SlideShare a Scribd company logo
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n

                                        tann  1  tan n
                                tan 
                                       1  tann  1 tan n
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n

                                        tann  1  tan n
                                tan 
                                       1  tann  1 tan n

        1  tann  1 tan n  tan  tann  1  tan n
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n

                                        tann  1  tan n
                                tan 
                                       1  tann  1 tan n

        1  tann  1 tan n  tan  tann  1  tan n
                                         tann  1  tan n
                1  tann  1 tan n 
                                                tan
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n

                                        tann  1  tan n
                                tan 
                                       1  tann  1 tan n

        1  tann  1 tan n  tan  tann  1  tan n
                                         tann  1  tan n
                1  tann  1 tan n 
                                                tan
               1  tann  1 tan n  cot  tann  1  tan n 
2006 Extension 1 Examiners Comments;

 (d) (i) This part was not done well, with many candidates
         presenting circular arguments.
2006 Extension 1 Examiners Comments;

 (d) (i) This part was not done well, with many candidates
         presenting circular arguments.

        However, a number of candidates successfully rearranged
        the given fact and easily saw the substitution required.
2006 Extension 1 Examiners Comments;

 (d) (i) This part was not done well, with many candidates
         presenting circular arguments.

        However, a number of candidates successfully rearranged
        the given fact and easily saw the substitution required.

        Many candidates spent considerable time on this part,
        which was worth only one mark.
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
                                             RHS  2  cot  tan 2
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
     1  tan tan 2  1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. tan tan 2  tan 2 tan 3    tan k tank  1
                 k  1  cot  tank  1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. tan tan 2  tan 2 tan 3    tan k tank  1
                k  1  cot  tank  1
Step 3: Prove the result is true for n = k + 1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. tan tan 2  tan 2 tan 3    tan k tank  1
                 k  1  cot  tank  1
Step 3: Prove the result is true for n = k + 1
     i.e. tan tan 2  tan 2 tan 3    tank  1 tank  2
              k  2  cot  tank  2
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
 k  2  cot  tank  1  cot  tank  2  cot  tank  1
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
 k  2  cot  tank  1  cot  tank  2  cot  tank  1
 k  2  cot  tank  2
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
 k  2  cot  tank  1  cot  tank  2  cot  tank  1
 k  2  cot  tank  2


     Hence the result is true for n = k + 1 if it is also true for n = k
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
 k  2  cot  tank  1  cot  tank  2  cot  tank  1
 k  2  cot  tank  2


     Hence the result is true for n = k + 1 if it is also true for n = k

 Step 4: Since the result is true for n= 1, then the result is true for all
         positive integral values of n, by induction
2006 Extension 1 Examiners Comments;

 (ii)   Most candidates attempted this part. However, many
        only earned the mark for stating the inductive step.
2006 Extension 1 Examiners Comments;

 (ii)   Most candidates attempted this part. However, many
        only earned the mark for stating the inductive step.

        They could not prove the expression true for n=1 as they
        were not able to use part (i), and consequently not able to
        prove the inductive step.
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2
     LHS  1 
               3
            1
          
            3
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
                         LHS  RHS
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
                         LHS  RHS
                Hence the result is true for n = 3
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
                         LHS  RHS
                Hence the result is true for n = 3
Step 2: Assume the result is true for n = k, where k is a positive
        integer
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
                         LHS  RHS
                Hence the result is true for n = 3
Step 2: Assume the result is true for n = k, where k is a positive
        integer
                   2  2  2   2        2
             i.e. 1 - 1  1  1   
                   3  4  5   k  k k  1
Step 3: Prove the result is true for n = k + 1
Step 3: Prove the result is true for n = k + 1
                    2  2  2             2   2
        i.e. Prove 1 - 1  1  1        
                    3  4  5   k  1  k  1k
Step 3: Prove the result is true for n = k + 1
                     2  2  2            2   2
        i.e. Prove 1 - 1  1  1        
                     3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                2      2      2         2      2 
                                        
             3  4  5   k  k  1 
Step 3: Prove the result is true for n = k + 1
                      2  2  2           2   2
        i.e. Prove 1 - 1  1  1        
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2       2     2        2      2 
                                        
             3  4  5   k  k  1 
                 2           2 
                      1      
             k k  1  k  1 
Step 3: Prove the result is true for n = k + 1
                      2  2  2           2   2
        i.e. Prove 1 - 1  1  1        
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2       2     2        2      2 
                                        
             3  4  5   k  k  1 
                 2           2 
                      1      
             k k  1  k  1 
                 2      k 1 2
                     
             k k  1 k  1
Step 3: Prove the result is true for n = k + 1
                      2  2  2           2   2
        i.e. Prove 1 - 1  1  1        
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2       2      2       2      2 
                                        
             3  4  5   k  k  1 
                 2           2 
                      1       
             k k  1  k  1 
                 2      k 1 2
                     
             k k  1 k  1
          
                 2
                      
                        k  1
             k k  1 k  1
Step 3: Prove the result is true for n = k + 1
                      2  2  2           2   2
        i.e. Prove 1 - 1  1  1        
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2        2      2      2      2 
                                        
             3  4  5   k  k  1 
                 2            2 
                      1        
             k k  1  k  1 
                 2       k 1 2
                      
             k k  1 k  1
          
                 2
                       
                         k  1
             k k  1 k  1
                 2
          
             k k  1
Step 3: Prove the result is true for n = k + 1
                      2  2  2             2        2
        i.e. Prove 1 - 1  1  1           
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2        2      2      2        2 
                                           
             3  4  5   k  k  1 
                 2            2 
                      1        
             k k  1  k  1 
                 2       k 1 2
                      
             k k  1 k  1
          
                 2
                       
                         k  1
             k k  1 k  1
                 2
          
             k k  1
Step 4: Since the result is true for n = 3, then the result is true for
         all positive integral values of n > 2 by induction.
Step 3: Prove the result is true for n = k + 1
                      2  2  2             2         2
        i.e. Prove 1 - 1  1  1           
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2        2      2      2        2 
                                           
             3  4  5   k  k  1 
                 2            2 
                      1        
             k k  1  k  1 
                 2       k 1 2
                      
             k k  1 k  1
          
                 2
                       
                         k  1          Hence the result is true for
             k k  1 k  1            n = k + 1 if it is also true
                 2                        for n = k
          
             k k  1
Step 4: Since the result is true for n = 3, then the result is true for
         all positive integral values of n > 2 by induction.
2004 Extension 1 Examiners Comments;

 (a) Many candidates submitted excellent responses
     including all the necessary components of an
     induction proof.
2004 Extension 1 Examiners Comments;

 (a) Many candidates submitted excellent responses
     including all the necessary components of an
     induction proof.
    Weaker responses were those that did not verify for n = 3,
    had an incorrect statement of the assumption for n = k or
    had an incorrect use of the assumption in the attempt to
    prove the statement.
2004 Extension 1 Examiners Comments;

 (a) Many candidates submitted excellent responses
     including all the necessary components of an
     induction proof.
    Weaker responses were those that did not verify for n = 3,
    had an incorrect statement of the assumption for n = k or
    had an incorrect use of the assumption in the attempt to
    prove the statement.

   Poor algebraic skills made it difficult or even impossible for
   some candidates to complete the proof.
2004 Extension 1 Examiners Comments;

 (a) Many candidates submitted excellent responses
     including all the necessary components of an
     induction proof.
    Weaker responses were those that did not verify for n = 3,
    had an incorrect statement of the assumption for n = k or
    had an incorrect use of the assumption in the attempt to
    prove the statement.

   Poor algebraic skills made it difficult or even impossible for
   some candidates to complete the proof.

   Rote learning of the formula S(k) +T(k+1) = S(k+1) led
   many candidates to treat the expression as a sum rather
   than a product, thus making completion of the proof
   impossible.

More Related Content

More from Nigel Simmons

11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 

More from Nigel Simmons (20)

11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 

Recently uploaded

1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 

Recently uploaded (20)

1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 

11X1 T14 11 some different types (2010)

  • 1. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n 
  • 2. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n
  • 3. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n tann  1  tan n tan  1  tann  1 tan n
  • 4. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n tann  1  tan n tan  1  tann  1 tan n 1  tann  1 tan n  tan  tann  1  tan n
  • 5. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n tann  1  tan n tan  1  tann  1 tan n 1  tann  1 tan n  tan  tann  1  tan n tann  1  tan n 1  tann  1 tan n  tan
  • 6. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n tann  1  tan n tan  1  tann  1 tan n 1  tann  1 tan n  tan  tann  1  tan n tann  1  tan n 1  tann  1 tan n  tan 1  tann  1 tan n  cot  tann  1  tan n 
  • 7. 2006 Extension 1 Examiners Comments; (d) (i) This part was not done well, with many candidates presenting circular arguments.
  • 8. 2006 Extension 1 Examiners Comments; (d) (i) This part was not done well, with many candidates presenting circular arguments. However, a number of candidates successfully rearranged the given fact and easily saw the substitution required.
  • 9. 2006 Extension 1 Examiners Comments; (d) (i) This part was not done well, with many candidates presenting circular arguments. However, a number of candidates successfully rearranged the given fact and easily saw the substitution required. Many candidates spent considerable time on this part, which was worth only one mark.
  • 10. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1
  • 11. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1
  • 12. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 RHS  2  cot  tan 2
  • 13. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2
  • 14. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1
  • 15. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1
  • 16. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1
  • 17. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2
  • 18. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1
  • 19. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 20. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. tan tan 2  tan 2 tan 3    tan k tank  1  k  1  cot  tank  1
  • 21. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. tan tan 2  tan 2 tan 3    tan k tank  1  k  1  cot  tank  1 Step 3: Prove the result is true for n = k + 1
  • 22. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. tan tan 2  tan 2 tan 3    tan k tank  1  k  1  cot  tank  1 Step 3: Prove the result is true for n = k + 1 i.e. tan tan 2  tan 2 tan 3    tank  1 tank  2  k  2  cot  tank  2
  • 23. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
  • 24. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2
  • 25. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1
  • 26. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1  k  2  cot  tank  1  cot  tank  2  cot  tank  1
  • 27. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1  k  2  cot  tank  1  cot  tank  2  cot  tank  1  k  2  cot  tank  2
  • 28. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1  k  2  cot  tank  1  cot  tank  2  cot  tank  1  k  2  cot  tank  2 Hence the result is true for n = k + 1 if it is also true for n = k
  • 29. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1  k  2  cot  tank  1  cot  tank  2  cot  tank  1  k  2  cot  tank  2 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n= 1, then the result is true for all positive integral values of n, by induction
  • 30. 2006 Extension 1 Examiners Comments; (ii) Most candidates attempted this part. However, many only earned the mark for stating the inductive step.
  • 31. 2006 Extension 1 Examiners Comments; (ii) Most candidates attempted this part. However, many only earned the mark for stating the inductive step. They could not prove the expression true for n=1 as they were not able to use part (i), and consequently not able to prove the inductive step.
  • 32. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1
  • 33. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3
  • 34. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 LHS  1  3 1  3
  • 35. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3
  • 36. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3  LHS  RHS
  • 37. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3  LHS  RHS Hence the result is true for n = 3
  • 38. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3  LHS  RHS Hence the result is true for n = 3 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 39. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3  LHS  RHS Hence the result is true for n = 3 Step 2: Assume the result is true for n = k, where k is a positive integer  2  2  2   2  2 i.e. 1 - 1  1  1     3  4  5   k  k k  1
  • 40. Step 3: Prove the result is true for n = k + 1
  • 41. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k
  • 42. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1 
  • 43. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1 
  • 44. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1
  • 45. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1  2  k  1 k k  1 k  1
  • 46. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1  2  k  1 k k  1 k  1 2  k k  1
  • 47. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1  2  k  1 k k  1 k  1 2  k k  1 Step 4: Since the result is true for n = 3, then the result is true for all positive integral values of n > 2 by induction.
  • 48. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1  2  k  1 Hence the result is true for k k  1 k  1 n = k + 1 if it is also true 2 for n = k  k k  1 Step 4: Since the result is true for n = 3, then the result is true for all positive integral values of n > 2 by induction.
  • 49. 2004 Extension 1 Examiners Comments; (a) Many candidates submitted excellent responses including all the necessary components of an induction proof.
  • 50. 2004 Extension 1 Examiners Comments; (a) Many candidates submitted excellent responses including all the necessary components of an induction proof. Weaker responses were those that did not verify for n = 3, had an incorrect statement of the assumption for n = k or had an incorrect use of the assumption in the attempt to prove the statement.
  • 51. 2004 Extension 1 Examiners Comments; (a) Many candidates submitted excellent responses including all the necessary components of an induction proof. Weaker responses were those that did not verify for n = 3, had an incorrect statement of the assumption for n = k or had an incorrect use of the assumption in the attempt to prove the statement. Poor algebraic skills made it difficult or even impossible for some candidates to complete the proof.
  • 52. 2004 Extension 1 Examiners Comments; (a) Many candidates submitted excellent responses including all the necessary components of an induction proof. Weaker responses were those that did not verify for n = 3, had an incorrect statement of the assumption for n = k or had an incorrect use of the assumption in the attempt to prove the statement. Poor algebraic skills made it difficult or even impossible for some candidates to complete the proof. Rote learning of the formula S(k) +T(k+1) = S(k+1) led many candidates to treat the expression as a sum rather than a product, thus making completion of the proof impossible.