SlideShare a Scribd company logo
M ONTE C ARLO S IMULATION IN D ERIVATIVE
           P RICING M ODELS

                      Kai Zhang

                Numerical Algorithms Group
                 Warwick Business School


     The Thalesians Quantitative Finance Seminar
               Canary Wharf, London
                 December 15, 2009




                                                   1 / 35
Outline



   Monte Carlo Overview


   Monte Carlo Evolution Type


   Monte Carlo for Generic SDE
     Wiener Path Generator
     Discretization Scheme
     Exact Simulation


   References on Monte Carlo




                                 2 / 35
Derivative Pricing with Monte Carlo




    Comparison with Lattice or PDE
     1. Monte Carlo can deal with high-dimensional models.
     2. Suitable for path-dependent options.

    Issues
     1. Different answer each simulation (supplied with standard error).
     2. Slower convergence than PDE in low-dimension (1-2) case.
     3. Special treatment needed for options with embedded decision.




                                                                           3 / 35
Principals of Monte Carlo

    Estimation of Expectation
     1. Simulate a sample distribution.
     2. Estimate the expectation by sample mean.
     3. Estimate error bound from standard deviation.

    In Derivative Pricing Models
     1. Simulate a path of asset values, X = (X0 , X1 , · · · , XN ).
     2. Compute payoff from the path, V(X).
     3. Compute numeraire from the path, N(X).
                                       V
     4. Compute option value as N0 EN      .
                                       N

    Crucial step is path simulation.

                                                                        4 / 35
Monte Carlo Evolution Type I


   Notations for Sample Paths

                              X = {Xij }j=1,2,··· ,M
                                        i=0,1,··· ,N



     1. i is the index for time steps.
     2. j is the index for sample paths.

   Four Evolution Types
     1. Element-wise
     2. Path-wise
     3. Slice-wise
     4. Holistic


                                                       5 / 35
Monte Carlo Evolution Type II




   Element-Wise


       1    1    1        1    2    2    2        2    3    3
      X0 → X1 → X2 · · · XN → X0 → X1 → X2 · · · XN → X0 → X1 · · ·


     1. Low level evolution type.
     2. A single value at a time.
     3. Not necessarily to evolve the entire path.
     4. For knock out barrier option, can stop when barrier is hit.




                                                                      6 / 35
Monte Carlo Evolution Type III



   Path-Wise

                               ˆ1
                              (X0 , ···       ˆ1
                                            , XN )
                                      ↓
                               ˆ j            ˆj
                              (X0 , · · ·   , XN )
                                      ↓
                               ˆM
                              (X0 , · · ·     ˆM
                                            , XN )

     1. One path at a time.
     2. Suitable for path-dependent option.
     3. Suitable for valuing and hedging a book of options.
     4. An application is adjoint method (Giles and Glasserman (2006)).



                                                                          7 / 35
Monte Carlo Evolution Type IV



   Slice-Wise

              ˆ1      ˆ          ˆ          ˆ
                    1        1        1
              X0      X2         Xi         XN
              .     .        .        . 
              .  →  .  → ··· . ··· →  . 
               .       .          .          .
              ˆM
              X       ˆM
                      X          ˆ iM
                                 X          ˆN
                                            XM
                 0             2


     1. One slice at a time.
     2. Do not always evolve forward in time.
     3. Suitable for using variance reduction.
     4. An example is Brownian bridge with stratified sampling.
     5. Another application is Longstaff and Schwartz Monte Carlo.



                                                                     8 / 35
Monte Carlo Evolution Type V



   Holistic

                             ˆ1             ˆ1
                                              
                             X0 , · · ·   , XN
                             ˆ
                            X2, · · ·      ˆ2
                                          , XN 
                            0                 
                            .               . 
                            . .             . 
                                             .
                             ˆ M, · · ·
                            X0              ˆN
                                          , XM

     1. The whole set of sample paths at one time.
     2. Suitable when the whole set of paths is needed.
     3. Variance reduction: moment matching methods.
     4. Has to store everything.




                                                          9 / 35
Implementing a Monte Carlo


   To Simulate a Path of Asset Value One Needs
     1. A random number generator.
     2. A Wiener path generator.
     3. A scheme for discretizing SDE.

   Simulation Procedure
     1. A discrete Wiener path, W = (W0 , W1 , · · · , WN ).
     2. Back out normal variables, Zi = Wi − Wi−1 , i = 1, · · · , N.
     3. Choose a proper discretization scheme for SDE.
     4. Use Zi to construct a path for SDE, S = (S0 , S1 , · · · , SN ).

   I will talk about these in turn.


                                                                           10 / 35
Wiener Path Generator I



   Definition of Wiener Path
     1. Independent increment: ∆Wi = Wi − Wi−1 , i = 1, · · · , N.
     2. Gaussian increment: Wi − Wi−1 ∼ N(0, ∆t).
     3. Continuous in t a.s.
     4. W0 = 0 a.s.

   Ways of Simulating a Discrete Wiener Path
     1. Euler discretization.
     2. Brownian bridge.
     3. Spectral decomposition (do not discuss).



                                                                     11 / 35
Wiener Path Generator II
   Euler Discretization
                     √
    1. Wi = Wi−1 + ∆tǫi , ǫi ∼ i.i.d. N(0, 1).
     2. Forward evolution, W0 → W1 → W2 → · · · → WN .
     3. N multiplications and N − 1 additions.

   Brownian Bridge
     1. Given Wi and Wk , simulate Wj , i < j < k, as

                   tk − tj          tj − ti             (tj − ti )(tk − tj )
           Wj =              Wi +             Wk +                           ǫ
                   tk − ti          tk − ti                  tk − ti

        where ǫ ∼ N(0, 1).
     2. Binary chop evolution
        W0 → WN → WN/2 → WN/4 → W3N/4 → WN/8 → W3N/8 · · · .
     3. 3N multiplications and 2N additions.
                                                                                 12 / 35
Wiener Path Generator III
   Sobol Brownian Bridge
     1. First few draws determine the main skeleton of the Wiener path.
     2. Fill the first draw (final point) with stratified samples.
     3. Fill up the subsequent draws using Sobol numbers.
     4. Can also use a mixture of Sobol and random numbers.

   NAG Library Functions
     1. Function G05YMF in Fortran Mark 22.
     2. Generates Sobol numbers up to 50,000 dimensions.
     3. Sufficient for any reasonable applications.
     4. Digital scrambling Sobol generator can have standard error.
     5. .DLL callable from Excel/VBA.
     6. Brownian bridge is in the next release.
     7. Will have GPU version of Sobol Brownian bridge.
                                                                          13 / 35
Wiener Path Generator: Numerical Example
   Geometric Average Rate Option
     1. Option on geometric average of values at reset dates.
     2. Closed-form formula (Kemma and Vorst (1990)).

   Model Parameters (GBM)
     1. Initial asset value, S0 = 100.
     2. Constant interest rate, r = 0.05.
     3. Asset volatility, σ = 0.2.

   Option Parameters
     1. Maturity T = 1yr.
     2. Strike X = 100.
                            i
     3. Reset dates Ti =      , i = 0, 1, · · · , 16.
                           16
                                                                14 / 35
Wiener Path Generator: Convergence Results
                                        Sobol Brownian Bridge with Different Levels of Stratifications
                        0.4
                                                                                                    0 Stratification (E=3.6E−2)
                                                                                                    1 Stratification (E=5.4E−4)
                                                                                                    4 Stratifications (E=5.2E−5)
                                                                                                    16 Stratifications (E=4.2E−8)
                        0.3




                        0.2




                        0.1
         Picing Bias




                         0




                       −0.1




                       −0.2




                       −0.3
                              0   10   20        30        40         50        60        70         80            90               100
                                                                  Replication




   Figure: Convergence with Different Levels of Stratifications, ∆t = 1/16,
   Efficiency E = SE2 × CPU, Explicit Value 5.8417
                                                                                                                                          15 / 35
Wiener Path Generator: Be Aware of the Deterministic Bias

                               x 10
                                      −3                  Fully Stratified Sobol Brownian Bridge
                          1



                         0.5



                          0



                        −0.5



                         −1
         Pricing Bias




                        −1.5



                         −2



                        −2.5



                         −3



                        −3.5



                         −4
                               0           10   20   30           40        50        60           70   80   90   100
                                                                        Replication




      Figure: Deterministic Bias of Fully Stratified Sobol Brownian Bridge
                                                                                                                        16 / 35
Discretization Scheme I

    General Asset SDE

                          dX = a(t, X)dt + b(t, X) · dW


     1. X = (Xt1 , · · · , Xtd )′ is a vector of factors.
     2. W = (Wt1 , · · · , Wtd )′ is d-dimensional Brownian motion.
     3. a = ad×1 , b = bd×d and bb′ = D, the factor covariance matrix.

    Discretization
     1. Chose a mesh size δ = maxi ∆ti .
     2. Approximate Xt by its time discrete version Xtδ .
     3. Need Lipschitz and linear growth bound conditions on a and b.
     4. Measure the closeness of Xtδ to Xt by weak and strong criterions.

                                                                            17 / 35
Discretization Scheme II


    Weak and Strong Convergence
     1. Strong convergence
                                        δ
                                E|XT − XT |      Cδβ

        where δ = maxi ∆ti and C independent of δ.
     2. Weak convergence
                                               δ
                           |E[f (XT )] − E[f (XT )]|   Cδβ

        where f ∈ C 2(β+1) with polynomial growth.
     3. β is known as the order of convergence.

    We look at Euler, Milstein and higher order Itô-Taylor schemes.


                                                                      18 / 35
Discretization Scheme III
    Euler Scheme

                   ˆ      ˆ         ˆ             ˆ
                   Xi+1 = Xi + a(t, Xi )∆t + b(t, Xi ) · ∆Wi


                 ˆ                 ˆ
     1. a ≡ a(t, Xi ) and b ≡ b(t, Xi ), for t ∈ [ti , ti+1 ].
                                        √
     2. O(∆t) weak convergence, O( ∆t) strong convergence.
     3. Simplest but crude.

    Milstein Scheme

           ˆk     ˆ                                                    ∂bk,l
           Xi+1 = Xik + ak ∆t +                  bk,l ∆Wil +                 bn,m Im,l
                                                                       ∂X n
                                             l                 l,m,n
                    ti+1    t
    where Im,l =   ti      ti   dWs dWtl .
                                  m

     1. Weak convergence O(∆t), strong convergence O(∆t).
     2. Need evaluation of Im,l .
                                                                                         19 / 35
Discretization Scheme IV

    Iterated Itô Integral Im,l

     1. Can show
                                     1
                            Im,m =      (∆Wim )2 − ∆t ,
                                     2
                            Im,l + Il,m = ∆Wim ∆Wil .

          ∂bk,l       ∂bk,m                              1
     2. If      b =
             n n,m
                            b , ∀l, m, n, can take Im,l = ∆Wim ∆Wil.
                          n n,l
          ∂X          ∂X                                 2
     3. For weak approximations, can approximate by moment matching

                             Im,l ≈ ∆Wim ∆Wil + Vm,l

         where P(Vm,l = ±∆t) = 1 .
                               2
     4. For strong approximations, see Kloeden and Platen (1999).


                                                                       20 / 35
Discretization Scheme V
    Strong O(∆t3/2 ) Itô-Taylor


                                                                          ∂bi,j2
    ∆X i =ai ∆t +                       bi,j ∆W j +               bk,j1          Ij ,j
                                                                          ∂X k 1 2
                                 j                    j1 ,j2 ,k
                                                                            
                       ∂bi,j +       ∂bi,j   1                     ∂ 2 bi,j 
          +                         ak k +              bk,j1 bl,j1 k l I0,j
                         ∂t           ∂X      2                    ∂X ∂X
                 j                k             j1 ,k,l
                                                                                         
                          ∂ai       1 ∂ai                ∂ai       1                   2a
                                                                                      ∂ i
          +           bk,j k Ij,0 +        +        ak k +                 bk,j bl,j k l  ∆t2
                          ∂X        2 ∂t                 ∂X        2                 ∂X X
               j,k                                                    k                     j,k,l

                                          ∂bk,j2 ∂bk,j3         ∂ 2 bi,j
          +                     bl,j1                   + bk,j2 k 3 l                    Ij1 ,j2 ,j3
                                           ∂X l ∂X k           ∂X ∂X
              j1 ,j2 ,j3 ,k,l

                                      t+∆t s2 s1        j    j    j                           t+∆t s     j
    where Ij1 ,j2 ,j3 =              t       t    t   dWu1 dWs2 dWs3 , I0,j =
                                                               1    2                        t     t dudWs
                     t+∆t               s   j
    and Ij,0 = t                       t  dWu ds.
                                                                                                             21 / 35
Discretization Scheme VI
    Iterated Itô Integral Ij1 ,j2 ,j3 , I0,j and Ij,0

      1. Have properties

                                       1 1              2
                            Ij,j,j =       ∆W j             − ∆t ∆W j,
                                       2 2
                            I0,j = ∆W j ∆t − Ij,0 ,
                                  1           1
                            Ij,0 ∼ ∆t ∆W j + √ ∆y ,
                                  2            3
          where ∆y ∼ N(0, ∆t).
      2. For approximation of Ij1 ,j2 ,j3 , see Kloeden and Platen (1999).
      3. For strong approximations, Ij,0 must be simulated.
      4. For weak approximations, can approximate Ij,0 by

                                                             1
                             Ij,0 ≈ E Ij,0 |∆W j =             ∆t∆W j.
                                                             2
                                                                             22 / 35
Discretization Scheme VII

    Weak O(∆t2 ) Itô-Taylor


                                                             ∂bi,j2
    ∆X i =ai ∆t +          bi,j ∆W j +               bk,j1          Ij ,j
                                                             ∂X k 1 2
                       j                 j1 ,j2 ,k
                                                                        
                   ∂bi,j +       ∂bi,j   1                     ∂ 2 bi,j 
        +                       ak k +              bk,j1 bl,j1 k l I0,j
                     ∂t           ∂X      2                    ∂X ∂X
             j                k             j1 ,k,l
                                                                                        
                      ∂ai       1  ∂ai              ∂ai       1                  ∂ 2 ai  2
        +         bk,j k Ij,0 +         +        ak k +                 bk,j bl,j k l ∆t
                      ∂X        2 ∂t                 ∂X        2                 ∂X X
            j,k                                          k                  j,k,l



     1. Do away with Ij1 ,j2 ,j3 .
     2. I0,j ≈ Ij,0 ≈ 1 ∆t∆W j.
                      2
     3. Ij1 ,j2 ≈ ∆W j1 ∆W j2 + Vj1 ,j2 where P(Vm,l = ±∆t) = 1 .
                                                              2

                                                                                      23 / 35
Discretization Scheme VIII

    O(∆t) Predictor-Corrector


            ˆ     ˆ                                      ˆ
            Xi+1 =Xi + [p · a(t, Xi+1 ) + (1 − p) · a(t, Xi )]∆t
                                                      ˆ
                  + [q · b(t, Xi+1 ) + (1 − q) · b(t, Xi )] · ∆Wi ,

    where
                        ˆ         ˆ             ˆ
                 Xi+1 = Xi + a(t, Xi )∆t + b(t, Xi ) · ∆Wi ,
    and
                                                     ∂bi,k
                          ai = ai − q         bj,k         .
                                                     ∂X j
                                        j,k

                                ∂bi,k
     1. Easy to implement when        = 0, ∀i, j, k.
                                ∂X j
     2. Important scheme for LIBOR market model.

    We apply various schemes to GBM and Vasicek processes.
                                                                      24 / 35
Discretization Scheme - GBM Example I
   GBM Process

                           dX = rXdt + σXdW


     ◮   Euler scheme
                            ∆X = X(r∆t + σ∆W).
     ◮   Milstein scheme
                              1              1
                ∆X = X     r − σ 2 ∆t + σ∆W + σ 2 ∆W 2 .
                              2              2

     ◮   Strong O(∆t3/2 ) Itô-Taylor

                  1                1          1
         ∆X = r − σ 2 X∆t + σX∆W + σ 2 X∆W 2 + σ 3 X∆W 3
                  2                2          6
               1 2          1 2
             + r X∆t2 + (r − σ )σX∆W∆t.
               2            2
                                                           25 / 35
Discretization Scheme - GBM Example II

   GBM Process

                          dX = rXdt + σXdW


     ◮   Weak O(∆t2 ) Itô-Taylor

                      1       1                       1
         ∆X = X    r + r2 ∆t − σ 2 ∆t + σ(1 + r∆t)∆W + σ 2 ∆W 2 .
                      2       2                       2

     ◮   O(∆t) Predictor-Corrector

            ∆X = X + 1 + p(r − qσ 2 )∆t + qσ∆W X − qσ 2 X∆t,

         where
                          X = X(1 + r∆t + σ∆W).


                                                               26 / 35
Discretization Scheme - Vasicek Example I


    Vasicek Process

                         dXt = α(µ − Xt )dt + σdWt


      ◮   Euler and Milstein

                          ∆X = α(µ − X)∆t + σ∆W.

      ◮   Strong O(∆t3/2 ) Itô-Taylor

                      1                          1
           ∆X =    1 − ∆t [α (µ − X) ∆t + σ∆W] − √ σα∆t∆y,
                      2                         2 3
          where ∆y ∼ N(0, ∆t).


                                                             27 / 35
Discretization Scheme - Vasicek Example II

    Vasicek Process

                         dXt = α(µ − Xt )dt + σdWt


      ◮   Weak O(∆t2 ) Itô-Taylor

                             1
                  ∆X =    1 − α∆t [α (µ − X) ∆t + σ∆W] .
                             2

      ◮   O(∆t) Predictor-Corrector

                              ∆X = (1 − pα∆t)X,

          where
                         X = X + α(µ − X)∆t + σ∆W.


                                                           28 / 35
Discretization Scheme - Numerical Example I
                                        Strong Convergence − GBM
                    4
                                                                           Euler
                                                                           Milstein
                    2                                                      Predictor−Corrector
                                                                           1.5 Strong
                                                                           2.0 Weak
                    0


                  −2


                  −4
        log Err




                  −6
             2




                  −8


                  −10


                  −12


                  −14


                  −16
                        0   1   2   3       4      5      6        7   8            9            10
                                                 log2N




      Figure: Strong Convergence - GBM, 105 Paths with Brownian Bridge                                29 / 35
Discretization Scheme - Numerical Example II
                                        Weak Convergence − GBM
                   10
                                                                         Euler
                                                                         Milstein
                                                                         Predictor−Corrector
                                                                         1.5 Strong
                    5                                                    2.0 Weak




                    0
        log Err




                  −5
             2




                  −10




                  −15




                  −20
                        0   1   2   3      4      5      6       7   8            9            10
                                                log N
                                                   2




    Figure: Weak Convergence - GBM, 105 Paths with Brownian Bridge, Weak
    Function f = [XT − E(XT )]2                                                                     30 / 35
Discretization Scheme - Numerical Example III
                                        Strong Convergence − Vasicek
                  −10
                                                                               Euler (Milstein)
                                                                               1.5 Strong
                                                                               2.0 Weak
                                                                               Predictor−Corrector
                  −15




                  −20
        log Err




                  −25
             2




                  −30




                  −35




                  −40
                        0   1   2   3        4       5       6         7   8            9            10
                                                   log2N




     Figure: Strong Convergence - Vasicek, 105 Paths with Brownian Bridge                                 31 / 35
Discretization Scheme - Numerical Example IV
                                        Weak Convergence − Vasicek
                  −15
                                                                             Euler (Milstein)
                                                                             1.5 Strong
                                                                             2.0 Weak
                                                                             Predictor−Corrector
                  −20




                  −25
        log Err




                  −30
             2




                  −35




                  −40




                  −45
                        0   1   2   3       4       5      6         7   8            9            10
                                                  log2N




   Figure: Weak Convergence - Vasicek, 105 Paths with Brownian Bridge,
   Weak Function f = [XT − E(XT )]2
                                                                                                        32 / 35
Exact Simulation I

    Analytical Distribution
     1. For some SDE the analytical asset distribution is known.
     2. In GBM asset value XT has lognormal distribution,

                                 1         √
             XT = X0 exp      r − σ 2 T + σ Tǫ ,       ǫ ∼ N(0, 1).
                                 2

     3. For Vasicek

                                         σ2
        XT = X0 e−αT +µ(1−e−αT )+ǫ          (1 − e−2αT ),   ǫ ∼ N(0, 1).
                                         2α
     4. For CIR, XT has non-central χ2 distribution.
     5. For Heston, see Broadie and Kaya (2006), Andersen (2007), etc.
     6. Can simulate directly from XT in one step.

    Requires other random number generators.
                                                                           33 / 35
Exact Simulation II



    Random Numbers
     1. For GBM, needs lognormal.
     2. For Vasicek, needs Gaussian.
     3. For CIR, needs Gaussian, Poisson and Gamma.
     4. For Heston, needs Gaussian, Poisson, Gamma and Bessel.

    NAG Random Number Generators
     1. Chapter G05 is on random number generators.
     2. Available in NAG Fortran Mark 22 and C Mark 9.
     3. NAG Toolbox for MATLAB.



                                                                 34 / 35
References on Monte Carlo
   Monte Carlo in Finance
     1. Peter Jäckel (2002), a good introduction.
     2. Paul Glasserman (2003), deeper in theory.

   Discretization Schemes
   Kloeden and Platen (1999), numerical solutions of SDE.
   Computation
     1. Mark Joshi (2008), a good introduction on C++ OOP.
     2. Nick Webber (Wiley forthcoming), more on OOP C++ and VBA.
     3. NAG library documentation on Monte Carlo components.

   Benchmark with Closed-Form Formulae
     1. NAG library Chapter S30 (Black-Scholes, Merton, Heston, etc).
     2. Available in NAG Fortran Mark 22 and C Mark 9.
                                                                        35 / 35

More Related Content

What's hot

ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
grssieee
 
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Pello Uranga
 
Role of Microalloying Elements during Thin Slab Direct Rolling
Role of Microalloying Elements during Thin Slab Direct RollingRole of Microalloying Elements during Thin Slab Direct Rolling
Role of Microalloying Elements during Thin Slab Direct Rolling
Pello Uranga
 
Monte Carlo Statistical Methods
Monte Carlo Statistical MethodsMonte Carlo Statistical Methods
Monte Carlo Statistical Methods
Christian Robert
 
Toeplitz (2)
Toeplitz (2)Toeplitz (2)
Toeplitz (2)
nishajoseph5890
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of Change
Matthew Leingang
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of Change
Matthew Leingang
 
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Matthew Leingang
 
Monte Carlo Statistical Methods
Monte Carlo Statistical MethodsMonte Carlo Statistical Methods
Monte Carlo Statistical Methods
Christian Robert
 
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
CORE-Materials
 
Agu2011 udara senanayake1
Agu2011 udara senanayake1Agu2011 udara senanayake1
Agu2011 udara senanayake1
Sérgio Sacani
 
Prof. Jim Bezdek: Every Picture Tells a Story — Visual Cluster Analysis
Prof. Jim Bezdek: Every Picture Tells a Story — Visual Cluster AnalysisProf. Jim Bezdek: Every Picture Tells a Story — Visual Cluster Analysis
Prof. Jim Bezdek: Every Picture Tells a Story — Visual Cluster Analysis
ieee_cis_cyprus
 
Computation of the gravity gradient tensor due to topographic masses using te...
Computation of the gravity gradient tensor due to topographic masses using te...Computation of the gravity gradient tensor due to topographic masses using te...
Computation of the gravity gradient tensor due to topographic masses using te...
Leonardo Uieda
 
11X1 T14 05 volumes
11X1 T14 05 volumes11X1 T14 05 volumes
11X1 T14 05 volumes
Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)
Nigel Simmons
 

What's hot (16)

ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
 
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
 
Role of Microalloying Elements during Thin Slab Direct Rolling
Role of Microalloying Elements during Thin Slab Direct RollingRole of Microalloying Elements during Thin Slab Direct Rolling
Role of Microalloying Elements during Thin Slab Direct Rolling
 
Monte Carlo Statistical Methods
Monte Carlo Statistical MethodsMonte Carlo Statistical Methods
Monte Carlo Statistical Methods
 
Toeplitz (2)
Toeplitz (2)Toeplitz (2)
Toeplitz (2)
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of Change
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of Change
 
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
 
Monte Carlo Statistical Methods
Monte Carlo Statistical MethodsMonte Carlo Statistical Methods
Monte Carlo Statistical Methods
 
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
 
Agu2011 udara senanayake1
Agu2011 udara senanayake1Agu2011 udara senanayake1
Agu2011 udara senanayake1
 
Prof. Jim Bezdek: Every Picture Tells a Story — Visual Cluster Analysis
Prof. Jim Bezdek: Every Picture Tells a Story — Visual Cluster AnalysisProf. Jim Bezdek: Every Picture Tells a Story — Visual Cluster Analysis
Prof. Jim Bezdek: Every Picture Tells a Story — Visual Cluster Analysis
 
Computation of the gravity gradient tensor due to topographic masses using te...
Computation of the gravity gradient tensor due to topographic masses using te...Computation of the gravity gradient tensor due to topographic masses using te...
Computation of the gravity gradient tensor due to topographic masses using te...
 
11X1 T14 05 volumes
11X1 T14 05 volumes11X1 T14 05 volumes
11X1 T14 05 volumes
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)
 

Similar to Thalesian_Monte_Carlo_NAG

Clementfinal copy
Clementfinal copyClementfinal copy
Clementfinal copy
Alexander Decker
 
Monte Caro Simualtions, Sampling and Markov Chain Monte Carlo
Monte Caro Simualtions, Sampling and Markov Chain Monte CarloMonte Caro Simualtions, Sampling and Markov Chain Monte Carlo
Monte Caro Simualtions, Sampling and Markov Chain Monte Carlo
Xin-She Yang
 
Lesson 15: Exponential Growth and Decay (handout)
Lesson 15: Exponential Growth and Decay (handout)Lesson 15: Exponential Growth and Decay (handout)
Lesson 15: Exponential Growth and Decay (handout)
Matthew Leingang
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problem
Colm Connaughton
 
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
Colm Connaughton
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregation
Colm Connaughton
 
Transportation and assignment_problem
Transportation and assignment_problemTransportation and assignment_problem
Transportation and assignment_problem
Ankit Katiyar
 
Catalogue of Models for Electricity Prices Part 2
Catalogue of Models for Electricity Prices Part 2Catalogue of Models for Electricity Prices Part 2
Catalogue of Models for Electricity Prices Part 2
NicolasRR
 
Randomness conductors
Randomness conductorsRandomness conductors
Randomness conductors
wtyru1989
 
On recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEKOn recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEK
edadk
 
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Colm Connaughton
 
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Colm Connaughton
 
Markov Models
Markov ModelsMarkov Models
Markov Models
Vu Pham
 
Stability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithmsStability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithms
BigMC
 
Likelihood survey-nber-0713101
Likelihood survey-nber-0713101Likelihood survey-nber-0713101
Likelihood survey-nber-0713101
NBER
 
Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentation
Colm Connaughton
 
Models
ModelsModels
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
Colm Connaughton
 
Density exploration methods
Density exploration methodsDensity exploration methods
Density exploration methods
Pierre Jacob
 

Similar to Thalesian_Monte_Carlo_NAG (20)

Clementfinal copy
Clementfinal copyClementfinal copy
Clementfinal copy
 
Monte Caro Simualtions, Sampling and Markov Chain Monte Carlo
Monte Caro Simualtions, Sampling and Markov Chain Monte CarloMonte Caro Simualtions, Sampling and Markov Chain Monte Carlo
Monte Caro Simualtions, Sampling and Markov Chain Monte Carlo
 
Lesson 15: Exponential Growth and Decay (handout)
Lesson 15: Exponential Growth and Decay (handout)Lesson 15: Exponential Growth and Decay (handout)
Lesson 15: Exponential Growth and Decay (handout)
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problem
 
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
 
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregation
 
Transportation and assignment_problem
Transportation and assignment_problemTransportation and assignment_problem
Transportation and assignment_problem
 
Catalogue of Models for Electricity Prices Part 2
Catalogue of Models for Electricity Prices Part 2Catalogue of Models for Electricity Prices Part 2
Catalogue of Models for Electricity Prices Part 2
 
Randomness conductors
Randomness conductorsRandomness conductors
Randomness conductors
 
On recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEKOn recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEK
 
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
 
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
 
Markov Models
Markov ModelsMarkov Models
Markov Models
 
Stability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithmsStability of adaptive random-walk Metropolis algorithms
Stability of adaptive random-walk Metropolis algorithms
 
Likelihood survey-nber-0713101
Likelihood survey-nber-0713101Likelihood survey-nber-0713101
Likelihood survey-nber-0713101
 
Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentation
 
Models
ModelsModels
Models
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
 
Density exploration methods
Density exploration methodsDensity exploration methods
Density exploration methods
 

Thalesian_Monte_Carlo_NAG

  • 1. M ONTE C ARLO S IMULATION IN D ERIVATIVE P RICING M ODELS Kai Zhang Numerical Algorithms Group Warwick Business School The Thalesians Quantitative Finance Seminar Canary Wharf, London December 15, 2009 1 / 35
  • 2. Outline Monte Carlo Overview Monte Carlo Evolution Type Monte Carlo for Generic SDE Wiener Path Generator Discretization Scheme Exact Simulation References on Monte Carlo 2 / 35
  • 3. Derivative Pricing with Monte Carlo Comparison with Lattice or PDE 1. Monte Carlo can deal with high-dimensional models. 2. Suitable for path-dependent options. Issues 1. Different answer each simulation (supplied with standard error). 2. Slower convergence than PDE in low-dimension (1-2) case. 3. Special treatment needed for options with embedded decision. 3 / 35
  • 4. Principals of Monte Carlo Estimation of Expectation 1. Simulate a sample distribution. 2. Estimate the expectation by sample mean. 3. Estimate error bound from standard deviation. In Derivative Pricing Models 1. Simulate a path of asset values, X = (X0 , X1 , · · · , XN ). 2. Compute payoff from the path, V(X). 3. Compute numeraire from the path, N(X). V 4. Compute option value as N0 EN . N Crucial step is path simulation. 4 / 35
  • 5. Monte Carlo Evolution Type I Notations for Sample Paths X = {Xij }j=1,2,··· ,M i=0,1,··· ,N 1. i is the index for time steps. 2. j is the index for sample paths. Four Evolution Types 1. Element-wise 2. Path-wise 3. Slice-wise 4. Holistic 5 / 35
  • 6. Monte Carlo Evolution Type II Element-Wise 1 1 1 1 2 2 2 2 3 3 X0 → X1 → X2 · · · XN → X0 → X1 → X2 · · · XN → X0 → X1 · · · 1. Low level evolution type. 2. A single value at a time. 3. Not necessarily to evolve the entire path. 4. For knock out barrier option, can stop when barrier is hit. 6 / 35
  • 7. Monte Carlo Evolution Type III Path-Wise ˆ1 (X0 , ··· ˆ1 , XN ) ↓ ˆ j ˆj (X0 , · · · , XN ) ↓ ˆM (X0 , · · · ˆM , XN ) 1. One path at a time. 2. Suitable for path-dependent option. 3. Suitable for valuing and hedging a book of options. 4. An application is adjoint method (Giles and Glasserman (2006)). 7 / 35
  • 8. Monte Carlo Evolution Type IV Slice-Wise ˆ1 ˆ ˆ ˆ    1  1  1 X0 X2 Xi XN  .   .   .   .   .  →  .  → ··· . ··· →  .  . . . . ˆM X ˆM X ˆ iM X ˆN XM 0 2 1. One slice at a time. 2. Do not always evolve forward in time. 3. Suitable for using variance reduction. 4. An example is Brownian bridge with stratified sampling. 5. Another application is Longstaff and Schwartz Monte Carlo. 8 / 35
  • 9. Monte Carlo Evolution Type V Holistic ˆ1 ˆ1   X0 , · · · , XN ˆ  X2, · · · ˆ2 , XN   0   . .   . . .  . ˆ M, · · · X0 ˆN , XM 1. The whole set of sample paths at one time. 2. Suitable when the whole set of paths is needed. 3. Variance reduction: moment matching methods. 4. Has to store everything. 9 / 35
  • 10. Implementing a Monte Carlo To Simulate a Path of Asset Value One Needs 1. A random number generator. 2. A Wiener path generator. 3. A scheme for discretizing SDE. Simulation Procedure 1. A discrete Wiener path, W = (W0 , W1 , · · · , WN ). 2. Back out normal variables, Zi = Wi − Wi−1 , i = 1, · · · , N. 3. Choose a proper discretization scheme for SDE. 4. Use Zi to construct a path for SDE, S = (S0 , S1 , · · · , SN ). I will talk about these in turn. 10 / 35
  • 11. Wiener Path Generator I Definition of Wiener Path 1. Independent increment: ∆Wi = Wi − Wi−1 , i = 1, · · · , N. 2. Gaussian increment: Wi − Wi−1 ∼ N(0, ∆t). 3. Continuous in t a.s. 4. W0 = 0 a.s. Ways of Simulating a Discrete Wiener Path 1. Euler discretization. 2. Brownian bridge. 3. Spectral decomposition (do not discuss). 11 / 35
  • 12. Wiener Path Generator II Euler Discretization √ 1. Wi = Wi−1 + ∆tǫi , ǫi ∼ i.i.d. N(0, 1). 2. Forward evolution, W0 → W1 → W2 → · · · → WN . 3. N multiplications and N − 1 additions. Brownian Bridge 1. Given Wi and Wk , simulate Wj , i < j < k, as tk − tj tj − ti (tj − ti )(tk − tj ) Wj = Wi + Wk + ǫ tk − ti tk − ti tk − ti where ǫ ∼ N(0, 1). 2. Binary chop evolution W0 → WN → WN/2 → WN/4 → W3N/4 → WN/8 → W3N/8 · · · . 3. 3N multiplications and 2N additions. 12 / 35
  • 13. Wiener Path Generator III Sobol Brownian Bridge 1. First few draws determine the main skeleton of the Wiener path. 2. Fill the first draw (final point) with stratified samples. 3. Fill up the subsequent draws using Sobol numbers. 4. Can also use a mixture of Sobol and random numbers. NAG Library Functions 1. Function G05YMF in Fortran Mark 22. 2. Generates Sobol numbers up to 50,000 dimensions. 3. Sufficient for any reasonable applications. 4. Digital scrambling Sobol generator can have standard error. 5. .DLL callable from Excel/VBA. 6. Brownian bridge is in the next release. 7. Will have GPU version of Sobol Brownian bridge. 13 / 35
  • 14. Wiener Path Generator: Numerical Example Geometric Average Rate Option 1. Option on geometric average of values at reset dates. 2. Closed-form formula (Kemma and Vorst (1990)). Model Parameters (GBM) 1. Initial asset value, S0 = 100. 2. Constant interest rate, r = 0.05. 3. Asset volatility, σ = 0.2. Option Parameters 1. Maturity T = 1yr. 2. Strike X = 100. i 3. Reset dates Ti = , i = 0, 1, · · · , 16. 16 14 / 35
  • 15. Wiener Path Generator: Convergence Results Sobol Brownian Bridge with Different Levels of Stratifications 0.4 0 Stratification (E=3.6E−2) 1 Stratification (E=5.4E−4) 4 Stratifications (E=5.2E−5) 16 Stratifications (E=4.2E−8) 0.3 0.2 0.1 Picing Bias 0 −0.1 −0.2 −0.3 0 10 20 30 40 50 60 70 80 90 100 Replication Figure: Convergence with Different Levels of Stratifications, ∆t = 1/16, Efficiency E = SE2 × CPU, Explicit Value 5.8417 15 / 35
  • 16. Wiener Path Generator: Be Aware of the Deterministic Bias x 10 −3 Fully Stratified Sobol Brownian Bridge 1 0.5 0 −0.5 −1 Pricing Bias −1.5 −2 −2.5 −3 −3.5 −4 0 10 20 30 40 50 60 70 80 90 100 Replication Figure: Deterministic Bias of Fully Stratified Sobol Brownian Bridge 16 / 35
  • 17. Discretization Scheme I General Asset SDE dX = a(t, X)dt + b(t, X) · dW 1. X = (Xt1 , · · · , Xtd )′ is a vector of factors. 2. W = (Wt1 , · · · , Wtd )′ is d-dimensional Brownian motion. 3. a = ad×1 , b = bd×d and bb′ = D, the factor covariance matrix. Discretization 1. Chose a mesh size δ = maxi ∆ti . 2. Approximate Xt by its time discrete version Xtδ . 3. Need Lipschitz and linear growth bound conditions on a and b. 4. Measure the closeness of Xtδ to Xt by weak and strong criterions. 17 / 35
  • 18. Discretization Scheme II Weak and Strong Convergence 1. Strong convergence δ E|XT − XT | Cδβ where δ = maxi ∆ti and C independent of δ. 2. Weak convergence δ |E[f (XT )] − E[f (XT )]| Cδβ where f ∈ C 2(β+1) with polynomial growth. 3. β is known as the order of convergence. We look at Euler, Milstein and higher order Itô-Taylor schemes. 18 / 35
  • 19. Discretization Scheme III Euler Scheme ˆ ˆ ˆ ˆ Xi+1 = Xi + a(t, Xi )∆t + b(t, Xi ) · ∆Wi ˆ ˆ 1. a ≡ a(t, Xi ) and b ≡ b(t, Xi ), for t ∈ [ti , ti+1 ]. √ 2. O(∆t) weak convergence, O( ∆t) strong convergence. 3. Simplest but crude. Milstein Scheme ˆk ˆ ∂bk,l Xi+1 = Xik + ak ∆t + bk,l ∆Wil + bn,m Im,l ∂X n l l,m,n ti+1 t where Im,l = ti ti dWs dWtl . m 1. Weak convergence O(∆t), strong convergence O(∆t). 2. Need evaluation of Im,l . 19 / 35
  • 20. Discretization Scheme IV Iterated Itô Integral Im,l 1. Can show 1 Im,m = (∆Wim )2 − ∆t , 2 Im,l + Il,m = ∆Wim ∆Wil . ∂bk,l ∂bk,m 1 2. If b = n n,m b , ∀l, m, n, can take Im,l = ∆Wim ∆Wil. n n,l ∂X ∂X 2 3. For weak approximations, can approximate by moment matching Im,l ≈ ∆Wim ∆Wil + Vm,l where P(Vm,l = ±∆t) = 1 . 2 4. For strong approximations, see Kloeden and Platen (1999). 20 / 35
  • 21. Discretization Scheme V Strong O(∆t3/2 ) Itô-Taylor ∂bi,j2 ∆X i =ai ∆t + bi,j ∆W j + bk,j1 Ij ,j ∂X k 1 2 j j1 ,j2 ,k    ∂bi,j + ∂bi,j 1 ∂ 2 bi,j  + ak k + bk,j1 bl,j1 k l I0,j ∂t ∂X 2 ∂X ∂X j k j1 ,k,l   ∂ai 1 ∂ai ∂ai 1 2a ∂ i + bk,j k Ij,0 +  + ak k + bk,j bl,j k l  ∆t2 ∂X 2 ∂t ∂X 2 ∂X X j,k k j,k,l ∂bk,j2 ∂bk,j3 ∂ 2 bi,j + bl,j1 + bk,j2 k 3 l Ij1 ,j2 ,j3 ∂X l ∂X k ∂X ∂X j1 ,j2 ,j3 ,k,l t+∆t s2 s1 j j j t+∆t s j where Ij1 ,j2 ,j3 = t t t dWu1 dWs2 dWs3 , I0,j = 1 2 t t dudWs t+∆t s j and Ij,0 = t t dWu ds. 21 / 35
  • 22. Discretization Scheme VI Iterated Itô Integral Ij1 ,j2 ,j3 , I0,j and Ij,0 1. Have properties 1 1 2 Ij,j,j = ∆W j − ∆t ∆W j, 2 2 I0,j = ∆W j ∆t − Ij,0 , 1 1 Ij,0 ∼ ∆t ∆W j + √ ∆y , 2 3 where ∆y ∼ N(0, ∆t). 2. For approximation of Ij1 ,j2 ,j3 , see Kloeden and Platen (1999). 3. For strong approximations, Ij,0 must be simulated. 4. For weak approximations, can approximate Ij,0 by 1 Ij,0 ≈ E Ij,0 |∆W j = ∆t∆W j. 2 22 / 35
  • 23. Discretization Scheme VII Weak O(∆t2 ) Itô-Taylor ∂bi,j2 ∆X i =ai ∆t + bi,j ∆W j + bk,j1 Ij ,j ∂X k 1 2 j j1 ,j2 ,k    ∂bi,j + ∂bi,j 1 ∂ 2 bi,j  + ak k + bk,j1 bl,j1 k l I0,j ∂t ∂X 2 ∂X ∂X j k j1 ,k,l   ∂ai 1  ∂ai ∂ai 1 ∂ 2 ai  2 + bk,j k Ij,0 + + ak k + bk,j bl,j k l ∆t ∂X 2 ∂t ∂X 2 ∂X X j,k k j,k,l 1. Do away with Ij1 ,j2 ,j3 . 2. I0,j ≈ Ij,0 ≈ 1 ∆t∆W j. 2 3. Ij1 ,j2 ≈ ∆W j1 ∆W j2 + Vj1 ,j2 where P(Vm,l = ±∆t) = 1 . 2 23 / 35
  • 24. Discretization Scheme VIII O(∆t) Predictor-Corrector ˆ ˆ ˆ Xi+1 =Xi + [p · a(t, Xi+1 ) + (1 − p) · a(t, Xi )]∆t ˆ + [q · b(t, Xi+1 ) + (1 − q) · b(t, Xi )] · ∆Wi , where ˆ ˆ ˆ Xi+1 = Xi + a(t, Xi )∆t + b(t, Xi ) · ∆Wi , and ∂bi,k ai = ai − q bj,k . ∂X j j,k ∂bi,k 1. Easy to implement when = 0, ∀i, j, k. ∂X j 2. Important scheme for LIBOR market model. We apply various schemes to GBM and Vasicek processes. 24 / 35
  • 25. Discretization Scheme - GBM Example I GBM Process dX = rXdt + σXdW ◮ Euler scheme ∆X = X(r∆t + σ∆W). ◮ Milstein scheme 1 1 ∆X = X r − σ 2 ∆t + σ∆W + σ 2 ∆W 2 . 2 2 ◮ Strong O(∆t3/2 ) Itô-Taylor 1 1 1 ∆X = r − σ 2 X∆t + σX∆W + σ 2 X∆W 2 + σ 3 X∆W 3 2 2 6 1 2 1 2 + r X∆t2 + (r − σ )σX∆W∆t. 2 2 25 / 35
  • 26. Discretization Scheme - GBM Example II GBM Process dX = rXdt + σXdW ◮ Weak O(∆t2 ) Itô-Taylor 1 1 1 ∆X = X r + r2 ∆t − σ 2 ∆t + σ(1 + r∆t)∆W + σ 2 ∆W 2 . 2 2 2 ◮ O(∆t) Predictor-Corrector ∆X = X + 1 + p(r − qσ 2 )∆t + qσ∆W X − qσ 2 X∆t, where X = X(1 + r∆t + σ∆W). 26 / 35
  • 27. Discretization Scheme - Vasicek Example I Vasicek Process dXt = α(µ − Xt )dt + σdWt ◮ Euler and Milstein ∆X = α(µ − X)∆t + σ∆W. ◮ Strong O(∆t3/2 ) Itô-Taylor 1 1 ∆X = 1 − ∆t [α (µ − X) ∆t + σ∆W] − √ σα∆t∆y, 2 2 3 where ∆y ∼ N(0, ∆t). 27 / 35
  • 28. Discretization Scheme - Vasicek Example II Vasicek Process dXt = α(µ − Xt )dt + σdWt ◮ Weak O(∆t2 ) Itô-Taylor 1 ∆X = 1 − α∆t [α (µ − X) ∆t + σ∆W] . 2 ◮ O(∆t) Predictor-Corrector ∆X = (1 − pα∆t)X, where X = X + α(µ − X)∆t + σ∆W. 28 / 35
  • 29. Discretization Scheme - Numerical Example I Strong Convergence − GBM 4 Euler Milstein 2 Predictor−Corrector 1.5 Strong 2.0 Weak 0 −2 −4 log Err −6 2 −8 −10 −12 −14 −16 0 1 2 3 4 5 6 7 8 9 10 log2N Figure: Strong Convergence - GBM, 105 Paths with Brownian Bridge 29 / 35
  • 30. Discretization Scheme - Numerical Example II Weak Convergence − GBM 10 Euler Milstein Predictor−Corrector 1.5 Strong 5 2.0 Weak 0 log Err −5 2 −10 −15 −20 0 1 2 3 4 5 6 7 8 9 10 log N 2 Figure: Weak Convergence - GBM, 105 Paths with Brownian Bridge, Weak Function f = [XT − E(XT )]2 30 / 35
  • 31. Discretization Scheme - Numerical Example III Strong Convergence − Vasicek −10 Euler (Milstein) 1.5 Strong 2.0 Weak Predictor−Corrector −15 −20 log Err −25 2 −30 −35 −40 0 1 2 3 4 5 6 7 8 9 10 log2N Figure: Strong Convergence - Vasicek, 105 Paths with Brownian Bridge 31 / 35
  • 32. Discretization Scheme - Numerical Example IV Weak Convergence − Vasicek −15 Euler (Milstein) 1.5 Strong 2.0 Weak Predictor−Corrector −20 −25 log Err −30 2 −35 −40 −45 0 1 2 3 4 5 6 7 8 9 10 log2N Figure: Weak Convergence - Vasicek, 105 Paths with Brownian Bridge, Weak Function f = [XT − E(XT )]2 32 / 35
  • 33. Exact Simulation I Analytical Distribution 1. For some SDE the analytical asset distribution is known. 2. In GBM asset value XT has lognormal distribution, 1 √ XT = X0 exp r − σ 2 T + σ Tǫ , ǫ ∼ N(0, 1). 2 3. For Vasicek σ2 XT = X0 e−αT +µ(1−e−αT )+ǫ (1 − e−2αT ), ǫ ∼ N(0, 1). 2α 4. For CIR, XT has non-central χ2 distribution. 5. For Heston, see Broadie and Kaya (2006), Andersen (2007), etc. 6. Can simulate directly from XT in one step. Requires other random number generators. 33 / 35
  • 34. Exact Simulation II Random Numbers 1. For GBM, needs lognormal. 2. For Vasicek, needs Gaussian. 3. For CIR, needs Gaussian, Poisson and Gamma. 4. For Heston, needs Gaussian, Poisson, Gamma and Bessel. NAG Random Number Generators 1. Chapter G05 is on random number generators. 2. Available in NAG Fortran Mark 22 and C Mark 9. 3. NAG Toolbox for MATLAB. 34 / 35
  • 35. References on Monte Carlo Monte Carlo in Finance 1. Peter Jäckel (2002), a good introduction. 2. Paul Glasserman (2003), deeper in theory. Discretization Schemes Kloeden and Platen (1999), numerical solutions of SDE. Computation 1. Mark Joshi (2008), a good introduction on C++ OOP. 2. Nick Webber (Wiley forthcoming), more on OOP C++ and VBA. 3. NAG library documentation on Monte Carlo components. Benchmark with Closed-Form Formulae 1. NAG library Chapter S30 (Black-Scholes, Merton, Heston, etc). 2. Available in NAG Fortran Mark 22 and C Mark 9. 35 / 35