SlideShare a Scribd company logo
Context Aware
Recommendations at Netflix
Linas Baltrunas
DMBI, May 10, 2018
@LinasTw
Netflix
is Entertainment.
Product defines macro-context
Goal: maximize member satisfaction and retention
Contents.
● Why Context Matters
● Contextual Models
○ Feature Based Model
○ Sequence Models
● Conclusions
Context Free Context Aware
Importance of Context
Signal strength is
domain specific:
● Tourism
● E-commerce
● Movies
● Explicit
○ Location (country, region)
○ Time (day, season, hour)
○ Device
○ Language
● Inferred
○ Binging state
○ Companion
Contextual Dimensions at Netflix
Features that describe user experience
and can rapidly change states
Technical Definition of Context
Examples of
Contextual Signals
Location
JAPAN MEXICO
Time
9AM in UK:
:11PM in UK
Device
Language
Dutch in Belgium
French in Belgium
How to Train your Dragon
First Context Aware Model
User Modes
of Watching.
● Continuation
● Discovery
● Play from My List
● Rewatch
● Search
Feature Based
Context-Aware Model
● Continue Watching row
○ Time
○ Device
● Title ranking
● Row ranking
Title Ranking Model
● P(titleX=continue_watch | current_time, current_device, some_play_happens)
Time, tPast Today
t1,iOS t2,web t3,web t4,iOS
? ?
● P(titleX=continue_watch | current_time, current_device, some_play_happens)
● Construction of the data set and feature extraction is the key
● Model matters, but it is a secondary concern
Title Ranking Model
Time, tPast Today
t1,iOS t2,web t3,web t4,iOS
Continue Discovery
Data Set Construction
t3,web,user1,item1
t3,web,user1,item2
t4,iOS,user1,item3
t4,iOS,user1,item1
t4,iOS,user1,item2
Today at time t3, and web for continuation title Today at time t4, and iOs, for discovery title
Feature Extraction
morning, web
morning, web
evening,iOS
evening,iOS
evening,iOS
Today at time t3, and web for continuation title Today at time t4, and iOs, for discovery title
Performance
Time machines
Observed
labels
Training
input data
collected
Training
time
Serving
time
Serving
input data
collected
Distributed Time Travel for Feature Generation
DeLorean image by JMortonPhoto.com & OtoGodfrey.com
Sequence Prediction
with Context
● Representation (Deep) Learning promises to do feature engineering
for you
● Time is a complex contextual dimension that needs special attention
● Time exhibits many periodicities
○ Daily
○ Weekly
○ Seasonally
○ … and even longer: Olympics, elections, etc.
● Generalizing to future behaviors through temporal extrapolation
Representation Learning
Sequence prediction
● Treat recommendations as a
sequence classification problem
○ Input: sequence of user actions
○ Output: next action
● E.g. Gru4Rec [Hidasi et. al., 2016]
○ Input: sequence of items in a
sessions
○ Output: next item in the session
Contextual sequence prediction
● Input: sequence of contextual user actions, plus
current context
● Output: probability of next action
● E.g. “Given all the actions a user has taken so far,
what’s the most likely video they’re going to play right
now?”
● e.g. [Smirnova & Vasile, 2017], [Beutel et. al., 2018]
Contextual Sequence Data
2017-12-10
15:40:22
2017-12-23
19:32:10
2017-12-24
12:05:53
2017-12-27
22:40:22
2017-12-29
19:39:36
2017-12-30
20:42:13
Context ActionSequence
per user
?
Time
Training Contextual RNN
2017-12-23
19:32:10
2017-12-24
12:05:53
2017-12-27
22:40:22
2017-12-29
19:39:36
2017-12-30
20:42:13
Context ActionSequence
per user
?
Time
2017-12-10
15:40:22
Extrapolating Time
9AM in UK:
:11PM in UK
Time-sensitive sequence prediction
● Experiment on a Netflix internal dataset
○ Context:
■ Discrete time
● Day-of-week: Sunday, Monday, …
● Hour-of-day
■ Continuous time (Timestamp)
■ Device
■ Country
○ Predict next play (temporal split data)
Results
The Price to pay
The Price of Contextual Models
● Increased computational cost
○ Models can not be precomputed
● Modeling
○ Harder to build intuition
○ Higher time and memory complexity
○ Testing methodology is complicated
● Model gets stale easily
● Deep models can overfit offline metric
Takeaways
● Be careful when splitting dataset
○ Don’t overfit the past
○ Predict the future
● May need to train/test at multiple distinct time points to see
generalization across time (e.g. [Lathia et. al., 2009])
● Not all offline metrics make sense for contextual
recommendations
Experimental Design
Train
Time
Test
Takeaways from Deep Learning
● Think beyond solving existing problems with new tools and instead
think what new problems the new tools can solve
● Deep Learning can work well for Recommendations...
○ When you go beyond the classic problem definition
○ Use more complex data such as contextual factors
● Lots of open areas to improve recommendations using deep
learning
● Contextual signals can be as strong as personal preferences
○ Model them as such
○ Evaluate them as such
○ Make them central to your system and infrastructure
Final Note
Thank you.
Credits
Justin Basilico
Yves Raimond
Sudeep Das
Hossein Taghavi
and the whole Algorithm Engineering team
Read more in depth discussion on the topic:
● Other relevant presentations
● Blog post on continue watching model

More Related Content

What's hot

Past, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry PerspectivePast, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry Perspective
Justin Basilico
 
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender SystemsDéjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Justin Basilico
 
Making Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms Reliable
Justin Basilico
 
Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018 Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018
Fernando Amat
 
Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
 Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se... Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
Sudeep Das, Ph.D.
 
Data council SF 2020 Building a Personalized Messaging System at Netflix
Data council SF 2020 Building a Personalized Messaging System at NetflixData council SF 2020 Building a Personalized Messaging System at Netflix
Data council SF 2020 Building a Personalized Messaging System at Netflix
Grace T. Huang
 
Shallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender SystemShallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender System
Anoop Deoras
 
A Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at Netflix
Jaya Kawale
 
Sequential Decision Making in Recommendations
Sequential Decision Making in RecommendationsSequential Decision Making in Recommendations
Sequential Decision Making in Recommendations
Jaya Kawale
 
Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it! Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it!
Sudeep Das, Ph.D.
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
Justin Basilico
 
Personalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsPersonalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing Recommendations
Justin Basilico
 
Netflix Recommendations Feature Engineering with Time Travel
Netflix Recommendations Feature Engineering with Time TravelNetflix Recommendations Feature Engineering with Time Travel
Netflix Recommendations Feature Engineering with Time Travel
Faisal Siddiqi
 
Lessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at NetflixLessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at Netflix
Justin Basilico
 
Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at Netflix
Justin Basilico
 
Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized Homepage
Justin Basilico
 
Past, present, and future of Recommender Systems: an industry perspective
Past, present, and future of Recommender Systems: an industry perspectivePast, present, and future of Recommender Systems: an industry perspective
Past, present, and future of Recommender Systems: an industry perspective
Xavier Amatriain
 
Recommendation Modeling with Impression Data at Netflix
Recommendation Modeling with Impression Data at NetflixRecommendation Modeling with Impression Data at Netflix
Recommendation Modeling with Impression Data at Netflix
Jiangwei Pan
 
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Justin Basilico
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at Spotify
Oguz Semerci
 

What's hot (20)

Past, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry PerspectivePast, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry Perspective
 
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender SystemsDéjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender Systems
 
Making Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms Reliable
 
Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018 Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018
 
Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
 Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se... Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
 
Data council SF 2020 Building a Personalized Messaging System at Netflix
Data council SF 2020 Building a Personalized Messaging System at NetflixData council SF 2020 Building a Personalized Messaging System at Netflix
Data council SF 2020 Building a Personalized Messaging System at Netflix
 
Shallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender SystemShallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender System
 
A Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at Netflix
 
Sequential Decision Making in Recommendations
Sequential Decision Making in RecommendationsSequential Decision Making in Recommendations
Sequential Decision Making in Recommendations
 
Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it! Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it!
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
 
Personalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsPersonalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing Recommendations
 
Netflix Recommendations Feature Engineering with Time Travel
Netflix Recommendations Feature Engineering with Time TravelNetflix Recommendations Feature Engineering with Time Travel
Netflix Recommendations Feature Engineering with Time Travel
 
Lessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at NetflixLessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at Netflix
 
Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at Netflix
 
Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized Homepage
 
Past, present, and future of Recommender Systems: an industry perspective
Past, present, and future of Recommender Systems: an industry perspectivePast, present, and future of Recommender Systems: an industry perspective
Past, present, and future of Recommender Systems: an industry perspective
 
Recommendation Modeling with Impression Data at Netflix
Recommendation Modeling with Impression Data at NetflixRecommendation Modeling with Impression Data at Netflix
Recommendation Modeling with Impression Data at Netflix
 
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at Spotify
 

Similar to Context Aware Recommendations at Netflix

Scaling Recommendations at Quora (RecSys talk 9/16/2016)
Scaling Recommendations at Quora (RecSys talk 9/16/2016)Scaling Recommendations at Quora (RecSys talk 9/16/2016)
Scaling Recommendations at Quora (RecSys talk 9/16/2016)
Nikhil Dandekar
 
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
Strata 2016 -  Lessons Learned from building real-life Machine Learning SystemsStrata 2016 -  Lessons Learned from building real-life Machine Learning Systems
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
Xavier Amatriain
 
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Xavier Amatriain
 
Xavier Amatriain, VP of Engineering, Quora at MLconf SF - 11/13/15
Xavier Amatriain, VP of Engineering, Quora at MLconf SF - 11/13/15Xavier Amatriain, VP of Engineering, Quora at MLconf SF - 11/13/15
Xavier Amatriain, VP of Engineering, Quora at MLconf SF - 11/13/15
MLconf
 
10 more lessons learned from building Machine Learning systems
10 more lessons learned from building Machine Learning systems10 more lessons learned from building Machine Learning systems
10 more lessons learned from building Machine Learning systems
Xavier Amatriain
 
10 more lessons learned from building Machine Learning systems - MLConf
10 more lessons learned from building Machine Learning systems - MLConf10 more lessons learned from building Machine Learning systems - MLConf
10 more lessons learned from building Machine Learning systems - MLConf
Xavier Amatriain
 
Programming Languages of Importance in Modern Academics & Industries
Programming Languages of Importance in Modern Academics & IndustriesProgramming Languages of Importance in Modern Academics & Industries
Programming Languages of Importance in Modern Academics & Industries
LinkCompanyAdmin
 
Curtain call of zooey - what i've learned in yahoo
Curtain call of zooey - what i've learned in yahooCurtain call of zooey - what i've learned in yahoo
Curtain call of zooey - what i've learned in yahoo
羽祈 張
 
How to become Industry ready engineers.pdf
How to become  Industry ready engineers.pdfHow to become  Industry ready engineers.pdf
How to become Industry ready engineers.pdf
DrNilam Choudhary
 
Academic Day 2211.pptx
Academic Day 2211.pptxAcademic Day 2211.pptx
Academic Day 2211.pptx
ssuser75ce13
 
Being Productive at Work
Being Productive at WorkBeing Productive at Work
Being Productive at Work
Hitesh Patel
 
Book: Software Architecture and Decision-Making
Book: Software Architecture and Decision-MakingBook: Software Architecture and Decision-Making
Book: Software Architecture and Decision-Making
Srinath Perera
 
Drools5 Community Training Module 5 Drools BLIP Architectural Overview + Demos
Drools5 Community Training Module 5 Drools BLIP Architectural Overview + DemosDrools5 Community Training Module 5 Drools BLIP Architectural Overview + Demos
Drools5 Community Training Module 5 Drools BLIP Architectural Overview + Demos
Mauricio (Salaboy) Salatino
 
Resonance Introduction at SacPy
Resonance Introduction at SacPyResonance Introduction at SacPy
Resonance Introduction at SacPy
moorepants
 
#1 Berlin Students in AI, Machine Learning & NLP presentation
#1 Berlin Students in AI, Machine Learning & NLP presentation#1 Berlin Students in AI, Machine Learning & NLP presentation
#1 Berlin Students in AI, Machine Learning & NLP presentation
parlamind
 
1.1. course introduction
1.1. course introduction1.1. course introduction
1.1. course introduction
Nicholas Wong
 
The Career Practitioner's Guide to Conducting a Webinar
The Career Practitioner's Guide to Conducting a WebinarThe Career Practitioner's Guide to Conducting a Webinar
The Career Practitioner's Guide to Conducting a Webinar
Melissa A. Venable
 
Big Data & Social Analytics presentation
Big Data & Social Analytics presentationBig Data & Social Analytics presentation
Big Data & Social Analytics presentation
gustavosouto
 
Learning Engineering Initiatives at Harvard DCE
Learning Engineering Initiatives at Harvard DCELearning Engineering Initiatives at Harvard DCE
Learning Engineering Initiatives at Harvard DCE
Jay Luker
 
Calcolo
CalcoloCalcolo

Similar to Context Aware Recommendations at Netflix (20)

Scaling Recommendations at Quora (RecSys talk 9/16/2016)
Scaling Recommendations at Quora (RecSys talk 9/16/2016)Scaling Recommendations at Quora (RecSys talk 9/16/2016)
Scaling Recommendations at Quora (RecSys talk 9/16/2016)
 
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
Strata 2016 -  Lessons Learned from building real-life Machine Learning SystemsStrata 2016 -  Lessons Learned from building real-life Machine Learning Systems
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
 
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
 
Xavier Amatriain, VP of Engineering, Quora at MLconf SF - 11/13/15
Xavier Amatriain, VP of Engineering, Quora at MLconf SF - 11/13/15Xavier Amatriain, VP of Engineering, Quora at MLconf SF - 11/13/15
Xavier Amatriain, VP of Engineering, Quora at MLconf SF - 11/13/15
 
10 more lessons learned from building Machine Learning systems
10 more lessons learned from building Machine Learning systems10 more lessons learned from building Machine Learning systems
10 more lessons learned from building Machine Learning systems
 
10 more lessons learned from building Machine Learning systems - MLConf
10 more lessons learned from building Machine Learning systems - MLConf10 more lessons learned from building Machine Learning systems - MLConf
10 more lessons learned from building Machine Learning systems - MLConf
 
Programming Languages of Importance in Modern Academics & Industries
Programming Languages of Importance in Modern Academics & IndustriesProgramming Languages of Importance in Modern Academics & Industries
Programming Languages of Importance in Modern Academics & Industries
 
Curtain call of zooey - what i've learned in yahoo
Curtain call of zooey - what i've learned in yahooCurtain call of zooey - what i've learned in yahoo
Curtain call of zooey - what i've learned in yahoo
 
How to become Industry ready engineers.pdf
How to become  Industry ready engineers.pdfHow to become  Industry ready engineers.pdf
How to become Industry ready engineers.pdf
 
Academic Day 2211.pptx
Academic Day 2211.pptxAcademic Day 2211.pptx
Academic Day 2211.pptx
 
Being Productive at Work
Being Productive at WorkBeing Productive at Work
Being Productive at Work
 
Book: Software Architecture and Decision-Making
Book: Software Architecture and Decision-MakingBook: Software Architecture and Decision-Making
Book: Software Architecture and Decision-Making
 
Drools5 Community Training Module 5 Drools BLIP Architectural Overview + Demos
Drools5 Community Training Module 5 Drools BLIP Architectural Overview + DemosDrools5 Community Training Module 5 Drools BLIP Architectural Overview + Demos
Drools5 Community Training Module 5 Drools BLIP Architectural Overview + Demos
 
Resonance Introduction at SacPy
Resonance Introduction at SacPyResonance Introduction at SacPy
Resonance Introduction at SacPy
 
#1 Berlin Students in AI, Machine Learning & NLP presentation
#1 Berlin Students in AI, Machine Learning & NLP presentation#1 Berlin Students in AI, Machine Learning & NLP presentation
#1 Berlin Students in AI, Machine Learning & NLP presentation
 
1.1. course introduction
1.1. course introduction1.1. course introduction
1.1. course introduction
 
The Career Practitioner's Guide to Conducting a Webinar
The Career Practitioner's Guide to Conducting a WebinarThe Career Practitioner's Guide to Conducting a Webinar
The Career Practitioner's Guide to Conducting a Webinar
 
Big Data & Social Analytics presentation
Big Data & Social Analytics presentationBig Data & Social Analytics presentation
Big Data & Social Analytics presentation
 
Learning Engineering Initiatives at Harvard DCE
Learning Engineering Initiatives at Harvard DCELearning Engineering Initiatives at Harvard DCE
Learning Engineering Initiatives at Harvard DCE
 
Calcolo
CalcoloCalcolo
Calcolo
 

Recently uploaded

Tailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer InsightsTailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer Insights
SynapseIndia
 
Introduction-to-the-IAM-Platform-Implementation-Plan.pptx
Introduction-to-the-IAM-Platform-Implementation-Plan.pptxIntroduction-to-the-IAM-Platform-Implementation-Plan.pptx
Introduction-to-the-IAM-Platform-Implementation-Plan.pptx
313mohammedarshad
 
Step-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From ScratchStep-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From Scratch
softsuave
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
maigasapphire
 
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdfAcumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
BrainSell Technologies
 
Vulnerability Management: A Comprehensive Overview
Vulnerability Management: A Comprehensive OverviewVulnerability Management: A Comprehensive Overview
Vulnerability Management: A Comprehensive Overview
Steven Carlson
 
(CISOPlatform Summit & SACON 2024) Workshop _ Most Dangerous Attack Technique...
(CISOPlatform Summit & SACON 2024) Workshop _ Most Dangerous Attack Technique...(CISOPlatform Summit & SACON 2024) Workshop _ Most Dangerous Attack Technique...
(CISOPlatform Summit & SACON 2024) Workshop _ Most Dangerous Attack Technique...
Priyanka Aash
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
janagijoythi
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
sunilverma7884
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
Matthias Neugebauer
 
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
shanihomely
 
(CISOPlatform Summit & SACON 2024) Cyber Insurance & Risk Quantification.pdf
(CISOPlatform Summit & SACON 2024) Cyber Insurance & Risk Quantification.pdf(CISOPlatform Summit & SACON 2024) Cyber Insurance & Risk Quantification.pdf
(CISOPlatform Summit & SACON 2024) Cyber Insurance & Risk Quantification.pdf
Priyanka Aash
 
Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10
ankush9927
 
Zaitechno Handheld Raman Spectrometer.pdf
Zaitechno Handheld Raman Spectrometer.pdfZaitechno Handheld Raman Spectrometer.pdf
Zaitechno Handheld Raman Spectrometer.pdf
AmandaCheung15
 
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Nicolás Lopéz
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
bhumivarma35300
 
(CISOPlatform Summit & SACON 2024) Gen AI & Deepfake In Overall Security.pdf
(CISOPlatform Summit & SACON 2024) Gen AI & Deepfake In Overall Security.pdf(CISOPlatform Summit & SACON 2024) Gen AI & Deepfake In Overall Security.pdf
(CISOPlatform Summit & SACON 2024) Gen AI & Deepfake In Overall Security.pdf
Priyanka Aash
 
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and DisadvantagesBLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
SAI KAILASH R
 
Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17
Bhajan Mehta
 
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
Priyanka Aash
 

Recently uploaded (20)

Tailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer InsightsTailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer Insights
 
Introduction-to-the-IAM-Platform-Implementation-Plan.pptx
Introduction-to-the-IAM-Platform-Implementation-Plan.pptxIntroduction-to-the-IAM-Platform-Implementation-Plan.pptx
Introduction-to-the-IAM-Platform-Implementation-Plan.pptx
 
Step-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From ScratchStep-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From Scratch
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
 
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdfAcumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
 
Vulnerability Management: A Comprehensive Overview
Vulnerability Management: A Comprehensive OverviewVulnerability Management: A Comprehensive Overview
Vulnerability Management: A Comprehensive Overview
 
(CISOPlatform Summit & SACON 2024) Workshop _ Most Dangerous Attack Technique...
(CISOPlatform Summit & SACON 2024) Workshop _ Most Dangerous Attack Technique...(CISOPlatform Summit & SACON 2024) Workshop _ Most Dangerous Attack Technique...
(CISOPlatform Summit & SACON 2024) Workshop _ Most Dangerous Attack Technique...
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
 
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
 
(CISOPlatform Summit & SACON 2024) Cyber Insurance & Risk Quantification.pdf
(CISOPlatform Summit & SACON 2024) Cyber Insurance & Risk Quantification.pdf(CISOPlatform Summit & SACON 2024) Cyber Insurance & Risk Quantification.pdf
(CISOPlatform Summit & SACON 2024) Cyber Insurance & Risk Quantification.pdf
 
Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10
 
Zaitechno Handheld Raman Spectrometer.pdf
Zaitechno Handheld Raman Spectrometer.pdfZaitechno Handheld Raman Spectrometer.pdf
Zaitechno Handheld Raman Spectrometer.pdf
 
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
 
(CISOPlatform Summit & SACON 2024) Gen AI & Deepfake In Overall Security.pdf
(CISOPlatform Summit & SACON 2024) Gen AI & Deepfake In Overall Security.pdf(CISOPlatform Summit & SACON 2024) Gen AI & Deepfake In Overall Security.pdf
(CISOPlatform Summit & SACON 2024) Gen AI & Deepfake In Overall Security.pdf
 
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and DisadvantagesBLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
 
Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17
 
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
 

Context Aware Recommendations at Netflix