SlideShare a Scribd company logo
Polynomial Expressions
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
Polynomial Expressions
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Polynomial Expressions
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Polynomial Expressions
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
(3 – 2x)2 means to
“square of the difference of 3 and twice x”.
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
(3 – 2x)2 means to
“square of the difference of 3 and twice x”.
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
These are complicated!
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
(3 – 2x)2 means to
“square of the difference of 3 and twice x”.
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
The simplest form of expression are #xN, where N is a non-
negative integer and # is a number, is called a monomial
(one-term).
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
These are complicated!
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
(3 – 2x)2 means to
“square of the difference of 3 and twice x”.
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
The simplest form of expression are #xN, where N is a non-
negative integer and # is a number, is called a monomial
(one-term). For example –1, 2x, 3x2, and –4x3 are monomials.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
These are complicated!
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
(3 – 2x)2 means to
“square of the difference of 3 and twice x”.
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
The simplest form of expression are #xN, where N is a non-
negative integer and # is a number, is called a monomial
(one-term). For example –1, 2x, 3x2, and –4x3 are monomials.
If N = 0 we’ve the constants, N = 1, the linear monomials #x.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
These are complicated!
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
(3 – 2x)2 means to
“square of the difference of 3 and twice x”.
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Example A. Evaluate the monomials if y = –4
a. 3y2
The simplest form of expression are #xN, where N is a non-
negative integer and # is a number, is called a monomial
(one-term). For example –1, 2x, 3x2, and –4x3 are monomials.
If N = 0 we’ve the constants, N = 1, the linear monomials #x.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
These are complicated!
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
(3 – 2x)2 means to
“square of the difference of 3 and twice x”.
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Example A. Evaluate the monomials if y = –4
a. 3y2
3y2  3(–4)2
The simplest form of expression are #xN, where N is a non-
negative integer and # is a number, is called a monomial
(one-term). For example –1, 2x, 3x2, and –4x3 are monomials.
If N = 0 we’ve the constants, N = 1, the linear monomials #x.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
These are complicated!
For example, let x represent a number,
then “2 + 3x” means to “sum 2 and 3 times x”,
“4x2 – 5x” means to
“subtract 5 times x from 4 times the square of x”,
(3 – 2x)2 means to
“square of the difference of 3 and twice x”.
A mathematics expression is a calculation procedure which
is written using numbers, variables, and operation-symbols.
The purposes of this symbolic-form are clarity and simplicity.
Example A. Evaluate the monomials if y = –4
a. 3y2
3y2  3(–4)2 = 3(16) = 48
The simplest form of expression are #xN, where N is a non-
negative integer and # is a number, is called a monomial
(one-term). For example –1, 2x, 3x2, and –4x3 are monomials.
If N = 0 we’ve the constants, N = 1, the linear monomials #x.
Polynomial Expressions
The English phrase
“sum 2 and 3 times x”
is ambiguous.
These are complicated!
b. –3y2 (y = –4)
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64)
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64) = 192
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64) = 192
Polynomial Expressions
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64) = 192
The sum of monomials are called polynomials (many-terms).
Polynomial Expressions
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64) = 192
The sum of monomials are called polynomials (many-terms).
These are expressions of the form, arranged in the order of
powers of the x: #xN ± #xN-1 ± … ± #x1 ± #
where the #’s are numbers.
Polynomial Expressions
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64) = 192
The sum of monomials are called polynomials (many-terms).
These are expressions of the form, arranged in the order of
powers of the x: #xN ± #xN-1 ± … ± #x1 ± #
where the #’s are numbers.
The highest exponent N is the degree of the polynomial.
Polynomial Expressions
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64) = 192
The sum of monomials are called polynomials (many-terms).
These are expressions of the form, arranged in the order of
powers of the x: #xN ± #xN-1 ± … ± #x1 ± #
where the #’s are numbers.
The highest exponent N is the degree of the polynomial.
For example, 4x – 7 is 1st degree (linear)
Polynomial Expressions
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64) = 192
The sum of monomials are called polynomials (many-terms).
These are expressions of the form, arranged in the order of
powers of the x: #xN ± #xN-1 ± … ± #x1 ± #
where the #’s are numbers.
The highest exponent N is the degree of the polynomial.
For example, 4x – 7 is 1st degree (linear)
and the degree of 1 – 3x2 – πx40 is 40.
Polynomial Expressions
Polynomial Expressions
b. –3y2 (y = –4)
–3y2  –3(–4)2
= –3(16) = –48.
c. –3y3
–3y3  – 3(–4)3
= – 3(–64) = 192
The sum of monomials are called polynomials (many-terms).
These are expressions of the form, arranged in the order of
powers of the x: #xN ± #xN-1 ± … ± #x1 ± #
where the #’s are numbers.
The highest exponent N is the degree of the polynomial.
For example, 4x – 7 is 1st degree (linear)
and the degree of 1 – 3x2 – πx40 is 40.
x
1 is not a polynomial.The expression
Polynomial Expressions
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3.
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (–3) in the expression,
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (–3) in the expression, we get
4(–3)2 – 3(–3)3
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (–3) in the expression, we get
4(–3)2 – 3(–3)3
= 4(9) – 3(–27)
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (–3) in the expression, we get
4(–3)2 – 3(–3)3
= 4(9) – 3(–27)
= 36 + 81
= 117
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (–3) in the expression, we get
4(–3)2 – 3(–3)3
= 4(9) – 3(–27)
= 36 + 81
= 117
Given a polynomial, each monomial is called a term.
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (–3) in the expression, we get
4(–3)2 – 3(–3)3
= 4(9) – 3(–27)
= 36 + 81
= 117
Given a polynomial, each monomial is called a term.
#xN ± #xN-1 ± … ± #x ± #
terms
Polynomial Expressions
Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3.
The polynomial 4x2 – 3x3 is the combination of two
monomials; 4x2 and –3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (–3) in the expression, we get
4(–3)2 – 3(–3)3
= 4(9) – 3(–27)
= 36 + 81
= 117
Given a polynomial, each monomial is called a term.
#xN ± #xN-1 ± … ± #x ± #
terms
Therefore the polynomial –3x2 – 4x + 7 has 3 terms,
–3x2 , –4x and + 7.
Polynomial Expressions
Each term is addressed by the variable part.
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2,
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term.
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Unlike terms may not be combined.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , –1xN as –xN.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , –1xN as –xN.
When multiplying a number with a term, we multiply it with the
coefficient.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , –1xN as –xN.
When multiplying a number with a term, we multiply it with the
coefficient. Hence, 3(5x) = (3*5)x
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , –1xN as –xN.
When multiplying a number with a term, we multiply it with the
coefficient. Hence, 3(5x) = (3*5)x =15x,
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , –1xN as –xN.
When multiplying a number with a term, we multiply it with the
coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of –3x2 is –3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , –1xN as –xN.
When multiplying a number with a term, we multiply it with the
coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
Operations with Polynomials
When multiplying a number with a polynomial, we may
expand using the distributive law: A(B ± C) = AB ± AC.
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2 or 3x2.
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2 or 3x2.
Like–terms are terms where the variable parts are the same.
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2 or 3x2.
Like–terms are terms where the variable parts are the same.
For example 3x2y3 + 5x2y3 = 8x2y3
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2 or 3x2.
Like–terms are terms where the variable parts are the same.
For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be
combined.
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2 or 3x2.
Like–terms are terms where the variable parts are the same.
For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be
combined. We evaluate them by assigning numbers to
x and/or y.
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2 or 3x2.
Like–terms are terms where the variable parts are the same.
For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be
combined. We evaluate them by assigning numbers to
x and/or y. If only one number is given, the result is a formula.
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2 or 3x2.
Like–terms are terms where the variable parts are the same.
For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be
combined. We evaluate them by assigning numbers to
x and/or y. If only one number is given, the result is a formula.
If both numbers are given, then we get a numerical output.
Polynomial Expressions
Example C. Expand and simplify.
a. 3(2x – 4) + 2(4 – 5x)
= 6x – 12 + 8 – 10x
= –4x – 4
b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6)
= –3x2 + 9x – 15 + 2x2 + 8x +12
= –x2 + 17x – 3
Polynomials in two or more variables.
We form polynomials in two variables say, x & y, by adding
monomials of the form kx#y# where k is a number and the
powers are all nonnegative integers such as –5x3y2 or 3x2.
Like–terms are terms where the variable parts are the same.
For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be
combined. We evaluate them by assigning numbers to
x and/or y. If only one number is given, the result is a formula.
If both numbers are given, then we get a numerical output.
We may do this for x, y and z or even more variables.
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
Polynomial Expressions
= 6xy – 8x2y + 2xy – 3xy2
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
= –16y – 6y2
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
= –16y – 6y2
c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
= –16y – 6y2
c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3
We may put x = 2, y = 3 into the formula and do everything
all over
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
= –16y – 6y2
c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3
We may put x = 2, y = 3 into the formula and do everything
all over again or we may plug into y = 3 into part b which is
easier.
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
= –16y – 6y2
c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3
We may put x = 2, y = 3 into the formula and do everything
all over again or we may plug into y = 3 into part b which is
easier. We will do the easy way.
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
= –16y – 6y2
c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3
We may put x = 2, y = 3 into the formula and do everything
all over again or we may plug into y = 3 into part b which is
easier. We will do the easy way.
Input y = 3 into –16y – 6y2
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
= –16y – 6y2
c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3
We may put x = 2, y = 3 into the formula and do everything
all over again or we may plug into y = 3 into part b which is
easier. We will do the easy way.
–16(3) – 6(3)2
Input y = 3 into –16y – 6y2
we get
Polynomial Expressions
Example D. Expand and simplify.
a. 2(3xy – 4x2y) + 2xy – 3xy2
= 6xy – 8x2y + 2xy – 3xy2
= 8xy – 8x2y – 3xy2
b. Evaluate 8xy – 8x2y – 3xy2 if x = 2.
Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2
= 16y – 32y – 6y2
= –16y – 6y2
c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3
We may put x = 2, y = 3 into the formula and do everything
all over again or we may plug into y = 3 into part b which is
easier. We will do the easy way.
–16(3) – 6(3)2
Input y = 3 into –16y – 6y2
we get
= –48 – 54 = –102
Polynomial Expressions
Ex. A. Evaluate each monomials with the given values.
3. 2x2 with x = 1 and x = –1 4. –2x2 with x = 1 and x = –1
5. 5y3 with y = 2 and y = –2 6. –5y3 with y = 2 and y = –2
1. 2x with x = 1 and x = –1 2. –2x with x = 1 and x = –1
7. 5z4 with z = 2 and z = –2 8. –5y4 with z = 2 and z = –2
B. Evaluate each monomials with the given values.
9. 2x2 – 3x + 2 with x = 1 and x = –1
10. –2x2 + 4x – 1 with x = 2 and x = –2
11. 3x2 – x – 2 with x = 3 and x = –3
12. –3x2 – x + 2 with x = 3 and x = –3
13. –2x3 – x2 + 4 with x = 2 and x = –2
14. –2x3 – 5x2 – 5 with x = 3 and x = –3
C. Expand and simplify.
15. 5(2x – 4) + 3(4 – 5x) 16. 5(2x – 4) – 3(4 – 5x)
17. –2(3x – 8) + 3(4 – 9x) 18. –2(3x – 8) – 3(4 – 9x)
19. 7(–2x – 7) – 3(4 – 3x) 20. –5(–2 – 8x) + 7(–2 – 11x)
Polynomial Expressions
21. x2 – 3x + 5 + 2(–x2 – 4x – 6)
22. x2 – 3x + 5 – 2(–x2 – 4x – 6)
23. 2(x2 – 3x + 5) + 5(–x2 – 4x – 6)
24. 2(x2 – 3x + 5) – 5(–x2 – 4x – 6)
25. –2(3x2 – 2x + 5) + 5(–4x2 – 4x – 3)
26. –2(3x2 – 2x + 5) – 5(–4x2 – 4x – 3)
27. 4(3x3 – 5x2) – 9(6x2 – 7x) – 5(– 8x – 2)
29. Simplify 2(3xy – xy2) – 2(2xy – xy2) then evaluated it
with x = –1, afterwards evaluate it at (–1, 2) for (x, y)
30. Simplify x2 – 2(3xy – x2) – 2(y2 – xy) then evaluated it
with y = –2, afterwards evaluate it at (–1, –2) for (x, y)
31. Simplify x2 – 2(3xy – z2) – 2(z2 – x2) then evaluated it
with x = –1, y = – 2 and z = 3.
Polynomial Expressions
28. –6(7x2 + 5x – 9) – 7(–3x2 – 2x – 7)

More Related Content

What's hot

Module 1 polynomial functions
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functions
dionesioable
 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalitiesmath123c
 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statements
alg1testreview
 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functionsmath265
 
2.1 reviews of exponents and the power functions
2.1 reviews of exponents and the power functions2.1 reviews of exponents and the power functions
2.1 reviews of exponents and the power functionsmath123c
 
Polynomial function
Polynomial functionPolynomial function
Polynomial function
maricel mas
 
Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide Share
Kristen T
 
Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions) Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions)
ileen menes
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
elem-alg-sample
 
4 4polynomial operations
4 4polynomial operations4 4polynomial operations
4 4polynomial operationsmath123a
 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressionsHazel Joy Chong
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variables
VivekNaithani3
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
alg1testreview
 
Remainder & Factor Theorems
Remainder & Factor TheoremsRemainder & Factor Theorems
Remainder & Factor TheoremsLori Rapp
 
Quadratic Equations
Quadratic EquationsQuadratic Equations
Quadratic Equations
Bruce Lightner
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functions
dionesioable
 
Polynomials Add And Subtract Ch 9.1
Polynomials Add And Subtract Ch 9.1Polynomials Add And Subtract Ch 9.1
Polynomials Add And Subtract Ch 9.1taco40
 
Rational expressions
Rational expressionsRational expressions
Rational expressions
Mark Ryder
 

What's hot (20)

Module 1 polynomial functions
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functions
 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalities
 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statements
 
Bonus math project
Bonus math projectBonus math project
Bonus math project
 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functions
 
2.1 reviews of exponents and the power functions
2.1 reviews of exponents and the power functions2.1 reviews of exponents and the power functions
2.1 reviews of exponents and the power functions
 
Polynomial function
Polynomial functionPolynomial function
Polynomial function
 
Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide Share
 
Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions) Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions)
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
 
4 4polynomial operations
4 4polynomial operations4 4polynomial operations
4 4polynomial operations
 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressions
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variables
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
 
Remainder & Factor Theorems
Remainder & Factor TheoremsRemainder & Factor Theorems
Remainder & Factor Theorems
 
Alg2 lesson 7-5
Alg2 lesson 7-5Alg2 lesson 7-5
Alg2 lesson 7-5
 
Quadratic Equations
Quadratic EquationsQuadratic Equations
Quadratic Equations
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functions
 
Polynomials Add And Subtract Ch 9.1
Polynomials Add And Subtract Ch 9.1Polynomials Add And Subtract Ch 9.1
Polynomials Add And Subtract Ch 9.1
 
Rational expressions
Rational expressionsRational expressions
Rational expressions
 

Similar to 1 polynomial expressions x

46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
alg1testreview
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
math260
 
1050 text-bop
1050 text-bop1050 text-bop
1050 text-bop
Ainemukama Moses
 
Project in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez BaliaProject in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez Balia
samuel balia
 
Expresión Algebraica
Expresión Algebraica   Expresión Algebraica
Expresión Algebraica
hector pereira
 
Expresión Algebraica
Expresión AlgebraicaExpresión Algebraica
Expresión Algebraica
AriannyOrellana
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
RITURAJ DAS
 
Polynomials
PolynomialsPolynomials
Polynomials
Poonam Singh
 
Polynomials
PolynomialsPolynomials
Polynomialsnina
 
Multiplication of algebraic expressions
Multiplication of algebraic expressionsMultiplication of algebraic expressions
Multiplication of algebraic expressions
Vendavaram
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
alg1testreview
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1math265
 
CLASS X MATHS Polynomials
CLASS X MATHS  PolynomialsCLASS X MATHS  Polynomials
CLASS X MATHS Polynomials
Rc Os
 
2 factoring trinomials the ac method and making lists-xc
2 factoring trinomials  the ac method and making lists-xc2 factoring trinomials  the ac method and making lists-xc
2 factoring trinomials the ac method and making lists-xc
Tzenma
 
1 factoring nat-e
1 factoring nat-e1 factoring nat-e
1 factoring nat-e
math260
 
Hari narayan class 9-a
Hari narayan class 9-aHari narayan class 9-a
Hari narayan class 9-aKartik Kumar
 
2 polynomial operations x
2 polynomial operations x2 polynomial operations x
2 polynomial operations x
Tzenma
 
1.0 factoring trinomials the ac method and making lists-x
1.0 factoring trinomials  the ac method and making lists-x1.0 factoring trinomials  the ac method and making lists-x
1.0 factoring trinomials the ac method and making lists-x
math260
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making lists
math260
 
Polynomials Grade 10
Polynomials Grade 10Polynomials Grade 10
Polynomials Grade 10ingroy
 

Similar to 1 polynomial expressions x (20)

46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
 
1050 text-bop
1050 text-bop1050 text-bop
1050 text-bop
 
Project in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez BaliaProject in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez Balia
 
Expresión Algebraica
Expresión Algebraica   Expresión Algebraica
Expresión Algebraica
 
Expresión Algebraica
Expresión AlgebraicaExpresión Algebraica
Expresión Algebraica
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Multiplication of algebraic expressions
Multiplication of algebraic expressionsMultiplication of algebraic expressions
Multiplication of algebraic expressions
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
 
CLASS X MATHS Polynomials
CLASS X MATHS  PolynomialsCLASS X MATHS  Polynomials
CLASS X MATHS Polynomials
 
2 factoring trinomials the ac method and making lists-xc
2 factoring trinomials  the ac method and making lists-xc2 factoring trinomials  the ac method and making lists-xc
2 factoring trinomials the ac method and making lists-xc
 
1 factoring nat-e
1 factoring nat-e1 factoring nat-e
1 factoring nat-e
 
Hari narayan class 9-a
Hari narayan class 9-aHari narayan class 9-a
Hari narayan class 9-a
 
2 polynomial operations x
2 polynomial operations x2 polynomial operations x
2 polynomial operations x
 
1.0 factoring trinomials the ac method and making lists-x
1.0 factoring trinomials  the ac method and making lists-x1.0 factoring trinomials  the ac method and making lists-x
1.0 factoring trinomials the ac method and making lists-x
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making lists
 
Polynomials Grade 10
Polynomials Grade 10Polynomials Grade 10
Polynomials Grade 10
 

More from Tzenma

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
Tzenma
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
Tzenma
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
Tzenma
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
Tzenma
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
Tzenma
 
1 functions
1 functions1 functions
1 functions
Tzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Tzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Tzenma
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
Tzenma
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
Tzenma
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
Tzenma
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
Tzenma
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
Tzenma
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
Tzenma
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
Tzenma
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
Tzenma
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
Tzenma
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
Tzenma
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
Tzenma
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
Tzenma
 

More from Tzenma (20)

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
 
1 functions
1 functions1 functions
1 functions
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
 

Recently uploaded

Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
kimdan468
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
ShivajiThube2
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
Wasim Ak
 

Recently uploaded (20)

Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
 

1 polynomial expressions x

  • 2. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. Polynomial Expressions
  • 3. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Polynomial Expressions
  • 4. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Polynomial Expressions
  • 5. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous.
  • 6. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous.
  • 7. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, (3 – 2x)2 means to “square of the difference of 3 and twice x”. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous.
  • 8. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, (3 – 2x)2 means to “square of the difference of 3 and twice x”. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous. These are complicated!
  • 9. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, (3 – 2x)2 means to “square of the difference of 3 and twice x”. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. The simplest form of expression are #xN, where N is a non- negative integer and # is a number, is called a monomial (one-term). Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous. These are complicated!
  • 10. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, (3 – 2x)2 means to “square of the difference of 3 and twice x”. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. The simplest form of expression are #xN, where N is a non- negative integer and # is a number, is called a monomial (one-term). For example –1, 2x, 3x2, and –4x3 are monomials. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous. These are complicated!
  • 11. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, (3 – 2x)2 means to “square of the difference of 3 and twice x”. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. The simplest form of expression are #xN, where N is a non- negative integer and # is a number, is called a monomial (one-term). For example –1, 2x, 3x2, and –4x3 are monomials. If N = 0 we’ve the constants, N = 1, the linear monomials #x. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous. These are complicated!
  • 12. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, (3 – 2x)2 means to “square of the difference of 3 and twice x”. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Example A. Evaluate the monomials if y = –4 a. 3y2 The simplest form of expression are #xN, where N is a non- negative integer and # is a number, is called a monomial (one-term). For example –1, 2x, 3x2, and –4x3 are monomials. If N = 0 we’ve the constants, N = 1, the linear monomials #x. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous. These are complicated!
  • 13. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, (3 – 2x)2 means to “square of the difference of 3 and twice x”. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Example A. Evaluate the monomials if y = –4 a. 3y2 3y2  3(–4)2 The simplest form of expression are #xN, where N is a non- negative integer and # is a number, is called a monomial (one-term). For example –1, 2x, 3x2, and –4x3 are monomials. If N = 0 we’ve the constants, N = 1, the linear monomials #x. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous. These are complicated!
  • 14. For example, let x represent a number, then “2 + 3x” means to “sum 2 and 3 times x”, “4x2 – 5x” means to “subtract 5 times x from 4 times the square of x”, (3 – 2x)2 means to “square of the difference of 3 and twice x”. A mathematics expression is a calculation procedure which is written using numbers, variables, and operation-symbols. The purposes of this symbolic-form are clarity and simplicity. Example A. Evaluate the monomials if y = –4 a. 3y2 3y2  3(–4)2 = 3(16) = 48 The simplest form of expression are #xN, where N is a non- negative integer and # is a number, is called a monomial (one-term). For example –1, 2x, 3x2, and –4x3 are monomials. If N = 0 we’ve the constants, N = 1, the linear monomials #x. Polynomial Expressions The English phrase “sum 2 and 3 times x” is ambiguous. These are complicated!
  • 15. b. –3y2 (y = –4) Polynomial Expressions
  • 16. b. –3y2 (y = –4) –3y2  –3(–4)2 Polynomial Expressions
  • 17. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. Polynomial Expressions
  • 18. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 Polynomial Expressions
  • 19. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 Polynomial Expressions
  • 20. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) Polynomial Expressions
  • 21. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) = 192 Polynomial Expressions
  • 22. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) = 192 Polynomial Expressions Polynomial Expressions
  • 23. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) = 192 The sum of monomials are called polynomials (many-terms). Polynomial Expressions Polynomial Expressions
  • 24. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) = 192 The sum of monomials are called polynomials (many-terms). These are expressions of the form, arranged in the order of powers of the x: #xN ± #xN-1 ± … ± #x1 ± # where the #’s are numbers. Polynomial Expressions Polynomial Expressions
  • 25. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) = 192 The sum of monomials are called polynomials (many-terms). These are expressions of the form, arranged in the order of powers of the x: #xN ± #xN-1 ± … ± #x1 ± # where the #’s are numbers. The highest exponent N is the degree of the polynomial. Polynomial Expressions Polynomial Expressions
  • 26. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) = 192 The sum of monomials are called polynomials (many-terms). These are expressions of the form, arranged in the order of powers of the x: #xN ± #xN-1 ± … ± #x1 ± # where the #’s are numbers. The highest exponent N is the degree of the polynomial. For example, 4x – 7 is 1st degree (linear) Polynomial Expressions Polynomial Expressions
  • 27. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) = 192 The sum of monomials are called polynomials (many-terms). These are expressions of the form, arranged in the order of powers of the x: #xN ± #xN-1 ± … ± #x1 ± # where the #’s are numbers. The highest exponent N is the degree of the polynomial. For example, 4x – 7 is 1st degree (linear) and the degree of 1 – 3x2 – πx40 is 40. Polynomial Expressions Polynomial Expressions
  • 28. b. –3y2 (y = –4) –3y2  –3(–4)2 = –3(16) = –48. c. –3y3 –3y3  – 3(–4)3 = – 3(–64) = 192 The sum of monomials are called polynomials (many-terms). These are expressions of the form, arranged in the order of powers of the x: #xN ± #xN-1 ± … ± #x1 ± # where the #’s are numbers. The highest exponent N is the degree of the polynomial. For example, 4x – 7 is 1st degree (linear) and the degree of 1 – 3x2 – πx40 is 40. x 1 is not a polynomial.The expression Polynomial Expressions Polynomial Expressions
  • 29. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. Polynomial Expressions
  • 30. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. Polynomial Expressions
  • 31. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Polynomial Expressions
  • 32. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (–3) in the expression, Polynomial Expressions
  • 33. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (–3) in the expression, we get 4(–3)2 – 3(–3)3 Polynomial Expressions
  • 34. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (–3) in the expression, we get 4(–3)2 – 3(–3)3 = 4(9) – 3(–27) Polynomial Expressions
  • 35. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (–3) in the expression, we get 4(–3)2 – 3(–3)3 = 4(9) – 3(–27) = 36 + 81 = 117 Polynomial Expressions
  • 36. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (–3) in the expression, we get 4(–3)2 – 3(–3)3 = 4(9) – 3(–27) = 36 + 81 = 117 Given a polynomial, each monomial is called a term. Polynomial Expressions
  • 37. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (–3) in the expression, we get 4(–3)2 – 3(–3)3 = 4(9) – 3(–27) = 36 + 81 = 117 Given a polynomial, each monomial is called a term. #xN ± #xN-1 ± … ± #x ± # terms Polynomial Expressions
  • 38. Example B. Evaluate the polynomial 4x2 – 3x3 if x = –3. The polynomial 4x2 – 3x3 is the combination of two monomials; 4x2 and –3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (–3) in the expression, we get 4(–3)2 – 3(–3)3 = 4(9) – 3(–27) = 36 + 81 = 117 Given a polynomial, each monomial is called a term. #xN ± #xN-1 ± … ± #x ± # terms Therefore the polynomial –3x2 – 4x + 7 has 3 terms, –3x2 , –4x and + 7. Polynomial Expressions
  • 39. Each term is addressed by the variable part. Polynomial Expressions
  • 40. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, Polynomial Expressions
  • 41. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, Polynomial Expressions
  • 42. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. Polynomial Expressions
  • 43. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. Polynomial Expressions
  • 44. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Polynomial Expressions
  • 45. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Operations with Polynomials Polynomial Expressions
  • 46. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Operations with Polynomials Polynomial Expressions
  • 47. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. Operations with Polynomials Polynomial Expressions
  • 48. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x Operations with Polynomials Polynomial Expressions
  • 49. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Operations with Polynomials Polynomial Expressions
  • 50. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Unlike terms may not be combined. Operations with Polynomials Polynomial Expressions
  • 51. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Operations with Polynomials Polynomial Expressions
  • 52. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , –1xN as –xN. Operations with Polynomials Polynomial Expressions
  • 53. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , –1xN as –xN. When multiplying a number with a term, we multiply it with the coefficient. Operations with Polynomials Polynomial Expressions
  • 54. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , –1xN as –xN. When multiplying a number with a term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x Operations with Polynomials Polynomial Expressions
  • 55. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , –1xN as –xN. When multiplying a number with a term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, Operations with Polynomials Polynomial Expressions
  • 56. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , –1xN as –xN. When multiplying a number with a term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. Operations with Polynomials Polynomial Expressions
  • 57. Each term is addressed by the variable part. Hence the x2-term of the –3x2 – 4x + 7 is –3x2, the x-term is –4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of –3x2 is –3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 – 5x2 = –2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , –1xN as –xN. When multiplying a number with a term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. Operations with Polynomials When multiplying a number with a polynomial, we may expand using the distributive law: A(B ± C) = AB ± AC. Polynomial Expressions
  • 58. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) Polynomial Expressions
  • 59. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x Polynomial Expressions
  • 60. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 Polynomial Expressions
  • 61. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) Polynomial Expressions
  • 62. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 Polynomial Expressions
  • 63. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomial Expressions
  • 64. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. Polynomial Expressions
  • 65. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers Polynomial Expressions
  • 66. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 Polynomial Expressions
  • 67. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 or 3x2. Polynomial Expressions
  • 68. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 or 3x2. Like–terms are terms where the variable parts are the same. Polynomial Expressions
  • 69. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 or 3x2. Like–terms are terms where the variable parts are the same. For example 3x2y3 + 5x2y3 = 8x2y3 Polynomial Expressions
  • 70. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 or 3x2. Like–terms are terms where the variable parts are the same. For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be combined. Polynomial Expressions
  • 71. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 or 3x2. Like–terms are terms where the variable parts are the same. For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be combined. We evaluate them by assigning numbers to x and/or y. Polynomial Expressions
  • 72. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 or 3x2. Like–terms are terms where the variable parts are the same. For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be combined. We evaluate them by assigning numbers to x and/or y. If only one number is given, the result is a formula. Polynomial Expressions
  • 73. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 or 3x2. Like–terms are terms where the variable parts are the same. For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be combined. We evaluate them by assigning numbers to x and/or y. If only one number is given, the result is a formula. If both numbers are given, then we get a numerical output. Polynomial Expressions
  • 74. Example C. Expand and simplify. a. 3(2x – 4) + 2(4 – 5x) = 6x – 12 + 8 – 10x = –4x – 4 b. –3(x2 – 3x + 5) – 2(–x2 – 4x – 6) = –3x2 + 9x – 15 + 2x2 + 8x +12 = –x2 + 17x – 3 Polynomials in two or more variables. We form polynomials in two variables say, x & y, by adding monomials of the form kx#y# where k is a number and the powers are all nonnegative integers such as –5x3y2 or 3x2. Like–terms are terms where the variable parts are the same. For example 3x2y3 + 5x2y3 = 8x2y3 but 3x2y3 + 5x3y3 can’t be combined. We evaluate them by assigning numbers to x and/or y. If only one number is given, the result is a formula. If both numbers are given, then we get a numerical output. We may do this for x, y and z or even more variables. Polynomial Expressions
  • 75. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 Polynomial Expressions
  • 76. = 6xy – 8x2y + 2xy – 3xy2 Polynomial Expressions Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2
  • 77. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 Polynomial Expressions
  • 78. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Polynomial Expressions
  • 79. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 Polynomial Expressions
  • 80. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 Polynomial Expressions
  • 81. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 = –16y – 6y2 Polynomial Expressions
  • 82. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 = –16y – 6y2 c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3 Polynomial Expressions
  • 83. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 = –16y – 6y2 c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3 We may put x = 2, y = 3 into the formula and do everything all over Polynomial Expressions
  • 84. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 = –16y – 6y2 c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3 We may put x = 2, y = 3 into the formula and do everything all over again or we may plug into y = 3 into part b which is easier. Polynomial Expressions
  • 85. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 = –16y – 6y2 c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3 We may put x = 2, y = 3 into the formula and do everything all over again or we may plug into y = 3 into part b which is easier. We will do the easy way. Polynomial Expressions
  • 86. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 = –16y – 6y2 c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3 We may put x = 2, y = 3 into the formula and do everything all over again or we may plug into y = 3 into part b which is easier. We will do the easy way. Input y = 3 into –16y – 6y2 Polynomial Expressions
  • 87. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 = –16y – 6y2 c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3 We may put x = 2, y = 3 into the formula and do everything all over again or we may plug into y = 3 into part b which is easier. We will do the easy way. –16(3) – 6(3)2 Input y = 3 into –16y – 6y2 we get Polynomial Expressions
  • 88. Example D. Expand and simplify. a. 2(3xy – 4x2y) + 2xy – 3xy2 = 6xy – 8x2y + 2xy – 3xy2 = 8xy – 8x2y – 3xy2 b. Evaluate 8xy – 8x2y – 3xy2 if x = 2. Input x = 2, we get 8(2)y – 8(2)2y – 3(2)y2 = 16y – 32y – 6y2 = –16y – 6y2 c. Evaluate 8xy – 8x2y – 3xy2 if x = 2 and y = 3 We may put x = 2, y = 3 into the formula and do everything all over again or we may plug into y = 3 into part b which is easier. We will do the easy way. –16(3) – 6(3)2 Input y = 3 into –16y – 6y2 we get = –48 – 54 = –102 Polynomial Expressions
  • 89. Ex. A. Evaluate each monomials with the given values. 3. 2x2 with x = 1 and x = –1 4. –2x2 with x = 1 and x = –1 5. 5y3 with y = 2 and y = –2 6. –5y3 with y = 2 and y = –2 1. 2x with x = 1 and x = –1 2. –2x with x = 1 and x = –1 7. 5z4 with z = 2 and z = –2 8. –5y4 with z = 2 and z = –2 B. Evaluate each monomials with the given values. 9. 2x2 – 3x + 2 with x = 1 and x = –1 10. –2x2 + 4x – 1 with x = 2 and x = –2 11. 3x2 – x – 2 with x = 3 and x = –3 12. –3x2 – x + 2 with x = 3 and x = –3 13. –2x3 – x2 + 4 with x = 2 and x = –2 14. –2x3 – 5x2 – 5 with x = 3 and x = –3 C. Expand and simplify. 15. 5(2x – 4) + 3(4 – 5x) 16. 5(2x – 4) – 3(4 – 5x) 17. –2(3x – 8) + 3(4 – 9x) 18. –2(3x – 8) – 3(4 – 9x) 19. 7(–2x – 7) – 3(4 – 3x) 20. –5(–2 – 8x) + 7(–2 – 11x) Polynomial Expressions
  • 90. 21. x2 – 3x + 5 + 2(–x2 – 4x – 6) 22. x2 – 3x + 5 – 2(–x2 – 4x – 6) 23. 2(x2 – 3x + 5) + 5(–x2 – 4x – 6) 24. 2(x2 – 3x + 5) – 5(–x2 – 4x – 6) 25. –2(3x2 – 2x + 5) + 5(–4x2 – 4x – 3) 26. –2(3x2 – 2x + 5) – 5(–4x2 – 4x – 3) 27. 4(3x3 – 5x2) – 9(6x2 – 7x) – 5(– 8x – 2) 29. Simplify 2(3xy – xy2) – 2(2xy – xy2) then evaluated it with x = –1, afterwards evaluate it at (–1, 2) for (x, y) 30. Simplify x2 – 2(3xy – x2) – 2(y2 – xy) then evaluated it with y = –2, afterwards evaluate it at (–1, –2) for (x, y) 31. Simplify x2 – 2(3xy – z2) – 2(z2 – x2) then evaluated it with x = –1, y = – 2 and z = 3. Polynomial Expressions 28. –6(7x2 + 5x – 9) – 7(–3x2 – 2x – 7)