Circle Geometry
Circle Geometry
Circle Geometry Definitions
Circle Geometry
Circle Geometry Definitions
Circle Geometry
Circle Geometry Definitions
Radius:an interval joining centre to the
circumference
radius
Circle Geometry
Circle Geometry Definitions
Radius:an interval joining centre to the
circumference
radius
Diameter:an interval passing through the
centre, joining any two points
on the circumference
diameter
Circle Geometry
Circle Geometry Definitions
Radius:an interval joining centre to the
circumference
radius
Diameter:an interval passing through the
centre, joining any two points
on the circumference
diameter Chord:an interval joining two points on
the circumference
chord
Circle Geometry
Circle Geometry Definitions
Radius:an interval joining centre to the
circumference
radius
Diameter:an interval passing through the
centre, joining any two points
on the circumference
diameter Chord:an interval joining two points on
the circumference
chord
Secant: a line that cuts the circle
secant
Circle Geometry
Circle Geometry Definitions
Radius:an interval joining centre to the
circumference
radius
Diameter:an interval passing through the
centre, joining any two points
on the circumference
diameter Chord:an interval joining two points on
the circumference
chord
Secant: a line that cuts the circle
secant
Tangent: a line that touches the circle
tangent
Circle Geometry
Circle Geometry Definitions
Radius:an interval joining centre to the
circumference
radius
Diameter:an interval passing through the
centre, joining any two points
on the circumference
diameter Chord:an interval joining two points on
the circumference
chord
Secant: a line that cuts the circle
secant
Tangent: a line that touches the circle
tangent Arc: a piece of the circumference
arc
Sector: a plane figure with two radii and an
arc as boundaries.
sector
Sector: a plane figure with two radii and an
arc as boundaries.
sector
The minor sector is the small “piece of the
pie”, the major sector is the large “piece”
Sector: a plane figure with two radii and an
arc as boundaries.
sector
The minor sector is the small “piece of the
pie”, the major sector is the large “piece”
A quadrant is a sector where the angle at
the centre is 90 degrees
Sector: a plane figure with two radii and an
arc as boundaries.
sector
The minor sector is the small “piece of the
pie”, the major sector is the large “piece”
A quadrant is a sector where the angle at
the centre is 90 degrees
Segment:a plane figure with a chord and an
arc as boundaries.
segment
Sector: a plane figure with two radii and an
arc as boundaries.
sector
The minor sector is the small “piece of the
pie”, the major sector is the large “piece”
A quadrant is a sector where the angle at
the centre is 90 degrees
Segment:a plane figure with a chord and an
arc as boundaries.
segment
A semicircle is a segment where the chord is
the diameter, it is also a sector as the diameter
is two radii.
Concyclic Points:points that lie on the same circle.
A
B
C
D
Concyclic Points:points that lie on the same circle.
concyclic points
A
B
C
D
Concyclic Points:points that lie on the same circle.
concyclic points
Cyclic Quadrilateral: a four sided shape with all vertices on the
same circle.
cyclic quadrilateral
A
B
C
D
A
B

A
B

 represents the angle
subtended at the centre by
the arc AB
A
B

 represents the angle
subtended at the centre by
the arc AB

A
B

 represents the angle
subtended at the centre by
the arc AB

 represents the angle
subtended at the
circumference by the arc AB
A
B

 represents the angle
subtended at the centre by
the arc AB

 represents the angle
subtended at the
circumference by the arc AB
A
B

 represents the angle
subtended at the centre by
the arc AB

 represents the angle
subtended at the
circumference by the arc AB
Concentric circles have the
same centre.
Circles touching internally
share a common tangent.
Circles touching internally
share a common tangent.
Circles touching externally
share a common tangent.
Circles touching internally
share a common tangent.
Circles touching externally
share a common tangent.
Circles touching internally
share a common tangent.
Circles touching externally
share a common tangent.
Chord (Arc) Theorems
Chord (Arc) Theorems
Note: = chords cut off = arcs
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
A
B
O
X
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
OXAB :Data
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
OXAB :Data
BXAX :Prove
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
OXAB :Data
BXAX :Prove
Proof: Join OA, OB
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
OXAB :Data
BXAX :Prove
Proof: Join OA, OB
  RBXOAXO given90

Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
OXAB :Data
BXAX :Prove
Proof: Join OA, OB
  RBXOAXO given90

  HBOAO radii
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
OXAB :Data
BXAX :Prove
Proof: Join OA, OB
  RBXOAXO given90

  HBOAO radii
 SOX commonis
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
OXAB :Data
BXAX :Prove
Proof: Join OA, OB
  RBXOAXO given90

  HBOAO radii
 SOX commonis
 RHSBXOAXO 
Chord (Arc) Theorems
Note: = chords cut off = arcs
(1) A perpendicular drawn to a chord from the centre of a circle bisects
the chord, and the perpendicular bisector of a chord passes through
the centre.
 chordbisectscentre,from BXAX
A
B
O
X
OXAB :Data
BXAX :Prove
Proof: Join OA, OB
  RBXOAXO given90

  HBOAO radii
 SOX commonis
 RHSBXOAXO 
 matching sides in 'sAX BX   
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
A
B
O
X
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
  SBXAX given
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
  SBXAX given
  SBOAO radii
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
  SBXAX given
  SBOAO radii
 SOX commonis
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
  SBXAX given
  SBOAO radii
 SOX commonis
 SSSBXOAXO 
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
  SBXAX given
  SBOAO radii
 SOX commonis
 SSSBXOAXO 
 matching 's in 'sAXO BXO     
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
  SBXAX given
  SBOAO radii
 SOX commonis
 SSSBXOAXO 
 matching 's in 'sAXO BXO     
 AXBBXOAXO straight180  
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
  SBXAX given
  SBOAO radii
 SOX commonis
 SSSBXOAXO 
 matching 's in 'sAXO BXO     
 AXBBXOAXO straight180  
90
1802




AXO
AXO
(2) Converse of (1)
The line from the centre of a circle to the midpoint of the chord at
right angles.
 chordtomidpoint,tocentrejoiningline  ABOX
A
B
O
X
BXAX :Data
OXAB :Prove
Proof: Join OA, OB
  SBXAX given
  SBOAO radii
 SOX commonis
 SSSBXOAXO 
 matching 's in 'sAXO BXO     
 AXBBXOAXO straight180  
90
1802




AXO
AXO
OXAB 
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
 centreats'subtendchords  CODAOB
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
 centreats'subtendchords  CODAOB
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
 centreats'subtendchords  CODAOB
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 centreats'subtendchords  CODAOB
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 givenCDAB 
 centreats'subtendchords  CODAOB
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 givenCDAB 
 chordbisects
2
1
 ABAX
 centreats'subtendchords  CODAOB
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 givenCDAB 
 chordbisects
2
1
 ABAX
 centreats'subtendchords  CODAOB
 chordbisects
2
1
 CDCY
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 givenCDAB 
 chordbisects
2
1
 ABAX
 SCYAX 
 centreats'subtendchords  CODAOB
 chordbisects
2
1
 CDCY
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 givenCDAB 
 chordbisects
2
1
 ABAX
 SCYAX 
  RCYOAXO given90

 centreats'subtendchords  CODAOB
 chordbisects
2
1
 CDCY
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 givenCDAB 
 chordbisects
2
1
 ABAX
 SCYAX 
  RCYOAXO given90

 centreats'subtendchords  CODAOB
 chordbisects
2
1
 CDCY
  HOCOA radii
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 givenCDAB 
 chordbisects
2
1
 ABAX
 SCYAX 
  RCYOAXO given90

 centreats'subtendchords  CODAOB
 chordbisects
2
1
 CDCY
  HOCOA radii
 RHSCYOAXO 
A
B
O
X
C DY
(3) Equal chords of a circle are the same distance from the centre and
subtend equal angles at the centre.
 centrefromtequidistanchords, OYOX
Data: , ,AB CD OX AB OY CD  
OYOX :Prove
Proof: Join OA, OC
 givenCDAB 
 chordbisects
2
1
 ABAX
 SCYAX 
  RCYOAXO given90

 matching sides in 'sOX OY   
 centreats'subtendchords  CODAOB
 chordbisects
2
1
 CDCY
  HOCOA radii
 RHSCYOAXO 
A
B
O
X
C DY
A
B
O
C D
A
B
O
C D
CDAB :Data
A
B
O
C D
CDAB :Data
CODAOB :Prove
A
B
O
C D
CDAB :Data
CODAOB :Prove
Proof:  givenCDAB 
A
B
O
C D
CDAB :Data
CODAOB :Prove
Proof:  givenCDAB 
 radii DOCOBOAO
A
B
O
C D
CDAB :Data
CODAOB :Prove
Proof:  givenCDAB 
 radii DOCOBOAO
 SSSCODAOB 
A
B
O
C D
CDAB :Data
CODAOB :Prove
Proof:  givenCDAB 
 radii DOCOBOAO
 matching 's in 'sAOB COD     
 SSSCODAOB 
A
B
O
C D
CDAB :Data
CODAOB :Prove
Proof:  givenCDAB 
 radii DOCOBOAO
 matching 's in 'sAOB COD     
 SSSCODAOB 
Exercise 9A; 1 ce, 2 aceg, 3, 4, 9, 10 ac, 11 ac, 13, 15, 16, 18

11 x1 t13 01 definitions & chord theorems (2013)

  • 1.
  • 2.
  • 3.
  • 4.
    Circle Geometry Circle GeometryDefinitions Radius:an interval joining centre to the circumference radius
  • 5.
    Circle Geometry Circle GeometryDefinitions Radius:an interval joining centre to the circumference radius Diameter:an interval passing through the centre, joining any two points on the circumference diameter
  • 6.
    Circle Geometry Circle GeometryDefinitions Radius:an interval joining centre to the circumference radius Diameter:an interval passing through the centre, joining any two points on the circumference diameter Chord:an interval joining two points on the circumference chord
  • 7.
    Circle Geometry Circle GeometryDefinitions Radius:an interval joining centre to the circumference radius Diameter:an interval passing through the centre, joining any two points on the circumference diameter Chord:an interval joining two points on the circumference chord Secant: a line that cuts the circle secant
  • 8.
    Circle Geometry Circle GeometryDefinitions Radius:an interval joining centre to the circumference radius Diameter:an interval passing through the centre, joining any two points on the circumference diameter Chord:an interval joining two points on the circumference chord Secant: a line that cuts the circle secant Tangent: a line that touches the circle tangent
  • 9.
    Circle Geometry Circle GeometryDefinitions Radius:an interval joining centre to the circumference radius Diameter:an interval passing through the centre, joining any two points on the circumference diameter Chord:an interval joining two points on the circumference chord Secant: a line that cuts the circle secant Tangent: a line that touches the circle tangent Arc: a piece of the circumference arc
  • 11.
    Sector: a planefigure with two radii and an arc as boundaries. sector
  • 12.
    Sector: a planefigure with two radii and an arc as boundaries. sector The minor sector is the small “piece of the pie”, the major sector is the large “piece”
  • 13.
    Sector: a planefigure with two radii and an arc as boundaries. sector The minor sector is the small “piece of the pie”, the major sector is the large “piece” A quadrant is a sector where the angle at the centre is 90 degrees
  • 14.
    Sector: a planefigure with two radii and an arc as boundaries. sector The minor sector is the small “piece of the pie”, the major sector is the large “piece” A quadrant is a sector where the angle at the centre is 90 degrees Segment:a plane figure with a chord and an arc as boundaries. segment
  • 15.
    Sector: a planefigure with two radii and an arc as boundaries. sector The minor sector is the small “piece of the pie”, the major sector is the large “piece” A quadrant is a sector where the angle at the centre is 90 degrees Segment:a plane figure with a chord and an arc as boundaries. segment A semicircle is a segment where the chord is the diameter, it is also a sector as the diameter is two radii.
  • 17.
    Concyclic Points:points thatlie on the same circle. A B C D
  • 18.
    Concyclic Points:points thatlie on the same circle. concyclic points A B C D
  • 19.
    Concyclic Points:points thatlie on the same circle. concyclic points Cyclic Quadrilateral: a four sided shape with all vertices on the same circle. cyclic quadrilateral A B C D
  • 21.
  • 22.
    A B   represents theangle subtended at the centre by the arc AB
  • 23.
    A B   represents theangle subtended at the centre by the arc AB 
  • 24.
    A B   represents theangle subtended at the centre by the arc AB   represents the angle subtended at the circumference by the arc AB
  • 25.
    A B   represents theangle subtended at the centre by the arc AB   represents the angle subtended at the circumference by the arc AB
  • 26.
    A B   represents theangle subtended at the centre by the arc AB   represents the angle subtended at the circumference by the arc AB Concentric circles have the same centre.
  • 29.
  • 30.
    Circles touching internally sharea common tangent. Circles touching externally share a common tangent.
  • 31.
    Circles touching internally sharea common tangent. Circles touching externally share a common tangent.
  • 32.
    Circles touching internally sharea common tangent. Circles touching externally share a common tangent.
  • 33.
  • 34.
    Chord (Arc) Theorems Note:= chords cut off = arcs
  • 35.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.
  • 36.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre. A B O X
  • 37.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X
  • 38.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X OXAB :Data
  • 39.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X OXAB :Data BXAX :Prove
  • 40.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X OXAB :Data BXAX :Prove Proof: Join OA, OB
  • 41.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X OXAB :Data BXAX :Prove Proof: Join OA, OB   RBXOAXO given90 
  • 42.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X OXAB :Data BXAX :Prove Proof: Join OA, OB   RBXOAXO given90    HBOAO radii
  • 43.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X OXAB :Data BXAX :Prove Proof: Join OA, OB   RBXOAXO given90    HBOAO radii  SOX commonis
  • 44.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X OXAB :Data BXAX :Prove Proof: Join OA, OB   RBXOAXO given90    HBOAO radii  SOX commonis  RHSBXOAXO 
  • 45.
    Chord (Arc) Theorems Note:= chords cut off = arcs (1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.  chordbisectscentre,from BXAX A B O X OXAB :Data BXAX :Prove Proof: Join OA, OB   RBXOAXO given90    HBOAO radii  SOX commonis  RHSBXOAXO   matching sides in 'sAX BX   
  • 46.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.
  • 47.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles. A B O X
  • 48.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X
  • 49.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data
  • 50.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove
  • 51.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB
  • 52.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB   SBXAX given
  • 53.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB   SBXAX given   SBOAO radii
  • 54.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB   SBXAX given   SBOAO radii  SOX commonis
  • 55.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB   SBXAX given   SBOAO radii  SOX commonis  SSSBXOAXO 
  • 56.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB   SBXAX given   SBOAO radii  SOX commonis  SSSBXOAXO   matching 's in 'sAXO BXO     
  • 57.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB   SBXAX given   SBOAO radii  SOX commonis  SSSBXOAXO   matching 's in 'sAXO BXO       AXBBXOAXO straight180  
  • 58.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB   SBXAX given   SBOAO radii  SOX commonis  SSSBXOAXO   matching 's in 'sAXO BXO       AXBBXOAXO straight180   90 1802     AXO AXO
  • 59.
    (2) Converse of(1) The line from the centre of a circle to the midpoint of the chord at right angles.  chordtomidpoint,tocentrejoiningline  ABOX A B O X BXAX :Data OXAB :Prove Proof: Join OA, OB   SBXAX given   SBOAO radii  SOX commonis  SSSBXOAXO   matching 's in 'sAXO BXO       AXBBXOAXO straight180   90 1802     AXO AXO OXAB 
  • 60.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.
  • 61.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre. A B O X C DY
  • 62.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX A B O X C DY
  • 63.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX  centreats'subtendchords  CODAOB A B O X C DY
  • 64.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD    centreats'subtendchords  CODAOB A B O X C DY
  • 65.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove  centreats'subtendchords  CODAOB A B O X C DY
  • 66.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  centreats'subtendchords  CODAOB A B O X C DY
  • 67.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  givenCDAB   centreats'subtendchords  CODAOB A B O X C DY
  • 68.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  givenCDAB   chordbisects 2 1  ABAX  centreats'subtendchords  CODAOB A B O X C DY
  • 69.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  givenCDAB   chordbisects 2 1  ABAX  centreats'subtendchords  CODAOB  chordbisects 2 1  CDCY A B O X C DY
  • 70.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  givenCDAB   chordbisects 2 1  ABAX  SCYAX   centreats'subtendchords  CODAOB  chordbisects 2 1  CDCY A B O X C DY
  • 71.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  givenCDAB   chordbisects 2 1  ABAX  SCYAX    RCYOAXO given90   centreats'subtendchords  CODAOB  chordbisects 2 1  CDCY A B O X C DY
  • 72.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  givenCDAB   chordbisects 2 1  ABAX  SCYAX    RCYOAXO given90   centreats'subtendchords  CODAOB  chordbisects 2 1  CDCY   HOCOA radii A B O X C DY
  • 73.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  givenCDAB   chordbisects 2 1  ABAX  SCYAX    RCYOAXO given90   centreats'subtendchords  CODAOB  chordbisects 2 1  CDCY   HOCOA radii  RHSCYOAXO  A B O X C DY
  • 74.
    (3) Equal chordsof a circle are the same distance from the centre and subtend equal angles at the centre.  centrefromtequidistanchords, OYOX Data: , ,AB CD OX AB OY CD   OYOX :Prove Proof: Join OA, OC  givenCDAB   chordbisects 2 1  ABAX  SCYAX    RCYOAXO given90   matching sides in 'sOX OY     centreats'subtendchords  CODAOB  chordbisects 2 1  CDCY   HOCOA radii  RHSCYOAXO  A B O X C DY
  • 75.
  • 76.
  • 77.
  • 78.
    A B O C D CDAB :Data CODAOB:Prove Proof:  givenCDAB 
  • 79.
    A B O C D CDAB :Data CODAOB:Prove Proof:  givenCDAB   radii DOCOBOAO
  • 80.
    A B O C D CDAB :Data CODAOB:Prove Proof:  givenCDAB   radii DOCOBOAO  SSSCODAOB 
  • 81.
    A B O C D CDAB :Data CODAOB:Prove Proof:  givenCDAB   radii DOCOBOAO  matching 's in 'sAOB COD       SSSCODAOB 
  • 82.
    A B O C D CDAB :Data CODAOB:Prove Proof:  givenCDAB   radii DOCOBOAO  matching 's in 'sAOB COD       SSSCODAOB  Exercise 9A; 1 ce, 2 aceg, 3, 4, 9, 10 ac, 11 ac, 13, 15, 16, 18