SlideShare a Scribd company logo
1 of 52
Download to read offline
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n

                                        tann  1  tan n
                                tan 
                                       1  tann  1 tan n
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n

                                        tann  1  tan n
                                tan 
                                       1  tann  1 tan n

        1  tann  1 tan n  tan  tann  1  tan n
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n

                                        tann  1  tan n
                                tan 
                                       1  tann  1 tan n

        1  tann  1 tan n  tan  tann  1  tan n
                                         tann  1  tan n
                1  tann  1 tan n 
                                                tan
Some Different Looking Induction
                Problems
2006 Extension 1 HSC Q4d)
                                           tan   tan 
     i  Use the fact that tanα  β                   to show that
                                          1  tan  tan 
              1  tan n tann  1  cot  tann  1  tan n 
                                          tann  1  tan n
                   tann  1  n  
                                         1  tann  1 tan n

                                        tann  1  tan n
                                tan 
                                       1  tann  1 tan n

        1  tann  1 tan n  tan  tann  1  tan n
                                         tann  1  tan n
                1  tann  1 tan n 
                                                tan
               1  tann  1 tan n  cot  tann  1  tan n 
2006 Extension 1 Examiners Comments;

 (d) (i) This part was not done well, with many candidates
         presenting circular arguments.
2006 Extension 1 Examiners Comments;

 (d) (i) This part was not done well, with many candidates
         presenting circular arguments.

        However, a number of candidates successfully rearranged
        the given fact and easily saw the substitution required.
2006 Extension 1 Examiners Comments;

 (d) (i) This part was not done well, with many candidates
         presenting circular arguments.

        However, a number of candidates successfully rearranged
        the given fact and easily saw the substitution required.

        Many candidates spent considerable time on this part,
        which was worth only one mark.
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
                                             RHS  2  cot  tan 2
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
     1  tan tan 2  1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                            RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. tan tan 2  tan 2 tan 3    tan k tank  1
                 k  1  cot  tank  1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. tan tan 2  tan 2 tan 3    tan k tank  1
                k  1  cot  tank  1
Step 3: Prove the result is true for n = k + 1
ii  Use mathematical induction to prove that for all integers n  1
          tan tan 2  tan 2 tan 3    tan n tann  1
              n  1  cot  tann  1
Step 1: Prove the result is true for n = 1
LHS  tan tan 2                      RHS  2  cot  tan 2
     1  tan tan 2  1
     cot  tan 2  tan   1
     cot  tan 2  1  1
      cot  tan 2  2     Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. tan tan 2  tan 2 tan 3    tan k tank  1
                 k  1  cot  tank  1
Step 3: Prove the result is true for n = k + 1
     i.e. tan tan 2  tan 2 tan 3    tank  1 tank  2
              k  2  cot  tank  2
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
 k  2  cot  tank  1  cot  tank  2  cot  tank  1
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
 k  2  cot  tank  1  cot  tank  2  cot  tank  1
 k  2  cot  tank  2
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
 k  2  cot  tank  1  cot  tank  2  cot  tank  1
 k  2  cot  tank  2


     Hence the result is true for n = k + 1 if it is also true for n = k
Proof:
tan tan 2  tan 2 tan 3    tank  1 tank  2 
tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
 k  1  cot  tank  1  tank  1 tank  2
 k  1  cot  tank  1  cot  tank  2  tank  1   1
 k  2  cot  tank  1  cot  tank  2  cot  tank  1
 k  2  cot  tank  2


     Hence the result is true for n = k + 1 if it is also true for n = k

 Step 4: Since the result is true for n= 1, then the result is true for all
         positive integral values of n, by induction
2006 Extension 1 Examiners Comments;

 (ii)   Most candidates attempted this part. However, many
        only earned the mark for stating the inductive step.
2006 Extension 1 Examiners Comments;

 (ii)   Most candidates attempted this part. However, many
        only earned the mark for stating the inductive step.

        They could not prove the expression true for n=1 as they
        were not able to use part (i), and consequently not able to
        prove the inductive step.
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2
     LHS  1 
               3
            1
          
            3
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
                         LHS  RHS
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
                         LHS  RHS
                Hence the result is true for n = 3
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
                         LHS  RHS
                Hence the result is true for n = 3
Step 2: Assume the result is true for n = k, where k is a positive
        integer
2004 Extension 1 HSC Q4a)
Use mathematical induction to prove that for all integers n  3;
        2  2  2   2        2
       1 - 1  1  1   
        3  4  5   n  nn  1
Step 1: Prove the result is true for n = 3
               2                                       2
     LHS  1                                RHS 
               3                                     32 
            1                                        1
                                                  
            3                                        3
                         LHS  RHS
                Hence the result is true for n = 3
Step 2: Assume the result is true for n = k, where k is a positive
        integer
                   2  2  2   2        2
             i.e. 1 - 1  1  1   
                   3  4  5   k  k k  1
Step 3: Prove the result is true for n = k + 1
Step 3: Prove the result is true for n = k + 1
                    2  2  2             2   2
        i.e. Prove 1 - 1  1  1        
                    3  4  5   k  1  k  1k
Step 3: Prove the result is true for n = k + 1
                     2  2  2            2   2
        i.e. Prove 1 - 1  1  1        
                     3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                2      2      2         2      2 
                                        
             3  4  5   k  k  1 
Step 3: Prove the result is true for n = k + 1
                      2  2  2           2   2
        i.e. Prove 1 - 1  1  1        
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2       2     2        2      2 
                                        
             3  4  5   k  k  1 
                 2           2 
                      1      
             k k  1  k  1 
Step 3: Prove the result is true for n = k + 1
                      2  2  2           2   2
        i.e. Prove 1 - 1  1  1        
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2       2     2        2      2 
                                        
             3  4  5   k  k  1 
                 2           2 
                      1      
             k k  1  k  1 
                 2      k 1 2
                     
             k k  1 k  1
Step 3: Prove the result is true for n = k + 1
                      2  2  2           2   2
        i.e. Prove 1 - 1  1  1        
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2       2      2       2      2 
                                        
             3  4  5   k  k  1 
                 2           2 
                      1       
             k k  1  k  1 
                 2      k 1 2
                     
             k k  1 k  1
          
                 2
                      
                        k  1
             k k  1 k  1
Step 3: Prove the result is true for n = k + 1
                      2  2  2           2   2
        i.e. Prove 1 - 1  1  1        
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2        2      2      2      2 
                                        
             3  4  5   k  k  1 
                 2            2 
                      1        
             k k  1  k  1 
                 2       k 1 2
                      
             k k  1 k  1
          
                 2
                       
                         k  1
             k k  1 k  1
                 2
          
             k k  1
Step 3: Prove the result is true for n = k + 1
                      2  2  2             2        2
        i.e. Prove 1 - 1  1  1           
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2        2      2      2        2 
                                           
             3  4  5   k  k  1 
                 2            2 
                      1        
             k k  1  k  1 
                 2       k 1 2
                      
             k k  1 k  1
          
                 2
                       
                         k  1
             k k  1 k  1
                 2
          
             k k  1
Step 4: Since the result is true for n = 3, then the result is true for
         all positive integral values of n > 2 by induction.
Step 3: Prove the result is true for n = k + 1
                      2  2  2             2         2
        i.e. Prove 1 - 1  1  1           
                      3  4  5   k  1  k  1k
Proof:  2  2  2                  2 
           1 - 1  1  1           
           3  4  5   k  1 

          1 - 1  1  1  1 
                 2        2      2      2        2 
                                           
             3  4  5   k  k  1 
                 2            2 
                      1        
             k k  1  k  1 
                 2       k 1 2
                      
             k k  1 k  1
          
                 2
                       
                         k  1          Hence the result is true for
             k k  1 k  1            n = k + 1 if it is also true
                 2                        for n = k
          
             k k  1
Step 4: Since the result is true for n = 3, then the result is true for
         all positive integral values of n > 2 by induction.
2004 Extension 1 Examiners Comments;

 (a) Many candidates submitted excellent responses
     including all the necessary components of an
     induction proof.
2004 Extension 1 Examiners Comments;

 (a) Many candidates submitted excellent responses
     including all the necessary components of an
     induction proof.
    Weaker responses were those that did not verify for n = 3,
    had an incorrect statement of the assumption for n = k or
    had an incorrect use of the assumption in the attempt to
    prove the statement.
2004 Extension 1 Examiners Comments;

 (a) Many candidates submitted excellent responses
     including all the necessary components of an
     induction proof.
    Weaker responses were those that did not verify for n = 3,
    had an incorrect statement of the assumption for n = k or
    had an incorrect use of the assumption in the attempt to
    prove the statement.

   Poor algebraic skills made it difficult or even impossible for
   some candidates to complete the proof.
2004 Extension 1 Examiners Comments;

 (a) Many candidates submitted excellent responses
     including all the necessary components of an
     induction proof.
    Weaker responses were those that did not verify for n = 3,
    had an incorrect statement of the assumption for n = k or
    had an incorrect use of the assumption in the attempt to
    prove the statement.

   Poor algebraic skills made it difficult or even impossible for
   some candidates to complete the proof.

   Rote learning of the formula S(k) +T(k+1) = S(k+1) led
   many candidates to treat the expression as a sum rather
   than a product, thus making completion of the proof
   impossible.

More Related Content

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 

11 x1 t14 11 some different types (2012)

  • 1. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n 
  • 2. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n
  • 3. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n tann  1  tan n tan  1  tann  1 tan n
  • 4. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n tann  1  tan n tan  1  tann  1 tan n 1  tann  1 tan n  tan  tann  1  tan n
  • 5. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n tann  1  tan n tan  1  tann  1 tan n 1  tann  1 tan n  tan  tann  1  tan n tann  1  tan n 1  tann  1 tan n  tan
  • 6. Some Different Looking Induction Problems 2006 Extension 1 HSC Q4d) tan   tan  i  Use the fact that tanα  β   to show that 1  tan  tan  1  tan n tann  1  cot  tann  1  tan n  tann  1  tan n tann  1  n   1  tann  1 tan n tann  1  tan n tan  1  tann  1 tan n 1  tann  1 tan n  tan  tann  1  tan n tann  1  tan n 1  tann  1 tan n  tan 1  tann  1 tan n  cot  tann  1  tan n 
  • 7. 2006 Extension 1 Examiners Comments; (d) (i) This part was not done well, with many candidates presenting circular arguments.
  • 8. 2006 Extension 1 Examiners Comments; (d) (i) This part was not done well, with many candidates presenting circular arguments. However, a number of candidates successfully rearranged the given fact and easily saw the substitution required.
  • 9. 2006 Extension 1 Examiners Comments; (d) (i) This part was not done well, with many candidates presenting circular arguments. However, a number of candidates successfully rearranged the given fact and easily saw the substitution required. Many candidates spent considerable time on this part, which was worth only one mark.
  • 10. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1
  • 11. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1
  • 12. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 RHS  2  cot  tan 2
  • 13. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2
  • 14. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1
  • 15. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1
  • 16. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1
  • 17. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2
  • 18. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1
  • 19. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 20. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. tan tan 2  tan 2 tan 3    tan k tank  1  k  1  cot  tank  1
  • 21. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. tan tan 2  tan 2 tan 3    tan k tank  1  k  1  cot  tank  1 Step 3: Prove the result is true for n = k + 1
  • 22. ii  Use mathematical induction to prove that for all integers n  1 tan tan 2  tan 2 tan 3    tan n tann  1  n  1  cot  tann  1 Step 1: Prove the result is true for n = 1 LHS  tan tan 2 RHS  2  cot  tan 2  1  tan tan 2  1  cot  tan 2  tan   1  cot  tan 2  1  1  cot  tan 2  2 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. tan tan 2  tan 2 tan 3    tan k tank  1  k  1  cot  tank  1 Step 3: Prove the result is true for n = k + 1 i.e. tan tan 2  tan 2 tan 3    tank  1 tank  2  k  2  cot  tank  2
  • 23. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2
  • 24. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2
  • 25. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1
  • 26. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1  k  2  cot  tank  1  cot  tank  2  cot  tank  1
  • 27. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1  k  2  cot  tank  1  cot  tank  2  cot  tank  1  k  2  cot  tank  2
  • 28. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1  k  2  cot  tank  1  cot  tank  2  cot  tank  1  k  2  cot  tank  2 Hence the result is true for n = k + 1 if it is also true for n = k
  • 29. Proof: tan tan 2  tan 2 tan 3    tank  1 tank  2  tan tan 2  tan 2 tan 3    tan k tank  1  tank  1 tank  2  k  1  cot  tank  1  tank  1 tank  2  k  1  cot  tank  1  cot  tank  2  tank  1   1  k  2  cot  tank  1  cot  tank  2  cot  tank  1  k  2  cot  tank  2 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n= 1, then the result is true for all positive integral values of n, by induction
  • 30. 2006 Extension 1 Examiners Comments; (ii) Most candidates attempted this part. However, many only earned the mark for stating the inductive step.
  • 31. 2006 Extension 1 Examiners Comments; (ii) Most candidates attempted this part. However, many only earned the mark for stating the inductive step. They could not prove the expression true for n=1 as they were not able to use part (i), and consequently not able to prove the inductive step.
  • 32. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1
  • 33. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3
  • 34. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 LHS  1  3 1  3
  • 35. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3
  • 36. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3  LHS  RHS
  • 37. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3  LHS  RHS Hence the result is true for n = 3
  • 38. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3  LHS  RHS Hence the result is true for n = 3 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 39. 2004 Extension 1 HSC Q4a) Use mathematical induction to prove that for all integers n  3;  2  2  2   2  2 1 - 1  1  1     3  4  5   n  nn  1 Step 1: Prove the result is true for n = 3 2 2 LHS  1  RHS  3 32  1 1   3 3  LHS  RHS Hence the result is true for n = 3 Step 2: Assume the result is true for n = k, where k is a positive integer  2  2  2   2  2 i.e. 1 - 1  1  1     3  4  5   k  k k  1
  • 40. Step 3: Prove the result is true for n = k + 1
  • 41. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k
  • 42. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1 
  • 43. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1 
  • 44. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1
  • 45. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1  2  k  1 k k  1 k  1
  • 46. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1  2  k  1 k k  1 k  1 2  k k  1
  • 47. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1  2  k  1 k k  1 k  1 2  k k  1 Step 4: Since the result is true for n = 3, then the result is true for all positive integral values of n > 2 by induction.
  • 48. Step 3: Prove the result is true for n = k + 1  2  2  2   2  2 i.e. Prove 1 - 1  1  1    3  4  5   k  1  k  1k Proof:  2  2  2   2   1 - 1  1  1    3  4  5   k  1   1 - 1  1  1  1  2 2 2 2 2          3  4  5   k  k  1  2  2    1   k k  1  k  1  2 k 1 2   k k  1 k  1  2  k  1 Hence the result is true for k k  1 k  1 n = k + 1 if it is also true 2 for n = k  k k  1 Step 4: Since the result is true for n = 3, then the result is true for all positive integral values of n > 2 by induction.
  • 49. 2004 Extension 1 Examiners Comments; (a) Many candidates submitted excellent responses including all the necessary components of an induction proof.
  • 50. 2004 Extension 1 Examiners Comments; (a) Many candidates submitted excellent responses including all the necessary components of an induction proof. Weaker responses were those that did not verify for n = 3, had an incorrect statement of the assumption for n = k or had an incorrect use of the assumption in the attempt to prove the statement.
  • 51. 2004 Extension 1 Examiners Comments; (a) Many candidates submitted excellent responses including all the necessary components of an induction proof. Weaker responses were those that did not verify for n = 3, had an incorrect statement of the assumption for n = k or had an incorrect use of the assumption in the attempt to prove the statement. Poor algebraic skills made it difficult or even impossible for some candidates to complete the proof.
  • 52. 2004 Extension 1 Examiners Comments; (a) Many candidates submitted excellent responses including all the necessary components of an induction proof. Weaker responses were those that did not verify for n = 3, had an incorrect statement of the assumption for n = k or had an incorrect use of the assumption in the attempt to prove the statement. Poor algebraic skills made it difficult or even impossible for some candidates to complete the proof. Rote learning of the formula S(k) +T(k+1) = S(k+1) led many candidates to treat the expression as a sum rather than a product, thus making completion of the proof impossible.