝐸 𝑦0 π‘˜ π‘₯ βˆ’ 𝐸 π‘₯0 π‘˜ 𝑦)cos π‘˜ π‘₯ π‘₯cos π‘˜ 𝑦 𝑦sin π‘˜ 𝑧 𝑧 , Wave Guides Lecture37: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay
  • 9. 9 Tutorial Assignment 1. A rectangularwaveguidehasdimensions8cm x 4 cm. Determine all the modesthatcan propagate whenthe operatingfrequencyis (a) 1 GHz, (b) 3 GHz and (c) 8 GHz. 2. Two signals,one of frequency10 GHz and the otherof 12 GHz are simultaneouslylaunchedin an air filledrectangularwaveguideof dimension2cm x 1 cm. Findthe time interval betweenthe arrival of the signalsata distance of 10 m fromthe commonplace of theirlaunch. 3. What shouldbe the thirddimensionof acavityhavinga lengthof 1 cm x 1 cm whichcan operate ina TE103 mode at 24 GHZ? Solutionsto Tutorial Assignments 1. The cutoff frequencyfor(m,n) mode is πœˆπ‘ = 𝑐 2πœ‹ √( π‘šπœ‹ π‘Ž ) 2 + ( π‘›πœ‹ 𝑏 ) 2 = 1.5 Γ— 1010√ π‘š2 64 + 𝑛2 16 .Some of the lowestcutoffsare asunder(inGHz) : m n Cutoff frequency(GHz) 0 1 3.75 0 2 7.5 0 3 11.25 1 0 1.875 1 1 4.192 1 2 7.731 1 3 11.405 2 0 3.75 2 1 5.30 2 2 8.39 3 0 5.625 3 1 6.76 3 2 9.375 4 0 7.5 4 1 8.38 5 0 9.375
  • 10. 10 At 1 GHz, nopropagationtakesplace. At3 GHz onlyTE10 mode propagates(recall noTM mode is possible wheneitherof the indicesiszero.) At8GHz, we have TE01, TE02, TE10, TE11, TE12, TE20, TE21, TE30, TE31, TE40, TM11, TM12, TM21 and TM31, i.e.a total of 14 modespropagating. 2. The cutoff frequencyisgivenby 𝑓𝑐 = 𝑐 2 √( π‘š π‘Ž ) 2 + ( 𝑛 𝑏 ) 2 = 7.5 𝐺𝐻𝑧 The propagationof the wave isgivenbythe groupvelocity 𝑣𝑔 = π‘βˆš1 βˆ’ ( 𝑓𝑐 𝑓 ) 2 ,whichis 1.98x 108 and 2.07x108 m/s respectivelyforf=10 GHz and12 GHz respectively.Thusthe difference in speedis9x 106 m/s,resultinginatime difference of approximately10-5 sin travelling10m. 3. The operatingfrequency is givenby πœ” = 1 √ πœ‡πœ– [( π‘™πœ‹ π‘Ž ) 2 + ( π‘šπœ‹ 𝑏 ) 2 + ( π‘›πœ‹ 𝑑 ) 2 ] 1 2 Substituting 𝑙 = 1, π‘š = 0, 𝑛 = 3,we get 𝑑 = 2.4cm. Wave guides Lecture37: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay
  • 11. 11 SelfAssessmentQuestions 1. A rectangular,airfilled waveguide hasdimension2cm x 1 cm. For whatrange of frequencies,there isaβ€œsingle mode”operationinthe guide? 2. The cutoff frequencyfora TE10 mode inan airfilledwaveguide is1.875 GHz. What would be the cutoff frequencyof thismode if the guide were tobe filledwithadielectricof permittivity 9πœ–0? 3. In an air filledwaveguideof dimension2cm x 2 cm, the x componentof the electricfieldis givenby 𝐸 π‘₯ = βˆ’8sin ( 2πœ‹π‘¦ π‘Ž )sin(πœ”π‘‘ βˆ’ 100𝑧) Identifythe propagatingmode,determine the frequencyof operation and find 𝐻𝑧 and 𝐸 𝑧. Solutionsto SelfAssessmentQuestions 1. The cutoff frequencyfor(m,n) mode is πœˆπ‘ = 𝑐 2πœ‹ √( π‘šπœ‹ π‘Ž ) 2 + ( π‘›πœ‹ 𝑏 ) 2 = 1.5 Γ— 1010√ π‘š2 4 + 𝑛2. Substitutingvalues,the cutoff for (1,0) mode is7.5 GHz andfor (2,0) is15 GHz. The frequency for (0,1) is also15 GHz. All othermodeshave highercutoff.Thusin orderthat onlyone mode propagates,the operatingfrequencyshouldbe inthe range 7.5 < 𝜈 < 15 GHz. In thisrange, onlyTE10 mode operates.Recall thatthere isnoTM mode witheitherof the indicesbeingzero. 2. The cutoff frequencyisproportional to 1 √ πœ‡πœ– .Thusthe frequencywouldbe reducedbyafactor of 3 makingit625 MHz. 3. Since one of the standingwave factoris missing,one of the mode indicesiszero.Thusitisa TE mode.The electricfieldof TEmn mode isgivenby (witha=b) 𝐸 π‘₯ = π‘–πœ”πœ‡ π‘˜2 πΆπ‘˜ 𝑦 cos( π‘šπœ‹π‘₯ π‘Ž )sin ( π‘›πœ‹π‘¦ π‘Ž )sin(𝛽𝑧 βˆ’ πœ”π‘‘) Thus the mode isTE02 mode. From the relation π‘˜ π‘₯ 2 + π‘˜ 𝑦 2 + 𝛽2 = πœ”2 𝑐2 .Given π‘˜ π‘₯ = 0, π‘˜ 𝑦 = 2πœ‹ 0.02 = 100πœ‹, 𝛽 = 100, πœ”2 𝑐2 = (100πœ‹)2 + (100)2
  • 12. 12 the operatingfrequencyis15.74 GHz. Since π‘˜ π‘₯ = 0, 𝐸 𝑦 = 0 . Further,bydefinitionforTE mode 𝐸 𝑧 = 0. Here we have π‘˜2 = π‘˜ π‘₯ 2 + π‘˜ 𝑦 2 = π‘˜ 𝑦 2. The ratio | 𝐻𝑧 𝐸 π‘₯ | = π‘˜2 πœ”πœ‡π‘˜ 𝑦 = π‘˜ 𝑦 πœ”πœ‡ = 0.0025 so that 𝐻𝑧 = 0.020cos( 2πœ‹ π‘Ž 𝑦) cos (πœ”π‘‘ βˆ’ 100𝑧) A/m