SlideShare a Scribd company logo
Algorithmic Music
Discovery at Spotify
Chris Johnson
@MrChrisJohnson
January 13, 2014

Monday, January 13, 14
Who am I??
•Chris Johnson

– Machine Learning guy from NYC
– Focused on music recommendations
– Formerly a graduate student at UT Austin

Monday, January 13, 14
What is Spotify?

•
•

On demand music streaming service
“iTunes in the cloud”

Monday, January 13, 14

3
Section name

Monday, January 13, 14

4
Data at Spotify....
• 20 Million songs
• 24 Million active users
• 6 Million paying users
• 8 Million daily active users
• 1 TB of compressed data generated from users per day
• 700 node Hadoop Cluster
• 1 Million years worth of music streamed
• 1 Billion user generated playlists

Monday, January 13, 14

5
Challenge: 20 Million songs... how do we
recommend music to users?

Monday, January 13, 14

6
Recommendation Features
• Discover (personalized recommendations)
• Radio
• Related Artists
• Now Playing

Monday, January 13, 14

7
8

How can we find good
recommendations?
• Manual Curation

• Manually Tag Attributes

• Audio Content,
Metadata, Text Analysis

• Collaborative Filtering

Monday, January 13, 14
Collaborative Filtering - “The Netflix Prize”

Monday, January 13, 14

9
Collaborative Filtering

10

Hey,
I like tracks P, Q, R, S!
Well,
I like tracks Q, R, S, T!

Then you should check out
track P!

Nice! Btw try track T!

Image via Erik Bernhardsson
Monday, January 13, 14
Section name

Monday, January 13, 14

11
Difference between movie and music recs

•

Scale of catalog

60,000 movies

Monday, January 13, 14

20,000,000 songs

12
Difference between movie and music recs

•

Repeated consumption

Monday, January 13, 14

13
Difference between movie and music recs

•

Music is more niche

Monday, January 13, 14

14
“The Netflix Problem” Vs “The Spotify Problem

•Netflix:

Users explicitly “rate” movies

•Spotify:

Feedback is implicit through streaming behavior

Monday, January 13, 14

15
Section name

Monday, January 13, 14

16
Explicit Matrix Factorization

•Users explicitly rate a subset of the movie catalog
•Goal: predict how users will rate new movies
Movies

Users
Chris
Inception

Monday, January 13, 14

17
Explicit Matrix Factorization

18

•Approximate ratings matrix by the product of lowdimensional user and movie matrices
Minimize RMSE (root mean squared error)

•

?
1
2
?
5

•
•
•

3
?
?
?
2

5
?
3
?
?

?
1
2
5
4

= user
= user

rating for movie
latent factor vector

= item

latent factor vector

Monday, January 13, 14

X

Y
Inception
Chris

•
•
•

= bias for user
= bias for item
= regularization parameter
Implicit Matrix Factorization

19

•Replace Stream counts with binary labels
– 1 = streamed, 0 = never streamed

•Minimize weighted RMSE (root mean squared error) using a
function of stream counts as weights

10001001
00100100
10100011
01000100
00100100
10001001

•
•
•
•

= 1 if user
= user
=i tem

Monday, January 13, 14

streamed track
latent factor vector
latent factor vector

X

else 0

Y

•
•
•

= bias for user
= bias for item
= regularization parameter
Alternating Least Squares

• Initialize user and item vectors to random noise

• Fix item vectors and solve for optimal user vectors

– Take the derivative of loss function with respect to user’s vector, set
–

equal to 0, and solve
Results in a system of linear equations with closed form solution!

• Fix user vectors and solve for optimal item vectors
• Repeat until convergence
code: https://github.com/MrChrisJohnson/implicitMF
Monday, January 13, 14

20
Alternating Least Squares

• Note that:
• Then, we can pre-compute
–
–

once per iteration

and
only contain non-zero elements for tracks that
the user streamed
Using sparse matrix operations we can then compute each user’s
vector efficiently in
time where
is the number of
tracks the user streamed

code: https://github.com/MrChrisJohnson/implicitMF
Monday, January 13, 14

21
Alternating Least Squares

code: https://github.com/MrChrisJohnson/implicitMF
Monday, January 13, 14

22
How do we use the learned vectors?

•User-Item score is the dot product

•Item-Item similarity is the cosine similarity

•Both operations have trivial complexity based on the number of
latent factors

Monday, January 13, 14

23
Latent Factor Vectors in 2 dimensions

Monday, January 13, 14

24
Section name

Monday, January 13, 14

25
Scaling up Implicit Matrix Factorization
with Hadoop

Monday, January 13, 14

26
Hadoop at Spotify 2009

Monday, January 13, 14

27
Hadoop at Spotify 2014
700 Nodes in our London data center

Monday, January 13, 14

28
Implicit Matrix Factorization with Hadoop
Map step

29

Reduce step

item vectors
item%L=0

item vectors
item%L=1

user vectors
u%K=0

u%K=0
i%L=0

u%K=0
i%L=1

...

u%K=0
i % L = L-1

u%K=0

user vectors
u%K=1

u%K=1
i%L=0

u%K=1
i%L=1

...

...

u%K=1

...

...

...

...

u % K = K-1
i%L=0

...

...

u % K = K-1
i % L = L-1

user vectors
u % K = K-1

item vectors
i % L = L-1

u % K = K-1

all log entries
u%K=1
i%L=1

Figure via Erik Bernhardsson
Monday, January 13, 14
Implicit Matrix Factorization with Hadoop

30

One map task
Distributed
cache:
All user vectors
where u % K = x
Distributed
cache:
All item vectors
where i % L = y

Mapper

Emit contributions

Reducer

New vector!

Map input:
tuples (u, i, count)
where
u%K=x
and
i%L=y

Figure via Erik Bernhardsson
Monday, January 13, 14
Implicit Matrix Factorization with Spark

31

Spark

Vs
Hadoop

http://www.slideshare.net/Hadoop_Summit/spark-and-shark
Monday, January 13, 14
Section name

Monday, January 13, 14

32
Approximate Nearest Neighbors

code: https://github.com/Spotify/annoy
Monday, January 13, 14

33
Ensemble of Latent Factor Models

34

Figure via Erik Bernhardsson
Monday, January 13, 14
AB-Testing Recommendations

Monday, January 13, 14

35
Open Problems

•How to go from predictive model to related artists? (learning

to rank?)
How do you learn from user feedback?
How do you deal with observation bias in the user feedback?
(active learning?)
How to factor in temporal information?
How much value in content based recommendations?
How to best evaluate model performance?
How to best train an ensemble?

•
•
•
•
•
•

Monday, January 13, 14

36
Section name

37

Thank You!

Monday, January 13, 14
Section name

Monday, January 13, 14

38
Section name

Monday, January 13, 14

39
Section name

Monday, January 13, 14

40
Section name

Monday, January 13, 14

41
Section name

Monday, January 13, 14

42

More Related Content

What's hot

Music Personalization At Spotify
Music Personalization At SpotifyMusic Personalization At Spotify
Music Personalization At Spotify
Vidhya Murali
 
Machine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyMachine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at Spotify
Ching-Wei Chen
 
Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014
Erik Bernhardsson
 
Spotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendationsSpotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendations
Sophia Ciocca
 
Recommending and searching @ Spotify
Recommending and searching @ SpotifyRecommending and searching @ Spotify
Recommending and searching @ Spotify
Mounia Lalmas-Roelleke
 
How Apache Drives Music Recommendations At Spotify
How Apache Drives Music Recommendations At SpotifyHow Apache Drives Music Recommendations At Spotify
How Apache Drives Music Recommendations At Spotify
Josh Baer
 
The Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and PainThe Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and Pain
Rafał Wojdyła
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
Chris Johnson
 
Big data and machine learning @ Spotify
Big data and machine learning @ SpotifyBig data and machine learning @ Spotify
Big data and machine learning @ Spotify
Oscar Carlsson
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data Meetup
Andy Sloane
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018
Fabien Gouyon
 
Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.
Esh Vckay
 
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
Hakka Labs
 
Big Data At Spotify
Big Data At SpotifyBig Data At Spotify
Big Data At Spotify
Adam Kawa
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at Spotify
Oguz Semerci
 
Recommender systems for E-commerce
Recommender systems for E-commerceRecommender systems for E-commerce
Recommender systems for E-commerce
Alexander Konduforov
 
Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experience
Mounia Lalmas-Roelleke
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filtering
Viet-Trung TRAN
 
ML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive Analytics
Erik Bernhardsson
 
Recommendation at Netflix Scale
Recommendation at Netflix ScaleRecommendation at Netflix Scale
Recommendation at Netflix Scale
Justin Basilico
 

What's hot (20)

Music Personalization At Spotify
Music Personalization At SpotifyMusic Personalization At Spotify
Music Personalization At Spotify
 
Machine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyMachine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at Spotify
 
Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014
 
Spotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendationsSpotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendations
 
Recommending and searching @ Spotify
Recommending and searching @ SpotifyRecommending and searching @ Spotify
Recommending and searching @ Spotify
 
How Apache Drives Music Recommendations At Spotify
How Apache Drives Music Recommendations At SpotifyHow Apache Drives Music Recommendations At Spotify
How Apache Drives Music Recommendations At Spotify
 
The Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and PainThe Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and Pain
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
 
Big data and machine learning @ Spotify
Big data and machine learning @ SpotifyBig data and machine learning @ Spotify
Big data and machine learning @ Spotify
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data Meetup
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018
 
Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.
 
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
 
Big Data At Spotify
Big Data At SpotifyBig Data At Spotify
Big Data At Spotify
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at Spotify
 
Recommender systems for E-commerce
Recommender systems for E-commerceRecommender systems for E-commerce
Recommender systems for E-commerce
 
Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experience
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filtering
 
ML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive Analytics
 
Recommendation at Netflix Scale
Recommendation at Netflix ScaleRecommendation at Netflix Scale
Recommendation at Netflix Scale
 

Viewers also liked

Becoming Rhizomatic?
Becoming Rhizomatic?Becoming Rhizomatic?
Becoming Rhizomatic?
Mark Ingham
 
Big Practical Recommendations with Alternating Least Squares
Big Practical Recommendations with Alternating Least SquaresBig Practical Recommendations with Alternating Least Squares
Big Practical Recommendations with Alternating Least Squares
Data Science London
 
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Till Rohrmann
 
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasetsFast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
Gravity - Rock Solid Recommendations
 
Microservices at Spotify
Microservices at SpotifyMicroservices at Spotify
Microservices at Spotify
Kevin Goldsmith
 
Amazon.com: the Hidden Empire - Update 2013
Amazon.com: the Hidden Empire - Update 2013Amazon.com: the Hidden Empire - Update 2013
Amazon.com: the Hidden Empire - Update 2013
Fabernovel
 

Viewers also liked (6)

Becoming Rhizomatic?
Becoming Rhizomatic?Becoming Rhizomatic?
Becoming Rhizomatic?
 
Big Practical Recommendations with Alternating Least Squares
Big Practical Recommendations with Alternating Least SquaresBig Practical Recommendations with Alternating Least Squares
Big Practical Recommendations with Alternating Least Squares
 
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
 
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasetsFast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
 
Microservices at Spotify
Microservices at SpotifyMicroservices at Spotify
Microservices at Spotify
 
Amazon.com: the Hidden Empire - Update 2013
Amazon.com: the Hidden Empire - Update 2013Amazon.com: the Hidden Empire - Update 2013
Amazon.com: the Hidden Empire - Update 2013
 

Similar to Algorithmic Music Recommendations at Spotify

Collaborative Filtering with Spark
Collaborative Filtering with SparkCollaborative Filtering with Spark
Collaborative Filtering with Spark
Chris Johnson
 
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
icwe2015
 
Deezer - Big data as a streaming service
Deezer - Big data as a streaming serviceDeezer - Big data as a streaming service
Deezer - Big data as a streaming service
Julie Knibbe
 
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Timo van Niedek
 
Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and Recommendation
Arjen de Vries
 
Recommendation Systems Roadtrip
Recommendation Systems RoadtripRecommendation Systems Roadtrip
Recommendation Systems Roadtrip
The Real Dyl
 
Real-world News Recommender Systems
Real-world News Recommender SystemsReal-world News Recommender Systems
Real-world News Recommender Systems
kib_83
 
Recsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem RevisitedRecsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem Revisited
Xavier Amatriain
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018
Karthik Murugesan
 
Recsys 2018 overview and highlights
Recsys 2018 overview and highlightsRecsys 2018 overview and highlights
Recsys 2018 overview and highlights
Sandra Garcia
 
Time frequency analysis_journey
Time frequency analysis_journeyTime frequency analysis_journey
Time frequency analysis_journey
Chandrashekhar Padole
 
Approximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Approximate Nearest Neighbors and Vector Models by Erik BernhardssonApproximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Approximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Hakka Labs
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetup
Erik Bernhardsson
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation Systems
Robin Reni
 
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Alexandros Karatzoglou
 
Recommender Systems and Linked Open Data
Recommender Systems and Linked Open DataRecommender Systems and Linked Open Data
Recommender Systems and Linked Open Data
Polytechnic University of Bari
 
Intro to R and Data Mining 2012 09 27
Intro to R and Data Mining 2012 09 27Intro to R and Data Mining 2012 09 27
Intro to R and Data Mining 2012 09 27
Raj Kasarabada
 
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
LINE Corp.
 
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Arjen de Vries
 
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Sc Huang
 

Similar to Algorithmic Music Recommendations at Spotify (20)

Collaborative Filtering with Spark
Collaborative Filtering with SparkCollaborative Filtering with Spark
Collaborative Filtering with Spark
 
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
 
Deezer - Big data as a streaming service
Deezer - Big data as a streaming serviceDeezer - Big data as a streaming service
Deezer - Big data as a streaming service
 
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
 
Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and Recommendation
 
Recommendation Systems Roadtrip
Recommendation Systems RoadtripRecommendation Systems Roadtrip
Recommendation Systems Roadtrip
 
Real-world News Recommender Systems
Real-world News Recommender SystemsReal-world News Recommender Systems
Real-world News Recommender Systems
 
Recsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem RevisitedRecsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem Revisited
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018
 
Recsys 2018 overview and highlights
Recsys 2018 overview and highlightsRecsys 2018 overview and highlights
Recsys 2018 overview and highlights
 
Time frequency analysis_journey
Time frequency analysis_journeyTime frequency analysis_journey
Time frequency analysis_journey
 
Approximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Approximate Nearest Neighbors and Vector Models by Erik BernhardssonApproximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Approximate Nearest Neighbors and Vector Models by Erik Bernhardsson
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetup
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation Systems
 
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
 
Recommender Systems and Linked Open Data
Recommender Systems and Linked Open DataRecommender Systems and Linked Open Data
Recommender Systems and Linked Open Data
 
Intro to R and Data Mining 2012 09 27
Intro to R and Data Mining 2012 09 27Intro to R and Data Mining 2012 09 27
Intro to R and Data Mining 2012 09 27
 
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
 
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?
 
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
 

Recently uploaded

Camunda Chapter NY Meetup July 2024.pptx
Camunda Chapter NY Meetup July 2024.pptxCamunda Chapter NY Meetup July 2024.pptx
Camunda Chapter NY Meetup July 2024.pptx
ZachWylie3
 
LeadMagnet IQ Review: Unlock the Secret to Effortless Traffic and Leads.pdf
LeadMagnet IQ Review:  Unlock the Secret to Effortless Traffic and Leads.pdfLeadMagnet IQ Review:  Unlock the Secret to Effortless Traffic and Leads.pdf
LeadMagnet IQ Review: Unlock the Secret to Effortless Traffic and Leads.pdf
SelfMade bd
 
Discovery Series - Zero to Hero - Task Mining Session 1
Discovery Series - Zero to Hero - Task Mining Session 1Discovery Series - Zero to Hero - Task Mining Session 1
Discovery Series - Zero to Hero - Task Mining Session 1
DianaGray10
 
COVID-19 and the Level of Cloud Computing Adoption: A Study of Sri Lankan Inf...
COVID-19 and the Level of Cloud Computing Adoption: A Study of Sri Lankan Inf...COVID-19 and the Level of Cloud Computing Adoption: A Study of Sri Lankan Inf...
COVID-19 and the Level of Cloud Computing Adoption: A Study of Sri Lankan Inf...
AimanAthambawa1
 
Demystifying Neural Networks And Building Cybersecurity Applications
Demystifying Neural Networks And Building Cybersecurity ApplicationsDemystifying Neural Networks And Building Cybersecurity Applications
Demystifying Neural Networks And Building Cybersecurity Applications
Priyanka Aash
 
Welcome to Cyberbiosecurity. Because regular cybersecurity wasn't complicated...
Welcome to Cyberbiosecurity. Because regular cybersecurity wasn't complicated...Welcome to Cyberbiosecurity. Because regular cybersecurity wasn't complicated...
Welcome to Cyberbiosecurity. Because regular cybersecurity wasn't complicated...
Snarky Security
 
Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10
ankush9927
 
Sonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdfSonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdf
SubhamMandal40
 
What's New in Teams Calling, Meetings, Devices June 2024
What's New in Teams Calling, Meetings, Devices June 2024What's New in Teams Calling, Meetings, Devices June 2024
What's New in Teams Calling, Meetings, Devices June 2024
Stephanie Beckett
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
Brian Pichman
 
Improving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning ContentImproving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning Content
Enterprise Knowledge
 
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
FIDO Alliance
 
Accelerating Migrations = Recommendations
Accelerating Migrations = RecommendationsAccelerating Migrations = Recommendations
Accelerating Migrations = Recommendations
isBullShit
 
It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...
Zilliz
 
CheckPoint Firewall Presentation CCSA.pdf
CheckPoint Firewall Presentation CCSA.pdfCheckPoint Firewall Presentation CCSA.pdf
CheckPoint Firewall Presentation CCSA.pdf
ssuser137992
 
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision MakingConnector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
DianaGray10
 
Mastering Board Best Practices: Essential Skills for Effective Non-profit Lea...
Mastering Board Best Practices: Essential Skills for Effective Non-profit Lea...Mastering Board Best Practices: Essential Skills for Effective Non-profit Lea...
Mastering Board Best Practices: Essential Skills for Effective Non-profit Lea...
OnBoard
 
NVIDIA at Breakthrough Discuss for Space Exploration
NVIDIA at Breakthrough Discuss for Space ExplorationNVIDIA at Breakthrough Discuss for Space Exploration
NVIDIA at Breakthrough Discuss for Space Exploration
Alison B. Lowndes
 
Intel Unveils Core Ultra 200V Lunar chip .pdf
Intel Unveils Core Ultra 200V Lunar chip .pdfIntel Unveils Core Ultra 200V Lunar chip .pdf
Intel Unveils Core Ultra 200V Lunar chip .pdf
Tech Guru
 
Semantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software DevelopmentSemantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software Development
Baishakhi Ray
 

Recently uploaded (20)

Camunda Chapter NY Meetup July 2024.pptx
Camunda Chapter NY Meetup July 2024.pptxCamunda Chapter NY Meetup July 2024.pptx
Camunda Chapter NY Meetup July 2024.pptx
 
LeadMagnet IQ Review: Unlock the Secret to Effortless Traffic and Leads.pdf
LeadMagnet IQ Review:  Unlock the Secret to Effortless Traffic and Leads.pdfLeadMagnet IQ Review:  Unlock the Secret to Effortless Traffic and Leads.pdf
LeadMagnet IQ Review: Unlock the Secret to Effortless Traffic and Leads.pdf
 
Discovery Series - Zero to Hero - Task Mining Session 1
Discovery Series - Zero to Hero - Task Mining Session 1Discovery Series - Zero to Hero - Task Mining Session 1
Discovery Series - Zero to Hero - Task Mining Session 1
 
COVID-19 and the Level of Cloud Computing Adoption: A Study of Sri Lankan Inf...
COVID-19 and the Level of Cloud Computing Adoption: A Study of Sri Lankan Inf...COVID-19 and the Level of Cloud Computing Adoption: A Study of Sri Lankan Inf...
COVID-19 and the Level of Cloud Computing Adoption: A Study of Sri Lankan Inf...
 
Demystifying Neural Networks And Building Cybersecurity Applications
Demystifying Neural Networks And Building Cybersecurity ApplicationsDemystifying Neural Networks And Building Cybersecurity Applications
Demystifying Neural Networks And Building Cybersecurity Applications
 
Welcome to Cyberbiosecurity. Because regular cybersecurity wasn't complicated...
Welcome to Cyberbiosecurity. Because regular cybersecurity wasn't complicated...Welcome to Cyberbiosecurity. Because regular cybersecurity wasn't complicated...
Welcome to Cyberbiosecurity. Because regular cybersecurity wasn't complicated...
 
Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10
 
Sonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdfSonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdf
 
What's New in Teams Calling, Meetings, Devices June 2024
What's New in Teams Calling, Meetings, Devices June 2024What's New in Teams Calling, Meetings, Devices June 2024
What's New in Teams Calling, Meetings, Devices June 2024
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
 
Improving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning ContentImproving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning Content
 
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
 
Accelerating Migrations = Recommendations
Accelerating Migrations = RecommendationsAccelerating Migrations = Recommendations
Accelerating Migrations = Recommendations
 
It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...
 
CheckPoint Firewall Presentation CCSA.pdf
CheckPoint Firewall Presentation CCSA.pdfCheckPoint Firewall Presentation CCSA.pdf
CheckPoint Firewall Presentation CCSA.pdf
 
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision MakingConnector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
 
Mastering Board Best Practices: Essential Skills for Effective Non-profit Lea...
Mastering Board Best Practices: Essential Skills for Effective Non-profit Lea...Mastering Board Best Practices: Essential Skills for Effective Non-profit Lea...
Mastering Board Best Practices: Essential Skills for Effective Non-profit Lea...
 
NVIDIA at Breakthrough Discuss for Space Exploration
NVIDIA at Breakthrough Discuss for Space ExplorationNVIDIA at Breakthrough Discuss for Space Exploration
NVIDIA at Breakthrough Discuss for Space Exploration
 
Intel Unveils Core Ultra 200V Lunar chip .pdf
Intel Unveils Core Ultra 200V Lunar chip .pdfIntel Unveils Core Ultra 200V Lunar chip .pdf
Intel Unveils Core Ultra 200V Lunar chip .pdf
 
Semantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software DevelopmentSemantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software Development
 

Algorithmic Music Recommendations at Spotify

  • 1. Algorithmic Music Discovery at Spotify Chris Johnson @MrChrisJohnson January 13, 2014 Monday, January 13, 14
  • 2. Who am I?? •Chris Johnson – Machine Learning guy from NYC – Focused on music recommendations – Formerly a graduate student at UT Austin Monday, January 13, 14
  • 3. What is Spotify? • • On demand music streaming service “iTunes in the cloud” Monday, January 13, 14 3
  • 5. Data at Spotify.... • 20 Million songs • 24 Million active users • 6 Million paying users • 8 Million daily active users • 1 TB of compressed data generated from users per day • 700 node Hadoop Cluster • 1 Million years worth of music streamed • 1 Billion user generated playlists Monday, January 13, 14 5
  • 6. Challenge: 20 Million songs... how do we recommend music to users? Monday, January 13, 14 6
  • 7. Recommendation Features • Discover (personalized recommendations) • Radio • Related Artists • Now Playing Monday, January 13, 14 7
  • 8. 8 How can we find good recommendations? • Manual Curation • Manually Tag Attributes • Audio Content, Metadata, Text Analysis • Collaborative Filtering Monday, January 13, 14
  • 9. Collaborative Filtering - “The Netflix Prize” Monday, January 13, 14 9
  • 10. Collaborative Filtering 10 Hey, I like tracks P, Q, R, S! Well, I like tracks Q, R, S, T! Then you should check out track P! Nice! Btw try track T! Image via Erik Bernhardsson Monday, January 13, 14
  • 12. Difference between movie and music recs • Scale of catalog 60,000 movies Monday, January 13, 14 20,000,000 songs 12
  • 13. Difference between movie and music recs • Repeated consumption Monday, January 13, 14 13
  • 14. Difference between movie and music recs • Music is more niche Monday, January 13, 14 14
  • 15. “The Netflix Problem” Vs “The Spotify Problem •Netflix: Users explicitly “rate” movies •Spotify: Feedback is implicit through streaming behavior Monday, January 13, 14 15
  • 17. Explicit Matrix Factorization •Users explicitly rate a subset of the movie catalog •Goal: predict how users will rate new movies Movies Users Chris Inception Monday, January 13, 14 17
  • 18. Explicit Matrix Factorization 18 •Approximate ratings matrix by the product of lowdimensional user and movie matrices Minimize RMSE (root mean squared error) • ? 1 2 ? 5 • • • 3 ? ? ? 2 5 ? 3 ? ? ? 1 2 5 4 = user = user rating for movie latent factor vector = item latent factor vector Monday, January 13, 14 X Y Inception Chris • • • = bias for user = bias for item = regularization parameter
  • 19. Implicit Matrix Factorization 19 •Replace Stream counts with binary labels – 1 = streamed, 0 = never streamed •Minimize weighted RMSE (root mean squared error) using a function of stream counts as weights 10001001 00100100 10100011 01000100 00100100 10001001 • • • • = 1 if user = user =i tem Monday, January 13, 14 streamed track latent factor vector latent factor vector X else 0 Y • • • = bias for user = bias for item = regularization parameter
  • 20. Alternating Least Squares • Initialize user and item vectors to random noise • Fix item vectors and solve for optimal user vectors – Take the derivative of loss function with respect to user’s vector, set – equal to 0, and solve Results in a system of linear equations with closed form solution! • Fix user vectors and solve for optimal item vectors • Repeat until convergence code: https://github.com/MrChrisJohnson/implicitMF Monday, January 13, 14 20
  • 21. Alternating Least Squares • Note that: • Then, we can pre-compute – – once per iteration and only contain non-zero elements for tracks that the user streamed Using sparse matrix operations we can then compute each user’s vector efficiently in time where is the number of tracks the user streamed code: https://github.com/MrChrisJohnson/implicitMF Monday, January 13, 14 21
  • 22. Alternating Least Squares code: https://github.com/MrChrisJohnson/implicitMF Monday, January 13, 14 22
  • 23. How do we use the learned vectors? •User-Item score is the dot product •Item-Item similarity is the cosine similarity •Both operations have trivial complexity based on the number of latent factors Monday, January 13, 14 23
  • 24. Latent Factor Vectors in 2 dimensions Monday, January 13, 14 24
  • 26. Scaling up Implicit Matrix Factorization with Hadoop Monday, January 13, 14 26
  • 27. Hadoop at Spotify 2009 Monday, January 13, 14 27
  • 28. Hadoop at Spotify 2014 700 Nodes in our London data center Monday, January 13, 14 28
  • 29. Implicit Matrix Factorization with Hadoop Map step 29 Reduce step item vectors item%L=0 item vectors item%L=1 user vectors u%K=0 u%K=0 i%L=0 u%K=0 i%L=1 ... u%K=0 i % L = L-1 u%K=0 user vectors u%K=1 u%K=1 i%L=0 u%K=1 i%L=1 ... ... u%K=1 ... ... ... ... u % K = K-1 i%L=0 ... ... u % K = K-1 i % L = L-1 user vectors u % K = K-1 item vectors i % L = L-1 u % K = K-1 all log entries u%K=1 i%L=1 Figure via Erik Bernhardsson Monday, January 13, 14
  • 30. Implicit Matrix Factorization with Hadoop 30 One map task Distributed cache: All user vectors where u % K = x Distributed cache: All item vectors where i % L = y Mapper Emit contributions Reducer New vector! Map input: tuples (u, i, count) where u%K=x and i%L=y Figure via Erik Bernhardsson Monday, January 13, 14
  • 31. Implicit Matrix Factorization with Spark 31 Spark Vs Hadoop http://www.slideshare.net/Hadoop_Summit/spark-and-shark Monday, January 13, 14
  • 33. Approximate Nearest Neighbors code: https://github.com/Spotify/annoy Monday, January 13, 14 33
  • 34. Ensemble of Latent Factor Models 34 Figure via Erik Bernhardsson Monday, January 13, 14
  • 36. Open Problems •How to go from predictive model to related artists? (learning to rank?) How do you learn from user feedback? How do you deal with observation bias in the user feedback? (active learning?) How to factor in temporal information? How much value in content based recommendations? How to best evaluate model performance? How to best train an ensemble? • • • • • • Monday, January 13, 14 36