SlideShare a Scribd company logo
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
208
A COMPARATIVE STUDY OF THE EFFECT OF INFILL WALLS ON
SEISMIC PERFORMANCE OF REINFORCED CONCRETE BUILDINGS
1
Prerna Nautiyal*, 2
Saurabh Singh* and 3
Geeta Batham
1,2
Student of M.E. Structural Engineering, Department of Civil Engineering,
3
Assistant Professor , Department of Civil Engineering,
1,2,3
University Institute of Technology, RGVP, Bhopal, Madhya Pradesh, INDIA.
ABSTRACT
In the building construction, framed structure is frequently used due to ease of construction
and rapid progress of work, and generally these frames are filled by masonry infill panels or concrete
blocks. This paper elaborates the effect of infill wall during the earthquake. The effect of masonry
infill panel on the response of RC frames subjected to seismic action is widely recognized and has
been subject of numerous experimental investigations. Infill behaves like compression strut between
column and beam and compression forces are transferred from one node to another. The model uses
an equivalent diagonal method to calculate the infill walls, as recommended in the literature. The
results also show that infill walls reduce displacements, time period and increases base shear. So it is
essential to consider the effect of masonry infill for the seismic evaluation of moment resisting RC
Frame.
Keywords: Infill wall, Effect of infill wall, Modeling of the infill wall, Soft storey, Seismic
behavior of infilled structure, Diagonal strut method.
1. INTRODUCTION
It has always been a human aspiration to create taller and taller structures. Development of
metro cities in India there is increasing demand in High Rise Building. Column and girder framing of
reinforced concrete, or sometimes steel, is in-filled by panel of brickwork, block work, cast in place
or pre-cast concrete. Infill panel elements as the part of the building RC structure play a very
important role on the seismic performance of the building structure. In general design practices in
India, the strength and stiffness of infill walls are ignored with the assumption of conservative
design. In actual, infill walls add considerably to the strength and rigidity of the structures and their
negligence will cause failure of many of multi-storeyed buildings. The failure is basically due to
stiffening effect of infill panels which is cause of i) unequal distribution of lateral forces in the
INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND
TECHNOLOGY (IJCIET)
ISSN 0976 – 6308 (Print)
ISSN 0976 – 6316(Online)
Volume 4, Issue 4, July-August (2013), pp. 208-218
© IAEME: www.iaeme.com/ijciet.asp
Journal Impact Factor (2013): 5.3277 (Calculated by GISI)
www.jifactor.com
IJCIET
© IAEME
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
209
different frames and overstressing of some of the building frames; ii) soft storey or weak storey; iii)
short columns or captive column effect; iv) torsional forces ; v) cracking of the infill walls. Several
researchers are unanimous in pointing out the benefits of associating frames with infill walls, which
significantly increases the mechanical strength and rigidity of the infill frame.
Analytical models based on the concept of the equivalent diagonal strut, considering the
structure as an equivalent braced frame system with a diagonal compression strut replacing the infill,
provide an accurate prediction of the behaviour of steel frames.
Soft stories
Many urban multistory buildings in India today have open first storey as an unavoidable
feature. This is primarily being adopted to accommodate parking or reception lobbies in the first
storey. The upper stories have brick infilled wall panels.
The draft Indian seismic code classifies a soft storey as one whose lateral stiffness is less than
70% of the storey above or below [Draft IS:1893, 1997]. Interestingly, this classification renders
most Indian buildings, with no masonry infill walls in the first storey, to be “buildings with soft first
storey.”
A soft story is illustrated above, as an apartment complex with a row of garages below the
first level. This is garage level is sometimes called “tuck under parking.”
Fig:1 Soft storey
2. BASIC CONCEPT[1][2][3]
The building with soft story behaves differently as compared to a bare framed building
(without any infill) or a fully infilled framed building under lateral load. A bare frame is much less
stiff than a fully infilled frame; it resists the applied lateral load through frame action and shows
well-distributed plastic hinges at failure. When this frame is fully infilled, truss action is introduced.
A fully infilled frame shows less inter-storey drift, although it attracts higher base shear (due to
increased stiffness). A fully infilled frame yields less force in the frame elements and dissipates
greater energy through infill walls. The strength and stiffness of infill walls in infilled frame
buildings are ignored in the structural modeling in conventional design practice. The design in such
cases will generally be conservative in the case of fully infilled framed building. But things will be
different for a soft story framed building. Soft story building is slightly stiffer than the bare frame,
has larger drift (especially in the ground storey), and fails due to soft storey-mechanism at the ground
floor. Therefore, it may be unconservative to ignore strength and stiffness of infill wall while
designing soft story buildings.
Inclusion of stiffness and strength of infill walls in the Soft story building frame decreases the
fundamental time period compared to a bare frame and consequently increases the base shear
demand and the design forces in the ground storey beams and columns. This increased design forces
in the ground storey beams and columns of the Soft story buildings are not captured in the
conventional bare frame analysis. An appropriate way to analyze the Soft story buildings is to model
the strength and stiffness of infill walls. Unfortunately, no guidelines are given in IS 1893: 2002
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
210
(Part-1) for modeling the infill walls. As an alternative a bare frame analysis is generally used that
ignores the strength and stiffness of the infill walls.
The total seismic base shear as experienced by a building during an earthquake is dependent
on its natural period, the seismic force distribution is dependent on the distribution of stiffness and
mass along the height. In buildings with soft first storey, the upper stories being stiff, undergo
smaller inter-storey drifts. However, the inter-storey drift in the soft first storey is large. The strength
demands on the columns in the first storey for third buildings is also large, as the shear in the first
storey is maximum. For the upper stories, however, the forces in the columns are effectively reduced
due to the presence of the Buildings with abrupt changes in storey stiffness have uneven lateral force
distribution along the height, which is likely to locally induce stress concentration. This has adverse
effect on the performance of buildings during ground shaking. Such buildings are required to be
analyzed by the dynamic analysis and designed carefully.
3. MODELLING OF INFILL WALL [4][5]
Most of the previous research model infill wall as an equivalent diagonal strut. This section
summarises different approaches to model infill was as equivalent struts. Basically there are four
approaches to model the equivalent strut found in literature. These approaches are explained below:
3.1 ELASTIC ANALYSIS APPROACH
The modelling of infill wall as an equivalent diagonal compression member was introduced
by Holmes (1961). The thickness of the equivalent diagonal strut was recommended as the thickness
of the infill wall itself, and the width recommended as one-third of the diagonal length of infill panel.
The width of the strut using Airy’s stress function was found to vary from d/4 to d/11 depending on
the panel proportions. Later, a number of tests conducted by Smith (1966) proved that the equivalent
strut width (w) is a function of relative stiffness (λh) of the frame and infill wall, strength of
equivalent corner crushing mode of failure (Rc
) and instantaneous diagonal compression in the infill
wall (Ri
).
Fig:2 A typical panel of the infilled frame
Fig:3 Behavior of typical panel subjected to lateral load
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
211
In 1969, Smith and Carter combined all the previous works (Smith 1962, 1966) and
developed an analysis approach based on the equivalent strut concept to predict the width and
strength of an infilled frame. This approach of modeling the struts is based on the initial stiffness of
the infill wall. Fig 2.1 and 2.2 shows how the infill panels behave when it is designed as equivalent
diagonal strut when subjected to lateral load. Smith and Carter (1969) expressed the parameter, λh, as
follows
Where, Es = elastic modulus of the equivalent strut Ec = elastic modulus of the column in the
bounding frame Ic = moment of inertia of the column h'= clear height of infill wall (Fig. 2) h =
height of column between centre lines of beams t = thickness of infill wall θ = slope of the infill wall
diagonal to the horizontal
A relationship between the ratio of axial load in the equivalent strut (Ri
) to the capacity of the strut
under corner crushing (Rc
), and width (w) was derived by Ramesh (2003) from the plot given by
Smith and Carter (1969), as given by
The parameter w’ accounts for the panel aspect ratio. An expression for w’/d is as given:
The strength of the equivalent strut is taken as the minimum of the two failure modes, i.e.
(i) Local crushing (Rc) of infills in the corners
(ii) Shear cracking (Rs) along the bed joint of the brickwork.
The failure load corresponding to corner crushing mode was expressed in terms of λh as:
Where fm’ is the compressive strength of the masonry infill wall. The following relationship was
proposed for the diagonal load causing shear cracking failure (Rs) by Govindan et. al. (1987), using
the curves given by Smith and Carter, 1969.
Where fbs’ is the bond shear strength between the masonry and mortar Another equation by
Mainstone for the determination of the equivalent strut width is
Where d’ = is the clear diagonal length of the infill walls. This expression yields a constant strut
width, independent of parameters such as axial load on the diagonal strut and infill wall panel aspect
ratio. Paulay and Priestley (1992) suggested that the width of the strut can be taken as 1/4th
of the
diagonal length of the infill panel. Al-Chaar (2002) proposed an eccentric equivalent strut (Fig.2.3)
which was pin connected to the column at a distance le from the face of the beam to model the
masonry infill wall.
Where le = w/cosθ and w is calculated using above equation.
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
212
3.2 ULTIMATE LOAD APPROACH
Saneinejad and Hobbs (1995) proposed a new model that accounts for the interface stresses
and the nonlinear inelastic behavior of the infill wall. The area of the equivalent strut is calculated
from the diagonal load at failure. This approach is based on the ultimate strength of the equivalent
strut and the strength of the strut is calculated from the three modes of failure:
1) Corner crushing failure at the compressive corners
2) Shear cracking failure along the bedding joints of the brickwork
3) Diagonal compression failure of the slender infill wall
The applicability of the two approaches stated above for different types of building analysis was
investigated. The calculation of the strut properties by both the approaches was presented through a
case study by Asokan (2006) and the justification of using either of the methods was presented. He
selected a two bay frame of an existing five storey building which was infilled in the entire four
stories except for the ground floor. The beams and column frames were of the same size. The infill
wall thickness was 120 mm and he from his study concluded that the EA approach is simple in the
calculation. A higher strut width gives higher stiffness and hence, higher base shear in a building.
Since the EA approach gives the higher strut width, it is conservative in estimating the base shear.
For estimating the lateral drift of a building, since the UL approach gives lower stiffness of a strut, it
is more conservative. To carry out a linear analysis of the building by the equivalent static method
(static analysis) or the response spectrum method (dynamic analysis), modeling of the infill walls by
the simpler EA approach would prove to be adequate. But in a pushover analysis (nonlinear static
analysis) of a building, the UL approach would be preferred.
3.3 APPROACH BASED ON PLASTIC ANALYSIS
Experimental results (Smith 1962) show that there is a considerable nonlinearity in the
infilled frames before they collapse. The nonlinearity arises mainly from cracking and crushing of
the infill wall material, confinement of the infill walls in the frames, and formation of plastic hinges
in the frame members. In the elastic stage, stress concentration occurs at all four corners. As cracks
develop and propagate, the stresses at the tensile corners are relieved while those near the
compressive corners are significantly increased. The frame moments increase significantly when the
infill wall degrades leading to the formation of plastic hinges and collapse of the structure.
A plastic theory was developed for integral and non-integral (without shear connectors)
infilled frames by Liauw and Kwan (1983). The stress redistribution in the frames towards collapse
was taken into account and the friction was neglected for strength reserve for the non-integral infilled
frames. The theory was based on the findings from nonlinear finite element analysis and
experimental investigation. The local crushing of the infill wall corner is associated with a plastic
hinge formation either in the beam or in the column. The following modes of failure were identified.
• Corner crushing mode with failure in columns: This mode of failure is associated with weak
columns and strong infill wall. Failure occurs in the columns with subsequent crushing of the infill
wall at the compressive corners.
• Corner crushing mode with failure in beams: This mode of failure predominates when beam is
relatively weak and the infill wall is strong. Failure occurs in beam after the failure of the infill wall
at the compressive corners.
• Diagonal crushing mode: With relatively strong frame and weak infill wall, failure occurs in the
infill wall by crushing at the loaded corners with subsequent failure in the joints of the frame.
Based on plastic theory, following are the mathematical expressions were developed for the above
modes of failure.
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
213
1. For failure mode 1
2. For failure mode 2
3. For failure mode 3
Where Hu = lateral load causing the failure Mpc = the plastic moment of resistance of the column
Mpb = the plastic moment of resistance of the beam σc= contact stresses in the column
3.4 APPROACH BASED ON FINITE ELEMENT ANALYSIS
Finite element analysis was done by many researchers to study the behavior of the infill wall
under lateral load. The different parameters influencing the infill walls under lateral loads were
investigated.
A finite element model was developed by Mallick and Severn (1967) to incorporate the effect
of slip and interface friction between the frame and infill wall. Riddington and Smith (1977) studied
the effect of different parameters such as aspect ratio, relative stiffness parameter, number of bays
and beam stiffness. It was found that the bending moments in the frame members were reduced in
the presence of the infill wall. Hence, the infilled frame can be modeled as truss elements.
Dhanasekar and Page (1986) developed a finite element program and concluded that the
behavior of a frame not only depends on the relative stiffness of the frame and infill wall but also on
the properties of masonry, such as shear and tensile bond strengths.
4. PROBLEM STATEMENT[6]
For the analysis purpose two models have been considered namely as:
Model A: Fully infilled frame (S.M.R.F infill frame with masonry effect considered)
Model B: Bare frame (S.M.R.F infill frame with masonry effect not considered)
4.1 STRUCTURAL DETAILS
The plan layout of the special reinforced concrete moment resisting frame (SMRF) building
with one open storey and Un-reinforced brick infill walls in the other stories, chosen for this study is
shown in Fig. 3. The building is deliberately kept symmetric in both orthogonal directions in the plan
to avoid torsional response under pure lateral forces.
The building is considered to be located in the seismic zone V and intended for commercial
use. The building is founded on hard soil through isolated footings (of size 2m×2m) under the
columns. Elastic moduli of concrete and masonry are 28,500 MPa and 3,500 MPa, respectively, and
their Poison’s ratio is 0.25. Performance factor (K) has been taken as 1.0 (assuming ductile
detailing). The unit weights of concrete and masonry are taken as 25 kN/m3 and 20 kN/m3
is
considered. The other building parameters are as follows.
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
214
Table No. 1
1 Type of Structure Multistory rigid jointed plane frame (SMRF)
2 Seismic Zone V
3 Number of stories Four, G+3
4 Floors Height 3.2 m
5 Infill wall 250mm thick brick masonry wall along X
direction & 150 mm thick brick masonry wall
along Y direction
6 Type of soil Hard
7 Size of column 250 mm X450 mm
8 Size of Beam 250 mm X 400 mm
9 Depth of Slab (RCC) 100 mm
10 Live load a) On roof = 1.5 KN/sqm
b) On floor = 4 Kn/sqm
11 Material M 20 Grade concrete & Fe 415 Reinforcement
12 Unit weights a) Concrete = 25 KN/Cum
b) Masonry = 20 KN/Cum
13 Damping in structure 5%
14 Importance factor 1.5
Fig:4 Plan of the model
Calculation of Lumped Mass
The seismic weight W is the full dead load & the appropriate imposed load or live load at the
corresponding floor level as mentioned below for the computation of seismic forces.
W= DL +0.5 LL (for LL > 3.00 KN/ sqm)
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
215
Table No. 2
FLOORS DEAD LOAD (KN) LIVE LOAD (KN)
SEISMIC WEIGHT
OF FLOORS (KN)
Ground Floor 2364 900 2814
First Floor 2364 900 2814
Second Floor 2364 900 2814
Third Floor 1613.25 Not considered 1613.25
Seismic weight of the structure (W) = M1 + M2 + M3 + M4 = 10055.25 KN
Fig:5 Plane frame structure and its lumped mass model
Model A:
The natural period (Tn) of the structure with infilled wall is estimated as follows
Tn = 0.09 h/ (d)0.5
Where, h= 12.8m & d = 15m
So, Tn= 0.297
Response Acceleration Coefficient for 5% damping and hard soil (Sa/g) = 2.5
Z (Zone factor for zone V) = 0.36
Importance factor (I) = 1.5
Response reduction factor (for SMRF), R = 5
So horizontal seismic coefficient is
Ah = (Z/2)(I/R)(Sa/g)
So, Ah = 0.135
The base shear is
(VB)’ = Ah X W
So, (VB)’ =1357.45 KN
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
216
Table No. 3
Storey
Weight
in KN,
Wi
hi (m)
from the
base
Wi hi
2 Wi hi
2
/∑ Wi
hi
2
Qi=(VB)’X (Wi
hi
2
/∑ Wi hi
2
)
4 1613.25 12.8 264314.9 0.395841001 537.3343669
3 2814 9.6 259338.2 0.388387928 527.2171927
2 2814 6.4 115261.4 0.172616857 234.3187523
1 2814 3.2 28815.36 0.043154214 58.57968808
∑ 10055.2 667729.9 1 1357.45
Therefore the base shear is 1357.45KN and the lateral forces at the storey levels are
Q1 = 537.33, Q2 = 527.22 KN , Q3 = 234.32 KN and Q4 = 58.58 KN.
Fig:6 Lateral load distribution at various floors
Model B:
The natural period (Tn) of the structure without infilled wall is estimated as follows
Tn = 0.075h0.75
Where, h= 12.8m
So, Tn= 0.508
Response Acceleration Coefficent for 5% damping and hard soil (Sa/g) = (1/Tn) =1.969
Z (Zone factor for zone V) = 0.36
Importance factor (I) = 1.5
Response reduction factor (for SMRF), R = 5
So horizontal seismic coefficient is
Ah = (Z/2)(I/R)(Sa/g)
So, Ah = 0.106
The base shear is
(VB)’ = Ah X W
So, (VB)’ = 1065.86 KN
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
217
Table No. 4
Storey
Weight
in KN,
Wi
hi (m)
from the
base
Wi hi
2 Wi hi
2
/∑ Wi
hi
2
Qi=(VB)’X (Wi
hi
2
/∑ Wi hi
2
)
4 1613.25 12.8 264314.9 0.395841001 421.9110894
3 2814 9.6 259338.2 0.388387928 413.9671568
2 2814 6.4 115261.4 0.172616857 183.985403
1 2814 3.2 28815.36 0.043154214 45.99635075
∑ 10055.2 667729.9 1 1065.86
Therefore, the base shear is 1065.86 KN and the lateral forces at the storey levels are
Q1 = 421.91KN, Q2 =413.97 KN, Q3 = 183.99 KN and Q4 = 45.99 KN.
Fig:6 Lateral load distribution at various floors
5. COMPARISON OF RESULTS
Table No. 5
Considering the stiffness of
the wall (Model A)
Neglecting the stiffness of
infill (Model B)
Natural period , Tn 0.297 0.508
Base shear 1357.45 1065.86
6. CONCLUSION
The Indian standard provides different expressions for the estimation of the natural period of
the building structure considering or neglecting the stiffness of the infill wall. The consideration of
stiffness of masonry infill increases the stiffness of the structure and hence reduce the natural period
and consequently increase the response acceleration and hence the seismic forces (i.e. base shear and
correspondingly the lateral forces at each storey.
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308
(Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME
218
7. REFERENCES
[1] A.S. Kasnale & Sanjay Jamkar “Analysis of lateral stiffness for infilled frame with opening”,
International Journal of advanced technology in civil engineering, ISSN:2231-5721 Vol I Issue
3,2012.
[2] Hyun Ko , Yong-Koo Park and Dong- Guen Lee “Evaluation of Seismic Behavior for low rise
RC Moment Resisting with masonry infill wall”, the 14th
world conference on earthquake
engineering October 12-17, 2008, Beijing, China.
[3] Wakchaure M.R. , Ped S.P. “Earthquake analysis of high rise building with and without infilled
walls”, IJEIT ISSN:2277-3754 Vol II Issue 2 August 2012.
[4] A. Asokan, (2006) Modeling of Masonry Infill Walls for Nonlinear Static Analysis of
Buildings under Seismic Loads. M. S. Thesis, Indian Institute of Technology Madras, Chennai.
[5] Shenash patel “Earthquake resistant design of low-rise open ground storey framed building “
M.Tech Thesis, NIT Rourkela.
[6] Dr. Vinod Hosur “ Earthquake – Resistant design of building structures”, ISBN No. 978-81-
265-3859-1 Publisher Wiley Precise Textbook.
[7] Machhindra S.Purkar and Sunil Y. Kute, “Numerical Modeling of Reinforced Soil Segmental
Wall Under Surcharge Loading”, International Journal of Civil Engineering & Technology
(IJCIET), Volume 4, Issue 1, 2013, pp. 1 - 15, ISSN Print: 0976 – 6308, ISSN Online:
0976 – 6316.
[8] Mohammed S. Al-Ansari, “Flexural Safety Cost of Optimized Reinforced Concrete Beams”,
International Journal of Civil Engineering & Technology (IJCIET), Volume 4, Issue 2, 2013,
pp. 15 - 35, ISSN Print: 0976 – 6308, ISSN Online: 0976 – 6316.
[9] Misam.A and Mangulkar Madhuri.N., “Structural Response of Soft Story-High Rise Buildings
Under Different Shear Wall Location”, International Journal of Civil Engineering &
Technology (IJCIET), Volume 3, Issue 2, 2012, pp. 169 - 180, ISSN Print: 0976 – 6308,
ISSN Online: 0976 – 6316.

More Related Content

What's hot

retaining walls (ppt)
retaining walls (ppt)retaining walls (ppt)
retaining walls (ppt)hussein96o
 
Seismic Analysis
Seismic AnalysisSeismic Analysis
Seismic Analysis
Krishnagnr
 
MODAL AND RESPONSE SPECTRUM (IS 18932002) ANALYSIS 0F R.C FRAME BUILDING (IT ...
MODAL AND RESPONSE SPECTRUM (IS 18932002) ANALYSIS 0F R.C FRAME BUILDING (IT ...MODAL AND RESPONSE SPECTRUM (IS 18932002) ANALYSIS 0F R.C FRAME BUILDING (IT ...
MODAL AND RESPONSE SPECTRUM (IS 18932002) ANALYSIS 0F R.C FRAME BUILDING (IT ...Mintu Choudhury
 
Types of masonry and its failure types
Types of masonry and its failure typesTypes of masonry and its failure types
Types of masonry and its failure types
Udayram Patil
 
Design of columns as per IS 456-2000
Design of columns as per IS 456-2000Design of columns as per IS 456-2000
Design of columns as per IS 456-2000
PraveenKumar Shanmugam
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
51412
 
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
Fawad Najam
 
Retrofitting and rehabilitation
Retrofitting and rehabilitationRetrofitting and rehabilitation
Retrofitting and rehabilitation
Dasthagiri Kancharla
 
ANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONS
ANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONSANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONS
ANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONS
Girish Singh
 
Design of columns biaxial bending as per IS 456-2000
Design of columns  biaxial bending as per IS 456-2000Design of columns  biaxial bending as per IS 456-2000
Design of columns biaxial bending as per IS 456-2000
PraveenKumar Shanmugam
 
Shear wall ppt
Shear wall ppt Shear wall ppt
Shear wall ppt
Akash Pandey
 
Earthquake resistant building construction
Earthquake resistant building constructionEarthquake resistant building construction
Earthquake resistant building construction
daspriyabrata3
 
Progression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarProgression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed Anwar
AIT Solutions
 
Limit state method
Limit state methodLimit state method
Limit state method
Ghanashyam Prajapati
 
Introduction to Limit State Design
Introduction to Limit State DesignIntroduction to Limit State Design
Introduction to Limit State Design
Alamin Sikder
 
Moment Resisting Frame.pdf
Moment Resisting Frame.pdfMoment Resisting Frame.pdf
Moment Resisting Frame.pdf
Zeinab Awada
 
Footing design
Footing designFooting design
Footing designYasin J
 
Retaining walls
Retaining walls Retaining walls
Retaining walls
Rohan Narvekar
 
Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000
PraveenKumar Shanmugam
 
self compacting concrete
self compacting concreteself compacting concrete
self compacting concrete
GLA University
 

What's hot (20)

retaining walls (ppt)
retaining walls (ppt)retaining walls (ppt)
retaining walls (ppt)
 
Seismic Analysis
Seismic AnalysisSeismic Analysis
Seismic Analysis
 
MODAL AND RESPONSE SPECTRUM (IS 18932002) ANALYSIS 0F R.C FRAME BUILDING (IT ...
MODAL AND RESPONSE SPECTRUM (IS 18932002) ANALYSIS 0F R.C FRAME BUILDING (IT ...MODAL AND RESPONSE SPECTRUM (IS 18932002) ANALYSIS 0F R.C FRAME BUILDING (IT ...
MODAL AND RESPONSE SPECTRUM (IS 18932002) ANALYSIS 0F R.C FRAME BUILDING (IT ...
 
Types of masonry and its failure types
Types of masonry and its failure typesTypes of masonry and its failure types
Types of masonry and its failure types
 
Design of columns as per IS 456-2000
Design of columns as per IS 456-2000Design of columns as per IS 456-2000
Design of columns as per IS 456-2000
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
 
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
CE 72.32 (January 2016 Semester) Lecture 8 - Structural Analysis for Lateral ...
 
Retrofitting and rehabilitation
Retrofitting and rehabilitationRetrofitting and rehabilitation
Retrofitting and rehabilitation
 
ANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONS
ANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONSANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONS
ANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONS
 
Design of columns biaxial bending as per IS 456-2000
Design of columns  biaxial bending as per IS 456-2000Design of columns  biaxial bending as per IS 456-2000
Design of columns biaxial bending as per IS 456-2000
 
Shear wall ppt
Shear wall ppt Shear wall ppt
Shear wall ppt
 
Earthquake resistant building construction
Earthquake resistant building constructionEarthquake resistant building construction
Earthquake resistant building construction
 
Progression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarProgression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed Anwar
 
Limit state method
Limit state methodLimit state method
Limit state method
 
Introduction to Limit State Design
Introduction to Limit State DesignIntroduction to Limit State Design
Introduction to Limit State Design
 
Moment Resisting Frame.pdf
Moment Resisting Frame.pdfMoment Resisting Frame.pdf
Moment Resisting Frame.pdf
 
Footing design
Footing designFooting design
Footing design
 
Retaining walls
Retaining walls Retaining walls
Retaining walls
 
Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000
 
self compacting concrete
self compacting concreteself compacting concrete
self compacting concrete
 

Viewers also liked

Effect of infill walls on the seismic performance of the multistoried buildings
Effect of infill walls on the seismic performance of the multistoried buildingsEffect of infill walls on the seismic performance of the multistoried buildings
Effect of infill walls on the seismic performance of the multistoried buildings
eSAT Journals
 
Seismic evaluation of rc frame with brick masonry infill walls
Seismic evaluation of rc frame with brick masonry infill wallsSeismic evaluation of rc frame with brick masonry infill walls
Seismic evaluation of rc frame with brick masonry infill walls
eSAT Journals
 
Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...
Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...
Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...
openseesdays
 
13 struds 2010 (Jan. release)
13 struds 2010 (Jan. release)13 struds 2010 (Jan. release)
13 struds 2010 (Jan. release)struds
 
12 release notes struds 2009 (Aug. release)
12 release notes struds 2009 (Aug. release)12 release notes struds 2009 (Aug. release)
12 release notes struds 2009 (Aug. release)struds
 
Struds 2010 (aug release)
Struds 2010 (aug  release)Struds 2010 (aug  release)
Struds 2010 (aug release)
softtechengineers
 
Performance based seismic evaluation of G+3 RC buildings with openings in inf...
Performance based seismic evaluation of G+3 RC buildings with openings in inf...Performance based seismic evaluation of G+3 RC buildings with openings in inf...
Performance based seismic evaluation of G+3 RC buildings with openings in inf...
AM Publications
 
Analysis of Confined Masonry part 2
Analysis of Confined Masonry part 2Analysis of Confined Masonry part 2
Analysis of Confined Masonry part 2EERI
 
summer training ppts
summer training pptssummer training ppts
summer training ppts
sandeepgrewal
 
Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...
Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...
Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...
openseesdays
 
Struds overview
Struds overviewStruds overview
Struds overview
Sreedinesh Sridharan
 
Analysis of Confined Masonry part 1
Analysis of Confined Masonry part 1Analysis of Confined Masonry part 1
Analysis of Confined Masonry part 1EERI
 
Intro to Confined Masonry
Intro to Confined MasonryIntro to Confined Masonry
Intro to Confined MasonryEERI
 
Code approaches to seismic design of masonry infiled rc frames
Code approaches to seismic design of masonry infiled rc framesCode approaches to seismic design of masonry infiled rc frames
Code approaches to seismic design of masonry infiled rc frames
Binay Shrestha
 
C. executive information systems
C. executive information systemsC. executive information systems
C. executive information systems
gohilrajdipsinh
 
Descriptive study of pushover analysis in rcc structures of rigid joint
Descriptive study of pushover analysis in rcc structures of rigid jointDescriptive study of pushover analysis in rcc structures of rigid joint
Descriptive study of pushover analysis in rcc structures of rigid joint
Yousuf Dinar
 
Analysis of rc frame with and without masonry infill wall with different stif...
Analysis of rc frame with and without masonry infill wall with different stif...Analysis of rc frame with and without masonry infill wall with different stif...
Analysis of rc frame with and without masonry infill wall with different stif...
eSAT Publishing House
 
Design project
Design projectDesign project
Design project
Kabilan Kabi
 
Confined masonrydesignguide82011
Confined masonrydesignguide82011Confined masonrydesignguide82011
Confined masonrydesignguide82011
Imran Javed
 

Viewers also liked (20)

Effect of infill walls on the seismic performance of the multistoried buildings
Effect of infill walls on the seismic performance of the multistoried buildingsEffect of infill walls on the seismic performance of the multistoried buildings
Effect of infill walls on the seismic performance of the multistoried buildings
 
Seismic evaluation of rc frame with brick masonry infill walls
Seismic evaluation of rc frame with brick masonry infill wallsSeismic evaluation of rc frame with brick masonry infill walls
Seismic evaluation of rc frame with brick masonry infill walls
 
Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...
Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...
Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...
 
13 struds 2010 (Jan. release)
13 struds 2010 (Jan. release)13 struds 2010 (Jan. release)
13 struds 2010 (Jan. release)
 
12 release notes struds 2009 (Aug. release)
12 release notes struds 2009 (Aug. release)12 release notes struds 2009 (Aug. release)
12 release notes struds 2009 (Aug. release)
 
Struds 2010 (aug release)
Struds 2010 (aug  release)Struds 2010 (aug  release)
Struds 2010 (aug release)
 
Performance based seismic evaluation of G+3 RC buildings with openings in inf...
Performance based seismic evaluation of G+3 RC buildings with openings in inf...Performance based seismic evaluation of G+3 RC buildings with openings in inf...
Performance based seismic evaluation of G+3 RC buildings with openings in inf...
 
Company profile
Company profileCompany profile
Company profile
 
Analysis of Confined Masonry part 2
Analysis of Confined Masonry part 2Analysis of Confined Masonry part 2
Analysis of Confined Masonry part 2
 
summer training ppts
summer training pptssummer training ppts
summer training ppts
 
Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...
Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...
Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...
 
Struds overview
Struds overviewStruds overview
Struds overview
 
Analysis of Confined Masonry part 1
Analysis of Confined Masonry part 1Analysis of Confined Masonry part 1
Analysis of Confined Masonry part 1
 
Intro to Confined Masonry
Intro to Confined MasonryIntro to Confined Masonry
Intro to Confined Masonry
 
Code approaches to seismic design of masonry infiled rc frames
Code approaches to seismic design of masonry infiled rc framesCode approaches to seismic design of masonry infiled rc frames
Code approaches to seismic design of masonry infiled rc frames
 
C. executive information systems
C. executive information systemsC. executive information systems
C. executive information systems
 
Descriptive study of pushover analysis in rcc structures of rigid joint
Descriptive study of pushover analysis in rcc structures of rigid jointDescriptive study of pushover analysis in rcc structures of rigid joint
Descriptive study of pushover analysis in rcc structures of rigid joint
 
Analysis of rc frame with and without masonry infill wall with different stif...
Analysis of rc frame with and without masonry infill wall with different stif...Analysis of rc frame with and without masonry infill wall with different stif...
Analysis of rc frame with and without masonry infill wall with different stif...
 
Design project
Design projectDesign project
Design project
 
Confined masonrydesignguide82011
Confined masonrydesignguide82011Confined masonrydesignguide82011
Confined masonrydesignguide82011
 

Similar to A comparative study of the effect of infill walls on seismic performance of rei

Seismic Vulnerability Assessment of Steel Moment Resisting Frame due to Infil...
Seismic Vulnerability Assessment of Steel Moment Resisting Frame due to Infil...Seismic Vulnerability Assessment of Steel Moment Resisting Frame due to Infil...
Seismic Vulnerability Assessment of Steel Moment Resisting Frame due to Infil...
IDES Editor
 
Ac34176185
Ac34176185Ac34176185
Ac34176185
IJERA Editor
 
LATERAL LOAD ANALYSIS OF SOFT STORY BUILDING AND IMPORTANCE OF MODELING MASON...
LATERAL LOAD ANALYSIS OF SOFT STORY BUILDING AND IMPORTANCE OF MODELING MASON...LATERAL LOAD ANALYSIS OF SOFT STORY BUILDING AND IMPORTANCE OF MODELING MASON...
LATERAL LOAD ANALYSIS OF SOFT STORY BUILDING AND IMPORTANCE OF MODELING MASON...
ijsrd.com
 
IRJET- Post Peak Response of Reinforced Concrete Frames with and without in F...
IRJET- Post Peak Response of Reinforced Concrete Frames with and without in F...IRJET- Post Peak Response of Reinforced Concrete Frames with and without in F...
IRJET- Post Peak Response of Reinforced Concrete Frames with and without in F...
IRJET Journal
 
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
ijsrd.com
 
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
ijsrd.com
 
IRJET- Seismic Linear Analysis of Low Rise Open Ground Storey Buildings
IRJET-  	  Seismic Linear Analysis of Low Rise Open Ground Storey BuildingsIRJET-  	  Seismic Linear Analysis of Low Rise Open Ground Storey Buildings
IRJET- Seismic Linear Analysis of Low Rise Open Ground Storey Buildings
IRJET Journal
 
Review on Effective utilization of RCC Shear walls for Design of Soft Storey ...
Review on Effective utilization of RCC Shear walls for Design of Soft Storey ...Review on Effective utilization of RCC Shear walls for Design of Soft Storey ...
Review on Effective utilization of RCC Shear walls for Design of Soft Storey ...
IJERA Editor
 
IRJET- Comparative Study of Flat Slab and Conventional Slab Structure wit...
IRJET-  	  Comparative Study of Flat Slab and Conventional Slab Structure wit...IRJET-  	  Comparative Study of Flat Slab and Conventional Slab Structure wit...
IRJET- Comparative Study of Flat Slab and Conventional Slab Structure wit...
IRJET Journal
 
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
IRJET Journal
 
ijamtes Md Asif Akbari 9521930692
ijamtes Md Asif Akbari 9521930692ijamtes Md Asif Akbari 9521930692
ijamtes Md Asif Akbari 9521930692
MD ASIF AKBARI
 
Performance of shear wall building during seismic excitations
Performance of shear wall building during seismic excitationsPerformance of shear wall building during seismic excitations
Performance of shear wall building during seismic excitations
IAEME Publication
 
Enhancing Resistance Capacity of Soft Storey Building by Means of Shearwall I...
Enhancing Resistance Capacity of Soft Storey Building by Means of Shearwall I...Enhancing Resistance Capacity of Soft Storey Building by Means of Shearwall I...
Enhancing Resistance Capacity of Soft Storey Building by Means of Shearwall I...
IRJET Journal
 
Seismic Response of Multi storey Flat Slab Building with and without Shear Wall
Seismic Response of Multi storey Flat Slab Building with and without Shear WallSeismic Response of Multi storey Flat Slab Building with and without Shear Wall
Seismic Response of Multi storey Flat Slab Building with and without Shear Wall
IRJET Journal
 
Seismic performance of friction pendulum bearing by considering storey drift ...
Seismic performance of friction pendulum bearing by considering storey drift ...Seismic performance of friction pendulum bearing by considering storey drift ...
Seismic performance of friction pendulum bearing by considering storey drift ...
eSAT Publishing House
 
Influence of Modeling Masonry Infill on Seismic Performance of Multi-Storeyed...
Influence of Modeling Masonry Infill on Seismic Performance of Multi-Storeyed...Influence of Modeling Masonry Infill on Seismic Performance of Multi-Storeyed...
Influence of Modeling Masonry Infill on Seismic Performance of Multi-Storeyed...
ijsrd.com
 
IRJET- Analysis of Various Effects on Multistory Building (G+27) by Staad Pro...
IRJET- Analysis of Various Effects on Multistory Building (G+27) by Staad Pro...IRJET- Analysis of Various Effects on Multistory Building (G+27) by Staad Pro...
IRJET- Analysis of Various Effects on Multistory Building (G+27) by Staad Pro...
IRJET Journal
 
Seismic Analysis on Bare Frame, Infilled Frame and Soft Story RC Framed Build...
Seismic Analysis on Bare Frame, Infilled Frame and Soft Story RC Framed Build...Seismic Analysis on Bare Frame, Infilled Frame and Soft Story RC Framed Build...
Seismic Analysis on Bare Frame, Infilled Frame and Soft Story RC Framed Build...
IRJET Journal
 
Behaviour of reinforced concrete frame with in fill walls under seismic loads...
Behaviour of reinforced concrete frame with in fill walls under seismic loads...Behaviour of reinforced concrete frame with in fill walls under seismic loads...
Behaviour of reinforced concrete frame with in fill walls under seismic loads...
IAEME Publication
 
IRJET- A Research on Comparing the Effect of Seismic Waves on Multistoried Bu...
IRJET- A Research on Comparing the Effect of Seismic Waves on Multistoried Bu...IRJET- A Research on Comparing the Effect of Seismic Waves on Multistoried Bu...
IRJET- A Research on Comparing the Effect of Seismic Waves on Multistoried Bu...
IRJET Journal
 

Similar to A comparative study of the effect of infill walls on seismic performance of rei (20)

Seismic Vulnerability Assessment of Steel Moment Resisting Frame due to Infil...
Seismic Vulnerability Assessment of Steel Moment Resisting Frame due to Infil...Seismic Vulnerability Assessment of Steel Moment Resisting Frame due to Infil...
Seismic Vulnerability Assessment of Steel Moment Resisting Frame due to Infil...
 
Ac34176185
Ac34176185Ac34176185
Ac34176185
 
LATERAL LOAD ANALYSIS OF SOFT STORY BUILDING AND IMPORTANCE OF MODELING MASON...
LATERAL LOAD ANALYSIS OF SOFT STORY BUILDING AND IMPORTANCE OF MODELING MASON...LATERAL LOAD ANALYSIS OF SOFT STORY BUILDING AND IMPORTANCE OF MODELING MASON...
LATERAL LOAD ANALYSIS OF SOFT STORY BUILDING AND IMPORTANCE OF MODELING MASON...
 
IRJET- Post Peak Response of Reinforced Concrete Frames with and without in F...
IRJET- Post Peak Response of Reinforced Concrete Frames with and without in F...IRJET- Post Peak Response of Reinforced Concrete Frames with and without in F...
IRJET- Post Peak Response of Reinforced Concrete Frames with and without in F...
 
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
 
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
Lateral Load Analysis of Shear Wall and Concrete Braced Multi-Storeyed R.C Fr...
 
IRJET- Seismic Linear Analysis of Low Rise Open Ground Storey Buildings
IRJET-  	  Seismic Linear Analysis of Low Rise Open Ground Storey BuildingsIRJET-  	  Seismic Linear Analysis of Low Rise Open Ground Storey Buildings
IRJET- Seismic Linear Analysis of Low Rise Open Ground Storey Buildings
 
Review on Effective utilization of RCC Shear walls for Design of Soft Storey ...
Review on Effective utilization of RCC Shear walls for Design of Soft Storey ...Review on Effective utilization of RCC Shear walls for Design of Soft Storey ...
Review on Effective utilization of RCC Shear walls for Design of Soft Storey ...
 
IRJET- Comparative Study of Flat Slab and Conventional Slab Structure wit...
IRJET-  	  Comparative Study of Flat Slab and Conventional Slab Structure wit...IRJET-  	  Comparative Study of Flat Slab and Conventional Slab Structure wit...
IRJET- Comparative Study of Flat Slab and Conventional Slab Structure wit...
 
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
 
ijamtes Md Asif Akbari 9521930692
ijamtes Md Asif Akbari 9521930692ijamtes Md Asif Akbari 9521930692
ijamtes Md Asif Akbari 9521930692
 
Performance of shear wall building during seismic excitations
Performance of shear wall building during seismic excitationsPerformance of shear wall building during seismic excitations
Performance of shear wall building during seismic excitations
 
Enhancing Resistance Capacity of Soft Storey Building by Means of Shearwall I...
Enhancing Resistance Capacity of Soft Storey Building by Means of Shearwall I...Enhancing Resistance Capacity of Soft Storey Building by Means of Shearwall I...
Enhancing Resistance Capacity of Soft Storey Building by Means of Shearwall I...
 
Seismic Response of Multi storey Flat Slab Building with and without Shear Wall
Seismic Response of Multi storey Flat Slab Building with and without Shear WallSeismic Response of Multi storey Flat Slab Building with and without Shear Wall
Seismic Response of Multi storey Flat Slab Building with and without Shear Wall
 
Seismic performance of friction pendulum bearing by considering storey drift ...
Seismic performance of friction pendulum bearing by considering storey drift ...Seismic performance of friction pendulum bearing by considering storey drift ...
Seismic performance of friction pendulum bearing by considering storey drift ...
 
Influence of Modeling Masonry Infill on Seismic Performance of Multi-Storeyed...
Influence of Modeling Masonry Infill on Seismic Performance of Multi-Storeyed...Influence of Modeling Masonry Infill on Seismic Performance of Multi-Storeyed...
Influence of Modeling Masonry Infill on Seismic Performance of Multi-Storeyed...
 
IRJET- Analysis of Various Effects on Multistory Building (G+27) by Staad Pro...
IRJET- Analysis of Various Effects on Multistory Building (G+27) by Staad Pro...IRJET- Analysis of Various Effects on Multistory Building (G+27) by Staad Pro...
IRJET- Analysis of Various Effects on Multistory Building (G+27) by Staad Pro...
 
Seismic Analysis on Bare Frame, Infilled Frame and Soft Story RC Framed Build...
Seismic Analysis on Bare Frame, Infilled Frame and Soft Story RC Framed Build...Seismic Analysis on Bare Frame, Infilled Frame and Soft Story RC Framed Build...
Seismic Analysis on Bare Frame, Infilled Frame and Soft Story RC Framed Build...
 
Behaviour of reinforced concrete frame with in fill walls under seismic loads...
Behaviour of reinforced concrete frame with in fill walls under seismic loads...Behaviour of reinforced concrete frame with in fill walls under seismic loads...
Behaviour of reinforced concrete frame with in fill walls under seismic loads...
 
IRJET- A Research on Comparing the Effect of Seismic Waves on Multistoried Bu...
IRJET- A Research on Comparing the Effect of Seismic Waves on Multistoried Bu...IRJET- A Research on Comparing the Effect of Seismic Waves on Multistoried Bu...
IRJET- A Research on Comparing the Effect of Seismic Waves on Multistoried Bu...
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
IAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
IAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
IAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
IAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
IAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
IAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
IAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
IAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
Fwdays
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 

Recently uploaded (20)

Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 

A comparative study of the effect of infill walls on seismic performance of rei

  • 1. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 208 A COMPARATIVE STUDY OF THE EFFECT OF INFILL WALLS ON SEISMIC PERFORMANCE OF REINFORCED CONCRETE BUILDINGS 1 Prerna Nautiyal*, 2 Saurabh Singh* and 3 Geeta Batham 1,2 Student of M.E. Structural Engineering, Department of Civil Engineering, 3 Assistant Professor , Department of Civil Engineering, 1,2,3 University Institute of Technology, RGVP, Bhopal, Madhya Pradesh, INDIA. ABSTRACT In the building construction, framed structure is frequently used due to ease of construction and rapid progress of work, and generally these frames are filled by masonry infill panels or concrete blocks. This paper elaborates the effect of infill wall during the earthquake. The effect of masonry infill panel on the response of RC frames subjected to seismic action is widely recognized and has been subject of numerous experimental investigations. Infill behaves like compression strut between column and beam and compression forces are transferred from one node to another. The model uses an equivalent diagonal method to calculate the infill walls, as recommended in the literature. The results also show that infill walls reduce displacements, time period and increases base shear. So it is essential to consider the effect of masonry infill for the seismic evaluation of moment resisting RC Frame. Keywords: Infill wall, Effect of infill wall, Modeling of the infill wall, Soft storey, Seismic behavior of infilled structure, Diagonal strut method. 1. INTRODUCTION It has always been a human aspiration to create taller and taller structures. Development of metro cities in India there is increasing demand in High Rise Building. Column and girder framing of reinforced concrete, or sometimes steel, is in-filled by panel of brickwork, block work, cast in place or pre-cast concrete. Infill panel elements as the part of the building RC structure play a very important role on the seismic performance of the building structure. In general design practices in India, the strength and stiffness of infill walls are ignored with the assumption of conservative design. In actual, infill walls add considerably to the strength and rigidity of the structures and their negligence will cause failure of many of multi-storeyed buildings. The failure is basically due to stiffening effect of infill panels which is cause of i) unequal distribution of lateral forces in the INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) ISSN 0976 – 6308 (Print) ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), pp. 208-218 © IAEME: www.iaeme.com/ijciet.asp Journal Impact Factor (2013): 5.3277 (Calculated by GISI) www.jifactor.com IJCIET © IAEME
  • 2. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 209 different frames and overstressing of some of the building frames; ii) soft storey or weak storey; iii) short columns or captive column effect; iv) torsional forces ; v) cracking of the infill walls. Several researchers are unanimous in pointing out the benefits of associating frames with infill walls, which significantly increases the mechanical strength and rigidity of the infill frame. Analytical models based on the concept of the equivalent diagonal strut, considering the structure as an equivalent braced frame system with a diagonal compression strut replacing the infill, provide an accurate prediction of the behaviour of steel frames. Soft stories Many urban multistory buildings in India today have open first storey as an unavoidable feature. This is primarily being adopted to accommodate parking or reception lobbies in the first storey. The upper stories have brick infilled wall panels. The draft Indian seismic code classifies a soft storey as one whose lateral stiffness is less than 70% of the storey above or below [Draft IS:1893, 1997]. Interestingly, this classification renders most Indian buildings, with no masonry infill walls in the first storey, to be “buildings with soft first storey.” A soft story is illustrated above, as an apartment complex with a row of garages below the first level. This is garage level is sometimes called “tuck under parking.” Fig:1 Soft storey 2. BASIC CONCEPT[1][2][3] The building with soft story behaves differently as compared to a bare framed building (without any infill) or a fully infilled framed building under lateral load. A bare frame is much less stiff than a fully infilled frame; it resists the applied lateral load through frame action and shows well-distributed plastic hinges at failure. When this frame is fully infilled, truss action is introduced. A fully infilled frame shows less inter-storey drift, although it attracts higher base shear (due to increased stiffness). A fully infilled frame yields less force in the frame elements and dissipates greater energy through infill walls. The strength and stiffness of infill walls in infilled frame buildings are ignored in the structural modeling in conventional design practice. The design in such cases will generally be conservative in the case of fully infilled framed building. But things will be different for a soft story framed building. Soft story building is slightly stiffer than the bare frame, has larger drift (especially in the ground storey), and fails due to soft storey-mechanism at the ground floor. Therefore, it may be unconservative to ignore strength and stiffness of infill wall while designing soft story buildings. Inclusion of stiffness and strength of infill walls in the Soft story building frame decreases the fundamental time period compared to a bare frame and consequently increases the base shear demand and the design forces in the ground storey beams and columns. This increased design forces in the ground storey beams and columns of the Soft story buildings are not captured in the conventional bare frame analysis. An appropriate way to analyze the Soft story buildings is to model the strength and stiffness of infill walls. Unfortunately, no guidelines are given in IS 1893: 2002
  • 3. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 210 (Part-1) for modeling the infill walls. As an alternative a bare frame analysis is generally used that ignores the strength and stiffness of the infill walls. The total seismic base shear as experienced by a building during an earthquake is dependent on its natural period, the seismic force distribution is dependent on the distribution of stiffness and mass along the height. In buildings with soft first storey, the upper stories being stiff, undergo smaller inter-storey drifts. However, the inter-storey drift in the soft first storey is large. The strength demands on the columns in the first storey for third buildings is also large, as the shear in the first storey is maximum. For the upper stories, however, the forces in the columns are effectively reduced due to the presence of the Buildings with abrupt changes in storey stiffness have uneven lateral force distribution along the height, which is likely to locally induce stress concentration. This has adverse effect on the performance of buildings during ground shaking. Such buildings are required to be analyzed by the dynamic analysis and designed carefully. 3. MODELLING OF INFILL WALL [4][5] Most of the previous research model infill wall as an equivalent diagonal strut. This section summarises different approaches to model infill was as equivalent struts. Basically there are four approaches to model the equivalent strut found in literature. These approaches are explained below: 3.1 ELASTIC ANALYSIS APPROACH The modelling of infill wall as an equivalent diagonal compression member was introduced by Holmes (1961). The thickness of the equivalent diagonal strut was recommended as the thickness of the infill wall itself, and the width recommended as one-third of the diagonal length of infill panel. The width of the strut using Airy’s stress function was found to vary from d/4 to d/11 depending on the panel proportions. Later, a number of tests conducted by Smith (1966) proved that the equivalent strut width (w) is a function of relative stiffness (λh) of the frame and infill wall, strength of equivalent corner crushing mode of failure (Rc ) and instantaneous diagonal compression in the infill wall (Ri ). Fig:2 A typical panel of the infilled frame Fig:3 Behavior of typical panel subjected to lateral load
  • 4. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 211 In 1969, Smith and Carter combined all the previous works (Smith 1962, 1966) and developed an analysis approach based on the equivalent strut concept to predict the width and strength of an infilled frame. This approach of modeling the struts is based on the initial stiffness of the infill wall. Fig 2.1 and 2.2 shows how the infill panels behave when it is designed as equivalent diagonal strut when subjected to lateral load. Smith and Carter (1969) expressed the parameter, λh, as follows Where, Es = elastic modulus of the equivalent strut Ec = elastic modulus of the column in the bounding frame Ic = moment of inertia of the column h'= clear height of infill wall (Fig. 2) h = height of column between centre lines of beams t = thickness of infill wall θ = slope of the infill wall diagonal to the horizontal A relationship between the ratio of axial load in the equivalent strut (Ri ) to the capacity of the strut under corner crushing (Rc ), and width (w) was derived by Ramesh (2003) from the plot given by Smith and Carter (1969), as given by The parameter w’ accounts for the panel aspect ratio. An expression for w’/d is as given: The strength of the equivalent strut is taken as the minimum of the two failure modes, i.e. (i) Local crushing (Rc) of infills in the corners (ii) Shear cracking (Rs) along the bed joint of the brickwork. The failure load corresponding to corner crushing mode was expressed in terms of λh as: Where fm’ is the compressive strength of the masonry infill wall. The following relationship was proposed for the diagonal load causing shear cracking failure (Rs) by Govindan et. al. (1987), using the curves given by Smith and Carter, 1969. Where fbs’ is the bond shear strength between the masonry and mortar Another equation by Mainstone for the determination of the equivalent strut width is Where d’ = is the clear diagonal length of the infill walls. This expression yields a constant strut width, independent of parameters such as axial load on the diagonal strut and infill wall panel aspect ratio. Paulay and Priestley (1992) suggested that the width of the strut can be taken as 1/4th of the diagonal length of the infill panel. Al-Chaar (2002) proposed an eccentric equivalent strut (Fig.2.3) which was pin connected to the column at a distance le from the face of the beam to model the masonry infill wall. Where le = w/cosθ and w is calculated using above equation.
  • 5. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 212 3.2 ULTIMATE LOAD APPROACH Saneinejad and Hobbs (1995) proposed a new model that accounts for the interface stresses and the nonlinear inelastic behavior of the infill wall. The area of the equivalent strut is calculated from the diagonal load at failure. This approach is based on the ultimate strength of the equivalent strut and the strength of the strut is calculated from the three modes of failure: 1) Corner crushing failure at the compressive corners 2) Shear cracking failure along the bedding joints of the brickwork 3) Diagonal compression failure of the slender infill wall The applicability of the two approaches stated above for different types of building analysis was investigated. The calculation of the strut properties by both the approaches was presented through a case study by Asokan (2006) and the justification of using either of the methods was presented. He selected a two bay frame of an existing five storey building which was infilled in the entire four stories except for the ground floor. The beams and column frames were of the same size. The infill wall thickness was 120 mm and he from his study concluded that the EA approach is simple in the calculation. A higher strut width gives higher stiffness and hence, higher base shear in a building. Since the EA approach gives the higher strut width, it is conservative in estimating the base shear. For estimating the lateral drift of a building, since the UL approach gives lower stiffness of a strut, it is more conservative. To carry out a linear analysis of the building by the equivalent static method (static analysis) or the response spectrum method (dynamic analysis), modeling of the infill walls by the simpler EA approach would prove to be adequate. But in a pushover analysis (nonlinear static analysis) of a building, the UL approach would be preferred. 3.3 APPROACH BASED ON PLASTIC ANALYSIS Experimental results (Smith 1962) show that there is a considerable nonlinearity in the infilled frames before they collapse. The nonlinearity arises mainly from cracking and crushing of the infill wall material, confinement of the infill walls in the frames, and formation of plastic hinges in the frame members. In the elastic stage, stress concentration occurs at all four corners. As cracks develop and propagate, the stresses at the tensile corners are relieved while those near the compressive corners are significantly increased. The frame moments increase significantly when the infill wall degrades leading to the formation of plastic hinges and collapse of the structure. A plastic theory was developed for integral and non-integral (without shear connectors) infilled frames by Liauw and Kwan (1983). The stress redistribution in the frames towards collapse was taken into account and the friction was neglected for strength reserve for the non-integral infilled frames. The theory was based on the findings from nonlinear finite element analysis and experimental investigation. The local crushing of the infill wall corner is associated with a plastic hinge formation either in the beam or in the column. The following modes of failure were identified. • Corner crushing mode with failure in columns: This mode of failure is associated with weak columns and strong infill wall. Failure occurs in the columns with subsequent crushing of the infill wall at the compressive corners. • Corner crushing mode with failure in beams: This mode of failure predominates when beam is relatively weak and the infill wall is strong. Failure occurs in beam after the failure of the infill wall at the compressive corners. • Diagonal crushing mode: With relatively strong frame and weak infill wall, failure occurs in the infill wall by crushing at the loaded corners with subsequent failure in the joints of the frame. Based on plastic theory, following are the mathematical expressions were developed for the above modes of failure.
  • 6. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 213 1. For failure mode 1 2. For failure mode 2 3. For failure mode 3 Where Hu = lateral load causing the failure Mpc = the plastic moment of resistance of the column Mpb = the plastic moment of resistance of the beam σc= contact stresses in the column 3.4 APPROACH BASED ON FINITE ELEMENT ANALYSIS Finite element analysis was done by many researchers to study the behavior of the infill wall under lateral load. The different parameters influencing the infill walls under lateral loads were investigated. A finite element model was developed by Mallick and Severn (1967) to incorporate the effect of slip and interface friction between the frame and infill wall. Riddington and Smith (1977) studied the effect of different parameters such as aspect ratio, relative stiffness parameter, number of bays and beam stiffness. It was found that the bending moments in the frame members were reduced in the presence of the infill wall. Hence, the infilled frame can be modeled as truss elements. Dhanasekar and Page (1986) developed a finite element program and concluded that the behavior of a frame not only depends on the relative stiffness of the frame and infill wall but also on the properties of masonry, such as shear and tensile bond strengths. 4. PROBLEM STATEMENT[6] For the analysis purpose two models have been considered namely as: Model A: Fully infilled frame (S.M.R.F infill frame with masonry effect considered) Model B: Bare frame (S.M.R.F infill frame with masonry effect not considered) 4.1 STRUCTURAL DETAILS The plan layout of the special reinforced concrete moment resisting frame (SMRF) building with one open storey and Un-reinforced brick infill walls in the other stories, chosen for this study is shown in Fig. 3. The building is deliberately kept symmetric in both orthogonal directions in the plan to avoid torsional response under pure lateral forces. The building is considered to be located in the seismic zone V and intended for commercial use. The building is founded on hard soil through isolated footings (of size 2m×2m) under the columns. Elastic moduli of concrete and masonry are 28,500 MPa and 3,500 MPa, respectively, and their Poison’s ratio is 0.25. Performance factor (K) has been taken as 1.0 (assuming ductile detailing). The unit weights of concrete and masonry are taken as 25 kN/m3 and 20 kN/m3 is considered. The other building parameters are as follows.
  • 7. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 214 Table No. 1 1 Type of Structure Multistory rigid jointed plane frame (SMRF) 2 Seismic Zone V 3 Number of stories Four, G+3 4 Floors Height 3.2 m 5 Infill wall 250mm thick brick masonry wall along X direction & 150 mm thick brick masonry wall along Y direction 6 Type of soil Hard 7 Size of column 250 mm X450 mm 8 Size of Beam 250 mm X 400 mm 9 Depth of Slab (RCC) 100 mm 10 Live load a) On roof = 1.5 KN/sqm b) On floor = 4 Kn/sqm 11 Material M 20 Grade concrete & Fe 415 Reinforcement 12 Unit weights a) Concrete = 25 KN/Cum b) Masonry = 20 KN/Cum 13 Damping in structure 5% 14 Importance factor 1.5 Fig:4 Plan of the model Calculation of Lumped Mass The seismic weight W is the full dead load & the appropriate imposed load or live load at the corresponding floor level as mentioned below for the computation of seismic forces. W= DL +0.5 LL (for LL > 3.00 KN/ sqm)
  • 8. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 215 Table No. 2 FLOORS DEAD LOAD (KN) LIVE LOAD (KN) SEISMIC WEIGHT OF FLOORS (KN) Ground Floor 2364 900 2814 First Floor 2364 900 2814 Second Floor 2364 900 2814 Third Floor 1613.25 Not considered 1613.25 Seismic weight of the structure (W) = M1 + M2 + M3 + M4 = 10055.25 KN Fig:5 Plane frame structure and its lumped mass model Model A: The natural period (Tn) of the structure with infilled wall is estimated as follows Tn = 0.09 h/ (d)0.5 Where, h= 12.8m & d = 15m So, Tn= 0.297 Response Acceleration Coefficient for 5% damping and hard soil (Sa/g) = 2.5 Z (Zone factor for zone V) = 0.36 Importance factor (I) = 1.5 Response reduction factor (for SMRF), R = 5 So horizontal seismic coefficient is Ah = (Z/2)(I/R)(Sa/g) So, Ah = 0.135 The base shear is (VB)’ = Ah X W So, (VB)’ =1357.45 KN
  • 9. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 216 Table No. 3 Storey Weight in KN, Wi hi (m) from the base Wi hi 2 Wi hi 2 /∑ Wi hi 2 Qi=(VB)’X (Wi hi 2 /∑ Wi hi 2 ) 4 1613.25 12.8 264314.9 0.395841001 537.3343669 3 2814 9.6 259338.2 0.388387928 527.2171927 2 2814 6.4 115261.4 0.172616857 234.3187523 1 2814 3.2 28815.36 0.043154214 58.57968808 ∑ 10055.2 667729.9 1 1357.45 Therefore the base shear is 1357.45KN and the lateral forces at the storey levels are Q1 = 537.33, Q2 = 527.22 KN , Q3 = 234.32 KN and Q4 = 58.58 KN. Fig:6 Lateral load distribution at various floors Model B: The natural period (Tn) of the structure without infilled wall is estimated as follows Tn = 0.075h0.75 Where, h= 12.8m So, Tn= 0.508 Response Acceleration Coefficent for 5% damping and hard soil (Sa/g) = (1/Tn) =1.969 Z (Zone factor for zone V) = 0.36 Importance factor (I) = 1.5 Response reduction factor (for SMRF), R = 5 So horizontal seismic coefficient is Ah = (Z/2)(I/R)(Sa/g) So, Ah = 0.106 The base shear is (VB)’ = Ah X W So, (VB)’ = 1065.86 KN
  • 10. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 217 Table No. 4 Storey Weight in KN, Wi hi (m) from the base Wi hi 2 Wi hi 2 /∑ Wi hi 2 Qi=(VB)’X (Wi hi 2 /∑ Wi hi 2 ) 4 1613.25 12.8 264314.9 0.395841001 421.9110894 3 2814 9.6 259338.2 0.388387928 413.9671568 2 2814 6.4 115261.4 0.172616857 183.985403 1 2814 3.2 28815.36 0.043154214 45.99635075 ∑ 10055.2 667729.9 1 1065.86 Therefore, the base shear is 1065.86 KN and the lateral forces at the storey levels are Q1 = 421.91KN, Q2 =413.97 KN, Q3 = 183.99 KN and Q4 = 45.99 KN. Fig:6 Lateral load distribution at various floors 5. COMPARISON OF RESULTS Table No. 5 Considering the stiffness of the wall (Model A) Neglecting the stiffness of infill (Model B) Natural period , Tn 0.297 0.508 Base shear 1357.45 1065.86 6. CONCLUSION The Indian standard provides different expressions for the estimation of the natural period of the building structure considering or neglecting the stiffness of the infill wall. The consideration of stiffness of masonry infill increases the stiffness of the structure and hence reduce the natural period and consequently increase the response acceleration and hence the seismic forces (i.e. base shear and correspondingly the lateral forces at each storey.
  • 11. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 4, Issue 4, July-August (2013), © IAEME 218 7. REFERENCES [1] A.S. Kasnale & Sanjay Jamkar “Analysis of lateral stiffness for infilled frame with opening”, International Journal of advanced technology in civil engineering, ISSN:2231-5721 Vol I Issue 3,2012. [2] Hyun Ko , Yong-Koo Park and Dong- Guen Lee “Evaluation of Seismic Behavior for low rise RC Moment Resisting with masonry infill wall”, the 14th world conference on earthquake engineering October 12-17, 2008, Beijing, China. [3] Wakchaure M.R. , Ped S.P. “Earthquake analysis of high rise building with and without infilled walls”, IJEIT ISSN:2277-3754 Vol II Issue 2 August 2012. [4] A. Asokan, (2006) Modeling of Masonry Infill Walls for Nonlinear Static Analysis of Buildings under Seismic Loads. M. S. Thesis, Indian Institute of Technology Madras, Chennai. [5] Shenash patel “Earthquake resistant design of low-rise open ground storey framed building “ M.Tech Thesis, NIT Rourkela. [6] Dr. Vinod Hosur “ Earthquake – Resistant design of building structures”, ISBN No. 978-81- 265-3859-1 Publisher Wiley Precise Textbook. [7] Machhindra S.Purkar and Sunil Y. Kute, “Numerical Modeling of Reinforced Soil Segmental Wall Under Surcharge Loading”, International Journal of Civil Engineering & Technology (IJCIET), Volume 4, Issue 1, 2013, pp. 1 - 15, ISSN Print: 0976 – 6308, ISSN Online: 0976 – 6316. [8] Mohammed S. Al-Ansari, “Flexural Safety Cost of Optimized Reinforced Concrete Beams”, International Journal of Civil Engineering & Technology (IJCIET), Volume 4, Issue 2, 2013, pp. 15 - 35, ISSN Print: 0976 – 6308, ISSN Online: 0976 – 6316. [9] Misam.A and Mangulkar Madhuri.N., “Structural Response of Soft Story-High Rise Buildings Under Different Shear Wall Location”, International Journal of Civil Engineering & Technology (IJCIET), Volume 3, Issue 2, 2012, pp. 169 - 180, ISSN Print: 0976 – 6308, ISSN Online: 0976 – 6316.