1) Angles can be measured in degrees and minutes or in
                                                                          TRIGONOMETRIC FUNCTIONS
                                                                                                                                            TRIGONOMETRIC IDENTITIES
radians. ( π radian = 1800 )
                                                                               How to determine the value of a                          1) Complementary angles Identities
2) Positive angles are angle measured in the                                 trigonometric function of any angle
anticlockwisesin2 A                                                                                                               sin θ = cos(90 o − θ )        cot θ = tan(90 o − θ )
    ) sin2 A) direction from the positive x –axis.                        1) By using Scientific Calculator
                                                                                                    π  0
                                                                                                                                  cos θ = sin(90 o − θ )        sec θ = cos ec(90 o − θ )
3) Negative angle are angle measured in the clockwise                        Eg: a) sin 350 (b) kos
direction from the positive x – axis                                                                3                            tan θ = cot(90 o − θ )         cos ecθ = sec(90 o − θ )
                          900
4) Quadrants                                           Reference Angles   2) Without using calculators
                                                                                                                                  2) Negative Angles Identities
                    II              I                                     a) By using right-angled triangle and                  a) Sin (- θ )    b) cos (- θ ) c) tan (- θ )
                                            00 /
           1800                             3600                          trigonometric ratio.                                      = - sin θ       = cos θ     = - tan θ
                    III             IV
                          270   0                                          Eg: Given cos θ = 3/5 and θ is
                                                                               in quadrant 1. Find the value of                         3) Basic identities
                           EXAMPLES                                            sin θ , cosec θ , sec θ ,cot θ
                                                                                           5
                                                                                                                                 a) sin2 A + cos2 A = 1
      0                             0                        0
a) 45               b) - 70                            c) 430                              θ
                                                                                               θ       3
                                                                                                                                 b) 1 + tan2 A = sec2 A

                                                                          b)       By using the value of the                     c) 1 + cot2 A = cosec2 A
                                                                          trigonometric function of the reference
                                                                          angle which is                                             10) Addition Formulae
                                                                               i) a special angle
4) Six Trigonometric Functions Of Any Angles                                      (00, 300, 600 , 900….)                         sin( A ± B ) = sin A cos B ± cos A sin B
                                    r
                                                                              ii) a given acute angle                            cos( A ± B) = cos A cos B  sin A sin B
                                                   y                      c) By using (a) or (b) and trigonometric                                 tan A ± tan B
                                                                                                                                 tan( A ± B ) =
                                θ                                         identities.                                                             1  tan A tan B
                                        x
                                                                          Special Angles                                         11) Double angle                   Half-angle formulae.
     Sin θ = y / r                           cosec θ = 1 / sin θ                                                                      Formulae                              1      1
                                                                                      300                                                                       sin A = 2 sin A cos A
     cos θ = x / r                           sec θ = 1 / cos θ                   2             3                                 Sin 2A = 2 sin A cosA
                                                                                                                                                                            2      2
     tan θ = y / x                           cot θ = 1 / tan θ                                                               1                                              1         1
                                                                                  600                            450                                            cos A = cos2 A − sin2
                                                                                                                                 Cos 2A =Cos2A - sin2A                      2         2
                                                                                     1             1               1                                                                 1
5) The signs of the trigonometric functions.                                                                                                          2                = 1 – 2sin2     A
                                                                                                                                        = 1 – 2 sin A                                2
        Sin θ +                     All positive                                         3O0               450         600                                                       1
                                                            S+   A+                                                                     = 2 Cos2A - 1                 = 2 cos2     A- 1
        Cosec θ +                                                          Sin                                                                                                   2
                                                                                                                                            2 tan A                              A
                                                                                                                                                                             2 tan
        tan θ +                 Cos θ +                     T+   C+        cos                                                   tan2A =          2                              2
                                                                                                                                           1 − tan A            tan A =
        Cot θ +                 Sec θ +                                                                                                                                            A
                                                                           tan                                                                                          1 − tan 2
                                                                                                                                                                                   2

All in one page trigo

  • 1.
    1) Angles canbe measured in degrees and minutes or in TRIGONOMETRIC FUNCTIONS TRIGONOMETRIC IDENTITIES radians. ( π radian = 1800 ) How to determine the value of a 1) Complementary angles Identities 2) Positive angles are angle measured in the trigonometric function of any angle anticlockwisesin2 A sin θ = cos(90 o − θ ) cot θ = tan(90 o − θ ) ) sin2 A) direction from the positive x –axis. 1) By using Scientific Calculator π 0 cos θ = sin(90 o − θ ) sec θ = cos ec(90 o − θ ) 3) Negative angle are angle measured in the clockwise Eg: a) sin 350 (b) kos direction from the positive x – axis 3 tan θ = cot(90 o − θ ) cos ecθ = sec(90 o − θ ) 900 4) Quadrants Reference Angles 2) Without using calculators 2) Negative Angles Identities II I a) By using right-angled triangle and a) Sin (- θ ) b) cos (- θ ) c) tan (- θ ) 00 / 1800 3600 trigonometric ratio. = - sin θ = cos θ = - tan θ III IV 270 0 Eg: Given cos θ = 3/5 and θ is in quadrant 1. Find the value of 3) Basic identities EXAMPLES sin θ , cosec θ , sec θ ,cot θ 5 a) sin2 A + cos2 A = 1 0 0 0 a) 45 b) - 70 c) 430 θ θ 3 b) 1 + tan2 A = sec2 A b) By using the value of the c) 1 + cot2 A = cosec2 A trigonometric function of the reference angle which is 10) Addition Formulae i) a special angle 4) Six Trigonometric Functions Of Any Angles (00, 300, 600 , 900….) sin( A ± B ) = sin A cos B ± cos A sin B r ii) a given acute angle cos( A ± B) = cos A cos B  sin A sin B y c) By using (a) or (b) and trigonometric tan A ± tan B tan( A ± B ) = θ identities. 1  tan A tan B x Special Angles 11) Double angle Half-angle formulae. Sin θ = y / r cosec θ = 1 / sin θ Formulae 1 1 300 sin A = 2 sin A cos A cos θ = x / r sec θ = 1 / cos θ 2 3 Sin 2A = 2 sin A cosA 2 2 tan θ = y / x cot θ = 1 / tan θ 1 1 1 600 450 cos A = cos2 A − sin2 Cos 2A =Cos2A - sin2A 2 2 1 1 1 1 5) The signs of the trigonometric functions. 2 = 1 – 2sin2 A = 1 – 2 sin A 2 Sin θ + All positive 3O0 450 600 1 S+ A+ = 2 Cos2A - 1 = 2 cos2 A- 1 Cosec θ + Sin 2 2 tan A A 2 tan tan θ + Cos θ + T+ C+ cos tan2A = 2 2 1 − tan A tan A = Cot θ + Sec θ + A tan 1 − tan 2 2