SlideShare a Scribd company logo
C&T RF Antennas Inc
www.ctrfantennas.com rfproducts1@ctrfantennas.com
Please Contact us for more information, thank you.
 Jasmine Lu (86)17322110281
4 test methods for 5G base station antenna OTA
The research method of 5G base station antenna OTA test research on the large-scale MIMO
active antenna OTA test method of the 5G base station. In this paper, the necessity of an
integrated OTA test for 5G base station antenna is analyzed. Different OTA test schemes such as
far field, compact field, multi-probe near field and single probe near field are introduced. The
advantages and disadvantages of each test scheme are tested through the actual test. The
comparative analysis points out the problems faced by the current 5G base station antenna OTA
test and proposes a solution.
1. Introduction
5G mobile communication technology can meet people's needs for fast-growing mobile
communication services such as high speed, large capacity, high reliability, and low latency. The
large-scale MIMO active antenna technology as one of the key technologies of 5G mobile
communication can greatly improve the spectrum utilization efficiency through spatial
multiplexing, and can greatly improve the communication system capacity by combining the new
coding technology. And the communication rate. Therefore, the large-scale MIMO active
antenna technology is a commonly used technology in 5G mobile communication base stations,
but it is followed by the problem of how to test 5G base station antennas.
For a traditional base station, the antenna and the RRU (Radio Remote Unite) are separated from
each other. They are connected by RF cables, which are relatively independent and have no
performance impact. Their respective performances can be independently tested. Carry out an
inspection. The radiation performance test of the antenna can be done in the microwave
darkroom through far-field or near-field methods. The far-field or near-field test of the passive
antenna is a mature test method widely used in testing antenna performance. The RRU's RF
specifications can be measured in the laboratory by conduction.
Referring to the traditional base station test mode, it is easy to propose a scheme of splitting the
active antenna system into a passive antenna array and an RRU to perform antenna radiation
performance test and RF conduction test respectively. In fact, according to laboratory testing
experience, the beamforming pattern measured by "passive antenna array + power division
network + signal source" is integrated with the 5G base station active antenna integrated OTA
(Over the Air) test. The results are not consistent. The RF performance conduction test results of
the "RRU+ Coupling Board" also differ from the RF radiation indicators measured by the
integrated OTA. The reason is that for a 5G base station antenna, the antenna is integrated with
the RRU. On the one hand, interference factors such as electromagnetic coupling and active
standing wave cannot be completely eliminated; on the other hand, the calibration and
amplitude and phase weighting of the active antenna pass through the respective RF channels.
The combination of a series of active devices is quite different from the way in which the passive
antenna array performs amplitude-weighting through a passive power division network.
Therefore, for a 5G base station using massive MIMO active antenna technology, the integrated
OTA test mode can effectively reflect its performance indicators. Especially in the millimeter wave
band, the frequency band is higher, the device size is smaller, the electromagnetic interference
problem is more prominent, and the split test will be very difficult, and only the integrated OTA
C&T RF Antennas Inc
www.ctrfantennas.com rfproducts1@ctrfantennas.com
Please Contact us for more information, thank you.
 Jasmine Lu (86)17322110281
test solution can be adopted.
The OTA test specification for all RF performance indicators of 5G base stations has been written
in the 3GPP 5G new air interface protocol frozen in December 2017, which means that the
integrated OTA test of 5G base station antennas will become the main solution for 5G base
station hardware performance testing. However, the current OTA test of RF indicators still faces
many difficulties. In this paper, the OTA test method of the large-scale active antenna system is
deeply studied, and the test is carried out in different fields such as far field, compact field,
multi-probe spherical near field and single probe near field. The advantages and disadvantages of
each test scheme are compared. The analysis presented the problems faced and the
corresponding solutions.
2. 5G base station antenna OTA test solution
The radiated performance of an antenna is typically tested in an OTA manner in its near-field or
far-field region. The boundary between the near field and the far field of the antenna radiation is:
the spherical wavefront emitted by the source antenna reaches the center of the antenna to be
measured and the wave path difference is λ/16. The judgment based on the distance is d=2D 2 /λ,
where d is the distance between the probe point and the antenna under test, D is the aperture of
the antenna under test, and λ is the wavelength of the electromagnetic wave emitted by the
antenna under test.
According to this, the antenna test is divided into two categories: far-field test and near field test,
and different test plans will lead to differences in test results. Here are a few classic active
antenna OTA test solutions.
(1) Far-field test plan
The far field test is the most direct test method. When the test distance is far enough, the
incident wave approximates the plane wave on the receiving surface. Figure 1 shows the far-field
test system. The device under test can be rotated 360° in the vertical and horizontal planes. The
test probe is fixed in position and can be rotated and rotated. The test system can test the
beamforming pattern of the 5G base station antenna and EIRP (Effective Isotropic Radiated
Power), EVM (Error Vector Magnitude), occupied bandwidth, and EIS (Effective Isotropic
Sensitive). Omnidirectional sensitivity and other RF radiation indicators.
Figure1. Far-field test system
(2) Compact field test plan
C&T RF Antennas Inc
www.ctrfantennas.com rfproducts1@ctrfantennas.com
Please Contact us for more information, thank you.
 Jasmine Lu (86)17322110281
The compact field test is a far-field test method that uses a mirror or lens to convert a spherical
wave from a feed at a focus into a plane wave to achieve far-field testing in a finite physical space.
Figure2 shows a parabolic single mirror compact field test system that can test the beamforming
pattern of 5G base station antennas and EIRP, EVM, occupied bandwidth, ACLR (Adjacent Channel
Leakage Power Ration), Radiofrequency radiation indicators such as EIS and ACS (Adjacent
Channel Selectivity).
Figure2. Single mirror compact field test system
(3) Multi-probe spherical near-field test scheme
The near-field test acquires amplitude and phase information in the near-field region of the
antenna under test and then converts the acquired data into a far-field pattern by a near-far field
conversion algorithm. The multi-probe spherical near-field test system is shown in Figure3. A
large number of probes are arranged circumferentially in the near field of the device under test,
and the measured object only needs to be rotated by 180° to collect the data of the entire
radiation sphere. The system can test the beamforming pattern of a 5G base station antenna in
CW (Continuous Wave) mode.
Figure3. Multi-probe spherical near-field test system
(4) Single probe near field test system
The single-probe near-field test is less efficient than the multi-probe spherical near-field test, but
C&T RF Antennas Inc
www.ctrfantennas.com rfproducts1@ctrfantennas.com
Please Contact us for more information, thank you.
 Jasmine Lu (86)17322110281
its structure is simpler and requires less space. As shown in the small near-field test system
shown in Figure 4, the device under test can be rotated in a horizontal plane, the probe can be
rotated in a vertical plane, and the system can collect data of a radiation sphere with the
cooperation of two rotating shafts. The system can test the beamforming pattern of the 5G base
station antenna in CW mode, and can also test the RF radiation index in the service signal mode,
but the processing of the test results needs further analysis.
Figure4. Single-probe near-field test system
3. Comparison of advantages and disadvantages of each test plan
The advantage of the far field test is that since the receiving antenna is larger than the far field
criterion from the transmitting antenna, the electromagnetic wave is approximated to the plane
wave when the transmitting antenna propagates to the receiving antenna, and the collected data
does not need to be converted by the far field, and the test device can transmit the high power
signal. Test modulated wideband signals, support multi-user testing, and more. The disadvantage
is that because the test distance needs to be larger than the far field criterion, the test site has a
large area and high construction cost. Taking an antenna with a diameter of 1 m and operating in
the 3.5GHz band as an example, the far-field condition is calculated to be greater than 25 m
according to the far-field criterion formula. The farther the test distance is, the closer the
electromagnetic wave radiation is to the plane wave, but at the same time it will bring about the
problem of too much space loss. In addition, since the far field test generally has only one probe,
a single test can only draw a section of the antenna radiation sphere. If you want to obtain the 3D
pattern of the entire radiation sphere, you need to measure multiple times on different sections,
test time. And the cost of testing has increased dramatically.
The advantages of the compact field test are: Significantly reduced site size compared to the far
field, which greatly reduces site construction costs and measurement path loss. The test results
are closest to direct far-field testing and can test CW waves and business signals. Thanks to the
reduced path loss, it can measure more RF radiation than the far field solution. The disadvantage
C&T RF Antennas Inc
www.ctrfantennas.com rfproducts1@ctrfantennas.com
Please Contact us for more information, thank you.
 Jasmine Lu (86)17322110281
is: similar to the short-field test, the 3D pattern test is less efficient, and the other is the mirror
cost and post-maintenance cost.
The advantages of the multi-probe spherical near-field test are: small footprint, single-test giving
3D pattern, high test efficiency, low space loss, and the pattern test results in CW mode are close
to the far-field test results. The disadvantage is: the upper limit of the receiving power of the test
system is low. When the 5G base station is tested for full power transmission, the receiving
device must be pre-fadered; the measurement data needs post-processing for near-far field
conversion; the near-far field conversion requires a reference phase. At present, the
measurement results in the service signal mode are still unsatisfactory due to the problem of the
reference phase.
The advantages of the single-probe near-field test are a small footprint, the low construction cost
of the darkroom, simple structure of the turntable, easy installation and disassembly of the
device under test, low space loss, and comparison of the test results and far-field test results in
CW mode. Close. The disadvantage is: due to structural reasons, the data acquisition of the
antenna back flap is incomplete; there is only one test probe, the efficiency of testing the 3D
pattern is less than that of the multi-probe sphere; the collected data needs to be followed by
near-far field conversion.
4. Problems and solutions
The current OTA test solution, whether it is a far-field solution or a near-field solution, can test
the radiation pattern of a 5G base station antenna in CW mode. However, regarding the radiation
performance test of radio frequency indicators, the current far-field scheme is limited by the
large path loss, and only the parameters with high power levels such as EIRP, EVM, occupied
bandwidth, and EIS can be tested. For downlink RF indicators with particularly low power levels,
such as ACLR, switching time templates, and spurious emissions, it is difficult to test after a long
distance test distance and attenuated to a lower noise level. When measuring the uplink indicator,
the interference signal sent by the auxiliary signal source is attenuated by the path of the far field,
and it is difficult to reach the power level required for the RF index test such as ACS, in-band
blocking, and co-location blocking, which also brings difficulties to the test. Although the path
loss of the near-field test scheme is much lower than that of the far-field, the method of taking
the reference phase in the broadband service signal mode is still problematic, and the RF
radiation test result is still far from the expected value.
Since the indicators required for test verification in the laboratory R&D test phase are
comprehensive, the far field test method of compact or loss reduction should be adopted for this
type of test. By shortening the far-field test distance, increasing the horn antenna gain, using
low-loss RF cables, and shortening the RF line cabling distance within a certain range, the path
loss can be greatly reduced, and the far-field scheme can be extended to test RF indexes such as
ACLR and ACS. The path loss of the compact field itself is much smaller than that of the far field,
and it can measure more RF targets than the far field. However, there are still some RF indicators
that are particularly low due to their own power. How to reduce path loss is not enough. At this
stage, it can only be tested by conduction. For the production line test, the test cost is low, the
efficiency is high, space is small, and the typical index can be tested. The single-probe near-field
test scheme is more suitable. As for the future 5G high-band test, due to the higher frequency
C&T RF Antennas Inc
www.ctrfantennas.com rfproducts1@ctrfantennas.com
Please Contact us for more information, thank you.
 Jasmine Lu (86)17322110281
and more serious loss, far-field testing will become less suitable, and conduction testing will be
more difficult, requiring a combination of near-field testing inductive near-field testing. The
far-field conversion algorithm requires a reference signal, which requires the equipment
manufacturer and the measurement instrument manufacturer to solve the problem of taking
reference signals from the device.
5. The conclusion
This paper studies the large-scale MIMO active antenna OTA test method for 5G base stations.
Using the 5G base station equipment of the unit to study different OTA test schemes such as far
field, compact field, multi-probe near field and single probe near field, the construction cost, test
capability and test efficiency of each site were analyzed. The problems faced in the test and the
corresponding solutions are proposed, which provide a reference for current and future 5G base
station antenna OTA testing.

More Related Content

What's hot

ROLE OF MICROWAVE PHOTONICS IN REALIZING 5G NETWORKS
ROLE OF MICROWAVE PHOTONICS IN REALIZING 5G NETWORKSROLE OF MICROWAVE PHOTONICS IN REALIZING 5G NETWORKS
ROLE OF MICROWAVE PHOTONICS IN REALIZING 5G NETWORKS
Devakumar Kp
 
Beam-Repositioning System using Microstrip Patch Antenna Array for Wireless A...
Beam-Repositioning System using Microstrip Patch Antenna Array for Wireless A...Beam-Repositioning System using Microstrip Patch Antenna Array for Wireless A...
Beam-Repositioning System using Microstrip Patch Antenna Array for Wireless A...
Arun Murugan
 
Challenging Issues in Inter-Satellite Optical Wireless Systems (IsOWC) and it...
Challenging Issues in Inter-Satellite Optical Wireless Systems (IsOWC) and it...Challenging Issues in Inter-Satellite Optical Wireless Systems (IsOWC) and it...
Challenging Issues in Inter-Satellite Optical Wireless Systems (IsOWC) and it...
idescitation
 
Rectangular Microstrip Antenna Parameter Study with HFSS
Rectangular Microstrip Antenna Parameter Study with HFSSRectangular Microstrip Antenna Parameter Study with HFSS
Rectangular Microstrip Antenna Parameter Study with HFSS
Omkar Rane
 
38 GHz rectangular patch antenna CST
38 GHz rectangular patch antenna CST38 GHz rectangular patch antenna CST
38 GHz rectangular patch antenna CST
sulaim_qais
 
FYP 4th presentation
FYP 4th presentationFYP 4th presentation
FYP 4th presentation
Haroon Ahmed
 
Specific Absorption Rate Assessment of Multiple Microstrip Patch Antenna Array
Specific Absorption Rate Assessment of Multiple Microstrip Patch Antenna ArraySpecific Absorption Rate Assessment of Multiple Microstrip Patch Antenna Array
Specific Absorption Rate Assessment of Multiple Microstrip Patch Antenna Array
TELKOMNIKA JOURNAL
 
Optical satellite communication
Optical satellite communicationOptical satellite communication
Optical satellite communication
Prashastha Babu
 
MICROSTRIP ANTENNA PATTERN RECONFIGURATION USING ON-CHIP PARASITIC ELEMENTS
MICROSTRIP ANTENNA PATTERN RECONFIGURATION USING ON-CHIP PARASITIC ELEMENTS MICROSTRIP ANTENNA PATTERN RECONFIGURATION USING ON-CHIP PARASITIC ELEMENTS
MICROSTRIP ANTENNA PATTERN RECONFIGURATION USING ON-CHIP PARASITIC ELEMENTS
jantjournal
 
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite ServiceChannel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
EECJOURNAL
 
Ultra wide band
Ultra wide bandUltra wide band
Ultra wide band
mangal das
 
Emf radiation by gtpl(glare technocons pvt. ltd.)
Emf radiation by gtpl(glare technocons pvt. ltd.)Emf radiation by gtpl(glare technocons pvt. ltd.)
Emf radiation by gtpl(glare technocons pvt. ltd.)
GLARE TECHNOCONS PVT. LTD.
 
Design & simulation of 8 shape slotted microstrip patch antenna
Design & simulation of 8 shape slotted microstrip patch antennaDesign & simulation of 8 shape slotted microstrip patch antenna
Design & simulation of 8 shape slotted microstrip patch antenna
Sk Sohag
 
3-WE3_ExtendingTheReachOfVCSEL_Rev5
3-WE3_ExtendingTheReachOfVCSEL_Rev53-WE3_ExtendingTheReachOfVCSEL_Rev5
3-WE3_ExtendingTheReachOfVCSEL_Rev5
Waruna Fernando
 
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
The Research Council of Norway, IKTPLUSS
 
Karafolas
KarafolasKarafolas
Tutorial 2
Tutorial 2Tutorial 2
Tutorial 2
Ackhoe Chaerudien
 
Research paper
Research paperResearch paper
Research paper
RESHMA MEENA
 
iaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan applicationiaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan application
Iaetsd Iaetsd
 
Design of rectangular patch antenna array using advanced design methodology
Design of rectangular patch antenna array using advanced design methodologyDesign of rectangular patch antenna array using advanced design methodology
Design of rectangular patch antenna array using advanced design methodology
Ramesh Patriotic
 

What's hot (20)

ROLE OF MICROWAVE PHOTONICS IN REALIZING 5G NETWORKS
ROLE OF MICROWAVE PHOTONICS IN REALIZING 5G NETWORKSROLE OF MICROWAVE PHOTONICS IN REALIZING 5G NETWORKS
ROLE OF MICROWAVE PHOTONICS IN REALIZING 5G NETWORKS
 
Beam-Repositioning System using Microstrip Patch Antenna Array for Wireless A...
Beam-Repositioning System using Microstrip Patch Antenna Array for Wireless A...Beam-Repositioning System using Microstrip Patch Antenna Array for Wireless A...
Beam-Repositioning System using Microstrip Patch Antenna Array for Wireless A...
 
Challenging Issues in Inter-Satellite Optical Wireless Systems (IsOWC) and it...
Challenging Issues in Inter-Satellite Optical Wireless Systems (IsOWC) and it...Challenging Issues in Inter-Satellite Optical Wireless Systems (IsOWC) and it...
Challenging Issues in Inter-Satellite Optical Wireless Systems (IsOWC) and it...
 
Rectangular Microstrip Antenna Parameter Study with HFSS
Rectangular Microstrip Antenna Parameter Study with HFSSRectangular Microstrip Antenna Parameter Study with HFSS
Rectangular Microstrip Antenna Parameter Study with HFSS
 
38 GHz rectangular patch antenna CST
38 GHz rectangular patch antenna CST38 GHz rectangular patch antenna CST
38 GHz rectangular patch antenna CST
 
FYP 4th presentation
FYP 4th presentationFYP 4th presentation
FYP 4th presentation
 
Specific Absorption Rate Assessment of Multiple Microstrip Patch Antenna Array
Specific Absorption Rate Assessment of Multiple Microstrip Patch Antenna ArraySpecific Absorption Rate Assessment of Multiple Microstrip Patch Antenna Array
Specific Absorption Rate Assessment of Multiple Microstrip Patch Antenna Array
 
Optical satellite communication
Optical satellite communicationOptical satellite communication
Optical satellite communication
 
MICROSTRIP ANTENNA PATTERN RECONFIGURATION USING ON-CHIP PARASITIC ELEMENTS
MICROSTRIP ANTENNA PATTERN RECONFIGURATION USING ON-CHIP PARASITIC ELEMENTS MICROSTRIP ANTENNA PATTERN RECONFIGURATION USING ON-CHIP PARASITIC ELEMENTS
MICROSTRIP ANTENNA PATTERN RECONFIGURATION USING ON-CHIP PARASITIC ELEMENTS
 
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite ServiceChannel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
 
Ultra wide band
Ultra wide bandUltra wide band
Ultra wide band
 
Emf radiation by gtpl(glare technocons pvt. ltd.)
Emf radiation by gtpl(glare technocons pvt. ltd.)Emf radiation by gtpl(glare technocons pvt. ltd.)
Emf radiation by gtpl(glare technocons pvt. ltd.)
 
Design & simulation of 8 shape slotted microstrip patch antenna
Design & simulation of 8 shape slotted microstrip patch antennaDesign & simulation of 8 shape slotted microstrip patch antenna
Design & simulation of 8 shape slotted microstrip patch antenna
 
3-WE3_ExtendingTheReachOfVCSEL_Rev5
3-WE3_ExtendingTheReachOfVCSEL_Rev53-WE3_ExtendingTheReachOfVCSEL_Rev5
3-WE3_ExtendingTheReachOfVCSEL_Rev5
 
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
 
Karafolas
KarafolasKarafolas
Karafolas
 
Tutorial 2
Tutorial 2Tutorial 2
Tutorial 2
 
Research paper
Research paperResearch paper
Research paper
 
iaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan applicationiaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan application
 
Design of rectangular patch antenna array using advanced design methodology
Design of rectangular patch antenna array using advanced design methodologyDesign of rectangular patch antenna array using advanced design methodology
Design of rectangular patch antenna array using advanced design methodology
 

Similar to 4 test methods for 5 g base station antenna ota - C&T RF Antennas Inc

I04655458
I04655458I04655458
I04655458
IOSR-JEN
 
Satellite antennas
Satellite antennasSatellite antennas
Satellite antennas
Gautham Reddy
 
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET Journal
 
Four wireless technologies after 5G - C&T RF Antennas Inc
Four wireless technologies after 5G - C&T RF Antennas IncFour wireless technologies after 5G - C&T RF Antennas Inc
Four wireless technologies after 5G - C&T RF Antennas Inc
Antenna Manufacturer Coco
 
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
Altair
 
4G smartphone antenna design solution
4G smartphone antenna design solution4G smartphone antenna design solution
4G smartphone antenna design solution
Antenna Manufacturer Coco
 
VIJAY_Internship_ppt
VIJAY_Internship_pptVIJAY_Internship_ppt
VIJAY_Internship_ppt
Vijaykumar Kulkarni
 
A compact UWB monopole antenna with penta band notched characteristics
A compact UWB monopole antenna with penta band notched characteristicsA compact UWB monopole antenna with penta band notched characteristics
A compact UWB monopole antenna with penta band notched characteristics
TELKOMNIKA JOURNAL
 
Impact of client antenna’s rotation angle and height of 5g wi fi access point...
Impact of client antenna’s rotation angle and height of 5g wi fi access point...Impact of client antenna’s rotation angle and height of 5g wi fi access point...
Impact of client antenna’s rotation angle and height of 5g wi fi access point...
ijwmn
 
An overview of adaptive antenna technologies for wireless communication
An overview of adaptive antenna technologies for  wireless communication An overview of adaptive antenna technologies for  wireless communication
An overview of adaptive antenna technologies for wireless communication
marwaeng
 
8 wcdma rf optimization&case study-60
8 wcdma rf optimization&case study-608 wcdma rf optimization&case study-60
8 wcdma rf optimization&case study-60
Ba Quynh Nguyen
 
High speed measurement
High speed measurement High speed measurement
High speed measurement
rohit kumar
 
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Onyebuchi nosiri
 
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Onyebuchi nosiri
 
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Onyebuchi nosiri
 
C04441722
C04441722C04441722
C04441722
IOSR-JEN
 
SIDE LOBE REDUCTION OF CIRCULAR ARRAY USING TAYLOR DISTRIBUTION FUNCTION IN ...
 SIDE LOBE REDUCTION OF CIRCULAR ARRAY USING TAYLOR DISTRIBUTION FUNCTION IN ... SIDE LOBE REDUCTION OF CIRCULAR ARRAY USING TAYLOR DISTRIBUTION FUNCTION IN ...
SIDE LOBE REDUCTION OF CIRCULAR ARRAY USING TAYLOR DISTRIBUTION FUNCTION IN ...
IAEME Publication
 
phD presentation on design a RAC_ppt.pptx
phD presentation on design a RAC_ppt.pptxphD presentation on design a RAC_ppt.pptx
phD presentation on design a RAC_ppt.pptx
Dr. Gazala pravin
 
Chap 4 telemetry
Chap 4 telemetryChap 4 telemetry
Chap 4 telemetry
LenchoDuguma
 
Dpf 2011 V2
Dpf 2011 V2Dpf 2011 V2
Dpf 2011 V2
warunaf
 

Similar to 4 test methods for 5 g base station antenna ota - C&T RF Antennas Inc (20)

I04655458
I04655458I04655458
I04655458
 
Satellite antennas
Satellite antennasSatellite antennas
Satellite antennas
 
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
 
Four wireless technologies after 5G - C&T RF Antennas Inc
Four wireless technologies after 5G - C&T RF Antennas IncFour wireless technologies after 5G - C&T RF Antennas Inc
Four wireless technologies after 5G - C&T RF Antennas Inc
 
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Pl...
 
4G smartphone antenna design solution
4G smartphone antenna design solution4G smartphone antenna design solution
4G smartphone antenna design solution
 
VIJAY_Internship_ppt
VIJAY_Internship_pptVIJAY_Internship_ppt
VIJAY_Internship_ppt
 
A compact UWB monopole antenna with penta band notched characteristics
A compact UWB monopole antenna with penta band notched characteristicsA compact UWB monopole antenna with penta band notched characteristics
A compact UWB monopole antenna with penta band notched characteristics
 
Impact of client antenna’s rotation angle and height of 5g wi fi access point...
Impact of client antenna’s rotation angle and height of 5g wi fi access point...Impact of client antenna’s rotation angle and height of 5g wi fi access point...
Impact of client antenna’s rotation angle and height of 5g wi fi access point...
 
An overview of adaptive antenna technologies for wireless communication
An overview of adaptive antenna technologies for  wireless communication An overview of adaptive antenna technologies for  wireless communication
An overview of adaptive antenna technologies for wireless communication
 
8 wcdma rf optimization&case study-60
8 wcdma rf optimization&case study-608 wcdma rf optimization&case study-60
8 wcdma rf optimization&case study-60
 
High speed measurement
High speed measurement High speed measurement
High speed measurement
 
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
 
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
 
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
Investigation of TV White Space for Maximum Spectrum Utilization in a Cellula...
 
C04441722
C04441722C04441722
C04441722
 
SIDE LOBE REDUCTION OF CIRCULAR ARRAY USING TAYLOR DISTRIBUTION FUNCTION IN ...
 SIDE LOBE REDUCTION OF CIRCULAR ARRAY USING TAYLOR DISTRIBUTION FUNCTION IN ... SIDE LOBE REDUCTION OF CIRCULAR ARRAY USING TAYLOR DISTRIBUTION FUNCTION IN ...
SIDE LOBE REDUCTION OF CIRCULAR ARRAY USING TAYLOR DISTRIBUTION FUNCTION IN ...
 
phD presentation on design a RAC_ppt.pptx
phD presentation on design a RAC_ppt.pptxphD presentation on design a RAC_ppt.pptx
phD presentation on design a RAC_ppt.pptx
 
Chap 4 telemetry
Chap 4 telemetryChap 4 telemetry
Chap 4 telemetry
 
Dpf 2011 V2
Dpf 2011 V2Dpf 2011 V2
Dpf 2011 V2
 

More from Antenna Manufacturer Coco

What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
Antenna Manufacturer Coco
 
What are LPWAN Technologies Listed In IoT.pdf
What are LPWAN Technologies Listed In IoT.pdfWhat are LPWAN Technologies Listed In IoT.pdf
What are LPWAN Technologies Listed In IoT.pdf
Antenna Manufacturer Coco
 
Top 14 IoT Trends to Emerge in 2023.pdf
Top 14 IoT Trends to Emerge in 2023.pdfTop 14 IoT Trends to Emerge in 2023.pdf
Top 14 IoT Trends to Emerge in 2023.pdf
Antenna Manufacturer Coco
 
Comparison of GSM and NB-IoT Coverage Capability.pdf
Comparison of GSM and NB-IoT Coverage Capability.pdfComparison of GSM and NB-IoT Coverage Capability.pdf
Comparison of GSM and NB-IoT Coverage Capability.pdf
Antenna Manufacturer Coco
 
What Are NB-IoT Technology And Its Features.pdf
What Are NB-IoT Technology And Its Features.pdfWhat Are NB-IoT Technology And Its Features.pdf
What Are NB-IoT Technology And Its Features.pdf
Antenna Manufacturer Coco
 
LoRa Alliance Extends LoRaWAN Standard to Support IoT Applications.pdf
LoRa Alliance Extends LoRaWAN Standard to Support IoT Applications.pdfLoRa Alliance Extends LoRaWAN Standard to Support IoT Applications.pdf
LoRa Alliance Extends LoRaWAN Standard to Support IoT Applications.pdf
Antenna Manufacturer Coco
 
What is A Private 5G Network.pdf
What is A Private 5G Network.pdfWhat is A Private 5G Network.pdf
What is A Private 5G Network.pdf
Antenna Manufacturer Coco
 
What is LPWAN.pdf
What is LPWAN.pdfWhat is LPWAN.pdf
What is LPWAN.pdf
Antenna Manufacturer Coco
 
What is 5G LAN How Does It Work.pdf
What is 5G LAN How Does It Work.pdfWhat is 5G LAN How Does It Work.pdf
What is 5G LAN How Does It Work.pdf
Antenna Manufacturer Coco
 
Internal Antenna VS. External Antenna.pdf
Internal Antenna VS. External Antenna.pdfInternal Antenna VS. External Antenna.pdf
Internal Antenna VS. External Antenna.pdf
Antenna Manufacturer Coco
 
Yagi Antenna Design and 433MHz Antenna Design Example.pdf
Yagi Antenna Design and 433MHz Antenna Design Example.pdfYagi Antenna Design and 433MHz Antenna Design Example.pdf
Yagi Antenna Design and 433MHz Antenna Design Example.pdf
Antenna Manufacturer Coco
 
55 Different Types of Antennas With Examples Used in Wireless Communication.pdf
55 Different Types of Antennas With Examples Used in Wireless Communication.pdf55 Different Types of Antennas With Examples Used in Wireless Communication.pdf
55 Different Types of Antennas With Examples Used in Wireless Communication.pdf
Antenna Manufacturer Coco
 
WiFi vs. Cellular, Is WiFi Better Than Cellular.pdf
WiFi vs. Cellular, Is WiFi Better Than Cellular.pdfWiFi vs. Cellular, Is WiFi Better Than Cellular.pdf
WiFi vs. Cellular, Is WiFi Better Than Cellular.pdf
Antenna Manufacturer Coco
 
Mobile networks’ evolution from 1G to 5G.pdf
Mobile networks’ evolution from 1G to 5G.pdfMobile networks’ evolution from 1G to 5G.pdf
Mobile networks’ evolution from 1G to 5G.pdf
Antenna Manufacturer Coco
 
What is DTU.pdf
What is DTU.pdfWhat is DTU.pdf
What is DTU.pdf
Antenna Manufacturer Coco
 
What is a DTU and What Does it Do.pdf
What is a DTU and What Does it Do.pdfWhat is a DTU and What Does it Do.pdf
What is a DTU and What Does it Do.pdf
Antenna Manufacturer Coco
 
New Technology in Farming Applications.pdf
New Technology in Farming Applications.pdfNew Technology in Farming Applications.pdf
New Technology in Farming Applications.pdf
Antenna Manufacturer Coco
 
What is the Difference Between LTE and Wifi.pdf
What is the Difference Between LTE and Wifi.pdfWhat is the Difference Between LTE and Wifi.pdf
What is the Difference Between LTE and Wifi.pdf
Antenna Manufacturer Coco
 
Wifi vs LTE Technology.pdf
Wifi vs LTE Technology.pdfWifi vs LTE Technology.pdf
Wifi vs LTE Technology.pdf
Antenna Manufacturer Coco
 
Comparison of 7 Common Positioning Technologies.pdf
Comparison of 7 Common Positioning Technologies.pdfComparison of 7 Common Positioning Technologies.pdf
Comparison of 7 Common Positioning Technologies.pdf
Antenna Manufacturer Coco
 

More from Antenna Manufacturer Coco (20)

What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
What are LPWAN Technologies Listed In IoT.pdf
What are LPWAN Technologies Listed In IoT.pdfWhat are LPWAN Technologies Listed In IoT.pdf
What are LPWAN Technologies Listed In IoT.pdf
 
Top 14 IoT Trends to Emerge in 2023.pdf
Top 14 IoT Trends to Emerge in 2023.pdfTop 14 IoT Trends to Emerge in 2023.pdf
Top 14 IoT Trends to Emerge in 2023.pdf
 
Comparison of GSM and NB-IoT Coverage Capability.pdf
Comparison of GSM and NB-IoT Coverage Capability.pdfComparison of GSM and NB-IoT Coverage Capability.pdf
Comparison of GSM and NB-IoT Coverage Capability.pdf
 
What Are NB-IoT Technology And Its Features.pdf
What Are NB-IoT Technology And Its Features.pdfWhat Are NB-IoT Technology And Its Features.pdf
What Are NB-IoT Technology And Its Features.pdf
 
LoRa Alliance Extends LoRaWAN Standard to Support IoT Applications.pdf
LoRa Alliance Extends LoRaWAN Standard to Support IoT Applications.pdfLoRa Alliance Extends LoRaWAN Standard to Support IoT Applications.pdf
LoRa Alliance Extends LoRaWAN Standard to Support IoT Applications.pdf
 
What is A Private 5G Network.pdf
What is A Private 5G Network.pdfWhat is A Private 5G Network.pdf
What is A Private 5G Network.pdf
 
What is LPWAN.pdf
What is LPWAN.pdfWhat is LPWAN.pdf
What is LPWAN.pdf
 
What is 5G LAN How Does It Work.pdf
What is 5G LAN How Does It Work.pdfWhat is 5G LAN How Does It Work.pdf
What is 5G LAN How Does It Work.pdf
 
Internal Antenna VS. External Antenna.pdf
Internal Antenna VS. External Antenna.pdfInternal Antenna VS. External Antenna.pdf
Internal Antenna VS. External Antenna.pdf
 
Yagi Antenna Design and 433MHz Antenna Design Example.pdf
Yagi Antenna Design and 433MHz Antenna Design Example.pdfYagi Antenna Design and 433MHz Antenna Design Example.pdf
Yagi Antenna Design and 433MHz Antenna Design Example.pdf
 
55 Different Types of Antennas With Examples Used in Wireless Communication.pdf
55 Different Types of Antennas With Examples Used in Wireless Communication.pdf55 Different Types of Antennas With Examples Used in Wireless Communication.pdf
55 Different Types of Antennas With Examples Used in Wireless Communication.pdf
 
WiFi vs. Cellular, Is WiFi Better Than Cellular.pdf
WiFi vs. Cellular, Is WiFi Better Than Cellular.pdfWiFi vs. Cellular, Is WiFi Better Than Cellular.pdf
WiFi vs. Cellular, Is WiFi Better Than Cellular.pdf
 
Mobile networks’ evolution from 1G to 5G.pdf
Mobile networks’ evolution from 1G to 5G.pdfMobile networks’ evolution from 1G to 5G.pdf
Mobile networks’ evolution from 1G to 5G.pdf
 
What is DTU.pdf
What is DTU.pdfWhat is DTU.pdf
What is DTU.pdf
 
What is a DTU and What Does it Do.pdf
What is a DTU and What Does it Do.pdfWhat is a DTU and What Does it Do.pdf
What is a DTU and What Does it Do.pdf
 
New Technology in Farming Applications.pdf
New Technology in Farming Applications.pdfNew Technology in Farming Applications.pdf
New Technology in Farming Applications.pdf
 
What is the Difference Between LTE and Wifi.pdf
What is the Difference Between LTE and Wifi.pdfWhat is the Difference Between LTE and Wifi.pdf
What is the Difference Between LTE and Wifi.pdf
 
Wifi vs LTE Technology.pdf
Wifi vs LTE Technology.pdfWifi vs LTE Technology.pdf
Wifi vs LTE Technology.pdf
 
Comparison of 7 Common Positioning Technologies.pdf
Comparison of 7 Common Positioning Technologies.pdfComparison of 7 Common Positioning Technologies.pdf
Comparison of 7 Common Positioning Technologies.pdf
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...
ThomasParaiso2
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 
A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...
sonjaschweigert1
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
James Anderson
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AIEnchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Vladimir Iglovikov, Ph.D.
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
DianaGray10
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 
A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AIEnchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
 

4 test methods for 5 g base station antenna ota - C&T RF Antennas Inc

  • 1. C&T RF Antennas Inc www.ctrfantennas.com rfproducts1@ctrfantennas.com Please Contact us for more information, thank you.  Jasmine Lu (86)17322110281 4 test methods for 5G base station antenna OTA The research method of 5G base station antenna OTA test research on the large-scale MIMO active antenna OTA test method of the 5G base station. In this paper, the necessity of an integrated OTA test for 5G base station antenna is analyzed. Different OTA test schemes such as far field, compact field, multi-probe near field and single probe near field are introduced. The advantages and disadvantages of each test scheme are tested through the actual test. The comparative analysis points out the problems faced by the current 5G base station antenna OTA test and proposes a solution. 1. Introduction 5G mobile communication technology can meet people's needs for fast-growing mobile communication services such as high speed, large capacity, high reliability, and low latency. The large-scale MIMO active antenna technology as one of the key technologies of 5G mobile communication can greatly improve the spectrum utilization efficiency through spatial multiplexing, and can greatly improve the communication system capacity by combining the new coding technology. And the communication rate. Therefore, the large-scale MIMO active antenna technology is a commonly used technology in 5G mobile communication base stations, but it is followed by the problem of how to test 5G base station antennas. For a traditional base station, the antenna and the RRU (Radio Remote Unite) are separated from each other. They are connected by RF cables, which are relatively independent and have no performance impact. Their respective performances can be independently tested. Carry out an inspection. The radiation performance test of the antenna can be done in the microwave darkroom through far-field or near-field methods. The far-field or near-field test of the passive antenna is a mature test method widely used in testing antenna performance. The RRU's RF specifications can be measured in the laboratory by conduction. Referring to the traditional base station test mode, it is easy to propose a scheme of splitting the active antenna system into a passive antenna array and an RRU to perform antenna radiation performance test and RF conduction test respectively. In fact, according to laboratory testing experience, the beamforming pattern measured by "passive antenna array + power division network + signal source" is integrated with the 5G base station active antenna integrated OTA (Over the Air) test. The results are not consistent. The RF performance conduction test results of the "RRU+ Coupling Board" also differ from the RF radiation indicators measured by the integrated OTA. The reason is that for a 5G base station antenna, the antenna is integrated with the RRU. On the one hand, interference factors such as electromagnetic coupling and active standing wave cannot be completely eliminated; on the other hand, the calibration and amplitude and phase weighting of the active antenna pass through the respective RF channels. The combination of a series of active devices is quite different from the way in which the passive antenna array performs amplitude-weighting through a passive power division network. Therefore, for a 5G base station using massive MIMO active antenna technology, the integrated OTA test mode can effectively reflect its performance indicators. Especially in the millimeter wave band, the frequency band is higher, the device size is smaller, the electromagnetic interference problem is more prominent, and the split test will be very difficult, and only the integrated OTA
  • 2. C&T RF Antennas Inc www.ctrfantennas.com rfproducts1@ctrfantennas.com Please Contact us for more information, thank you.  Jasmine Lu (86)17322110281 test solution can be adopted. The OTA test specification for all RF performance indicators of 5G base stations has been written in the 3GPP 5G new air interface protocol frozen in December 2017, which means that the integrated OTA test of 5G base station antennas will become the main solution for 5G base station hardware performance testing. However, the current OTA test of RF indicators still faces many difficulties. In this paper, the OTA test method of the large-scale active antenna system is deeply studied, and the test is carried out in different fields such as far field, compact field, multi-probe spherical near field and single probe near field. The advantages and disadvantages of each test scheme are compared. The analysis presented the problems faced and the corresponding solutions. 2. 5G base station antenna OTA test solution The radiated performance of an antenna is typically tested in an OTA manner in its near-field or far-field region. The boundary between the near field and the far field of the antenna radiation is: the spherical wavefront emitted by the source antenna reaches the center of the antenna to be measured and the wave path difference is λ/16. The judgment based on the distance is d=2D 2 /λ, where d is the distance between the probe point and the antenna under test, D is the aperture of the antenna under test, and λ is the wavelength of the electromagnetic wave emitted by the antenna under test. According to this, the antenna test is divided into two categories: far-field test and near field test, and different test plans will lead to differences in test results. Here are a few classic active antenna OTA test solutions. (1) Far-field test plan The far field test is the most direct test method. When the test distance is far enough, the incident wave approximates the plane wave on the receiving surface. Figure 1 shows the far-field test system. The device under test can be rotated 360° in the vertical and horizontal planes. The test probe is fixed in position and can be rotated and rotated. The test system can test the beamforming pattern of the 5G base station antenna and EIRP (Effective Isotropic Radiated Power), EVM (Error Vector Magnitude), occupied bandwidth, and EIS (Effective Isotropic Sensitive). Omnidirectional sensitivity and other RF radiation indicators. Figure1. Far-field test system (2) Compact field test plan
  • 3. C&T RF Antennas Inc www.ctrfantennas.com rfproducts1@ctrfantennas.com Please Contact us for more information, thank you.  Jasmine Lu (86)17322110281 The compact field test is a far-field test method that uses a mirror or lens to convert a spherical wave from a feed at a focus into a plane wave to achieve far-field testing in a finite physical space. Figure2 shows a parabolic single mirror compact field test system that can test the beamforming pattern of 5G base station antennas and EIRP, EVM, occupied bandwidth, ACLR (Adjacent Channel Leakage Power Ration), Radiofrequency radiation indicators such as EIS and ACS (Adjacent Channel Selectivity). Figure2. Single mirror compact field test system (3) Multi-probe spherical near-field test scheme The near-field test acquires amplitude and phase information in the near-field region of the antenna under test and then converts the acquired data into a far-field pattern by a near-far field conversion algorithm. The multi-probe spherical near-field test system is shown in Figure3. A large number of probes are arranged circumferentially in the near field of the device under test, and the measured object only needs to be rotated by 180° to collect the data of the entire radiation sphere. The system can test the beamforming pattern of a 5G base station antenna in CW (Continuous Wave) mode. Figure3. Multi-probe spherical near-field test system (4) Single probe near field test system The single-probe near-field test is less efficient than the multi-probe spherical near-field test, but
  • 4. C&T RF Antennas Inc www.ctrfantennas.com rfproducts1@ctrfantennas.com Please Contact us for more information, thank you.  Jasmine Lu (86)17322110281 its structure is simpler and requires less space. As shown in the small near-field test system shown in Figure 4, the device under test can be rotated in a horizontal plane, the probe can be rotated in a vertical plane, and the system can collect data of a radiation sphere with the cooperation of two rotating shafts. The system can test the beamforming pattern of the 5G base station antenna in CW mode, and can also test the RF radiation index in the service signal mode, but the processing of the test results needs further analysis. Figure4. Single-probe near-field test system 3. Comparison of advantages and disadvantages of each test plan The advantage of the far field test is that since the receiving antenna is larger than the far field criterion from the transmitting antenna, the electromagnetic wave is approximated to the plane wave when the transmitting antenna propagates to the receiving antenna, and the collected data does not need to be converted by the far field, and the test device can transmit the high power signal. Test modulated wideband signals, support multi-user testing, and more. The disadvantage is that because the test distance needs to be larger than the far field criterion, the test site has a large area and high construction cost. Taking an antenna with a diameter of 1 m and operating in the 3.5GHz band as an example, the far-field condition is calculated to be greater than 25 m according to the far-field criterion formula. The farther the test distance is, the closer the electromagnetic wave radiation is to the plane wave, but at the same time it will bring about the problem of too much space loss. In addition, since the far field test generally has only one probe, a single test can only draw a section of the antenna radiation sphere. If you want to obtain the 3D pattern of the entire radiation sphere, you need to measure multiple times on different sections, test time. And the cost of testing has increased dramatically. The advantages of the compact field test are: Significantly reduced site size compared to the far field, which greatly reduces site construction costs and measurement path loss. The test results are closest to direct far-field testing and can test CW waves and business signals. Thanks to the reduced path loss, it can measure more RF radiation than the far field solution. The disadvantage
  • 5. C&T RF Antennas Inc www.ctrfantennas.com rfproducts1@ctrfantennas.com Please Contact us for more information, thank you.  Jasmine Lu (86)17322110281 is: similar to the short-field test, the 3D pattern test is less efficient, and the other is the mirror cost and post-maintenance cost. The advantages of the multi-probe spherical near-field test are: small footprint, single-test giving 3D pattern, high test efficiency, low space loss, and the pattern test results in CW mode are close to the far-field test results. The disadvantage is: the upper limit of the receiving power of the test system is low. When the 5G base station is tested for full power transmission, the receiving device must be pre-fadered; the measurement data needs post-processing for near-far field conversion; the near-far field conversion requires a reference phase. At present, the measurement results in the service signal mode are still unsatisfactory due to the problem of the reference phase. The advantages of the single-probe near-field test are a small footprint, the low construction cost of the darkroom, simple structure of the turntable, easy installation and disassembly of the device under test, low space loss, and comparison of the test results and far-field test results in CW mode. Close. The disadvantage is: due to structural reasons, the data acquisition of the antenna back flap is incomplete; there is only one test probe, the efficiency of testing the 3D pattern is less than that of the multi-probe sphere; the collected data needs to be followed by near-far field conversion. 4. Problems and solutions The current OTA test solution, whether it is a far-field solution or a near-field solution, can test the radiation pattern of a 5G base station antenna in CW mode. However, regarding the radiation performance test of radio frequency indicators, the current far-field scheme is limited by the large path loss, and only the parameters with high power levels such as EIRP, EVM, occupied bandwidth, and EIS can be tested. For downlink RF indicators with particularly low power levels, such as ACLR, switching time templates, and spurious emissions, it is difficult to test after a long distance test distance and attenuated to a lower noise level. When measuring the uplink indicator, the interference signal sent by the auxiliary signal source is attenuated by the path of the far field, and it is difficult to reach the power level required for the RF index test such as ACS, in-band blocking, and co-location blocking, which also brings difficulties to the test. Although the path loss of the near-field test scheme is much lower than that of the far-field, the method of taking the reference phase in the broadband service signal mode is still problematic, and the RF radiation test result is still far from the expected value. Since the indicators required for test verification in the laboratory R&D test phase are comprehensive, the far field test method of compact or loss reduction should be adopted for this type of test. By shortening the far-field test distance, increasing the horn antenna gain, using low-loss RF cables, and shortening the RF line cabling distance within a certain range, the path loss can be greatly reduced, and the far-field scheme can be extended to test RF indexes such as ACLR and ACS. The path loss of the compact field itself is much smaller than that of the far field, and it can measure more RF targets than the far field. However, there are still some RF indicators that are particularly low due to their own power. How to reduce path loss is not enough. At this stage, it can only be tested by conduction. For the production line test, the test cost is low, the efficiency is high, space is small, and the typical index can be tested. The single-probe near-field test scheme is more suitable. As for the future 5G high-band test, due to the higher frequency
  • 6. C&T RF Antennas Inc www.ctrfantennas.com rfproducts1@ctrfantennas.com Please Contact us for more information, thank you.  Jasmine Lu (86)17322110281 and more serious loss, far-field testing will become less suitable, and conduction testing will be more difficult, requiring a combination of near-field testing inductive near-field testing. The far-field conversion algorithm requires a reference signal, which requires the equipment manufacturer and the measurement instrument manufacturer to solve the problem of taking reference signals from the device. 5. The conclusion This paper studies the large-scale MIMO active antenna OTA test method for 5G base stations. Using the 5G base station equipment of the unit to study different OTA test schemes such as far field, compact field, multi-probe near field and single probe near field, the construction cost, test capability and test efficiency of each site were analyzed. The problems faced in the test and the corresponding solutions are proposed, which provide a reference for current and future 5G base station antenna OTA testing.