Schrödinger and Maxwell's Equations: on their similarities


                Friday Talk, 16th April 2010

                         Oka Kurniawan
              Computational Electronics and Photonics




                                                        1
Electron and Photon
E2            E2
     ħω             ħω

E1            E1




                         2
The equations


           2                              2
         ℏ  2                           E     2
 iℏ    =−     V              0 0         = E
    t    2m                              t 2
  i 2 m                             2 B
−
             2
           =                   0 0 2 = 2 B
    ℏ t                              t



                     2
                    2 f    2
                  c     2
                          = f
                     t



                                                      3
Classical Case
                E




      EC2

EC1


            z   0           1   T(E)




                                       4
Comparison with Classical Case
                           E




                 EC2

EC1


                       z   0   1   T(E)




                                          5
The case of a single barrier
                                                   EC2

EC1                                                                       ε1                       ε2


                                                           z                                                         z
                       ik x x       ik y y       −iEt/ ħ                                    x x       y y       −i  t
 r ,t =C  z  e            e            e                 E y r , t=C E y0  z  e          e          e

 2

                                                                                                 
                                                                 2
d  2m                      2    2                              d E y0         2
                                                                            n z 
                                                                                   2
                                                                                      2    2
    2
       2  E −E C  z −k x −k y =0                                             − x − y E y0 =0
 dz     ħ                                                        dz 2        c2




                                                                                                                      6
The analogy: Quantum and Optics
■   Streams of electrons        ■ Streams of photons
                                  (EM wave)
■   At interface:               ■ At interface:
       Reflection                     Reflection
       Transmission                   Transmission
■   Interface → energy          ■   Interface → refractive
    barrier                         index difference
                        2                               2

           R=
              
              k 1−k 2
              k 1k 2                      R=
                                               
                                               n1−n2
                                               n1n2    
                            2                                  2

           T=
                  
              k 2 2 k1
              k 1 k 1k 2                  T=
                                                    
                                               2 v 2 2 n1
                                               1 v 1 n1n 2   
                                               1     2
                                            I =  v E0
                                               2                   7
Another simple case

V(x)




                     a   x                    a

d 2  ħ2                          d 2 E0       2
    2
          E =0                            k E 0 =0
dx      2m                         dx
                                        2



= An sin k n x                 E 0 = Aq sin  k q x 

=0 , for x=0 and x=a             E 0 =0, for x =0 and x=a
     n                                q
k n=                              k q=
      a                                 a
                                                             8
Simple example: discrete frequencies


V(x)




            a    x           a


                           v = c/2a



         E = π2Ћ2/2ma2



                                          9
Quantum and Optical Confinement

                              EC



                                   ħω


                              EV


       Taken from wikipedia




                                        10
Laser: Light Amplification by Stimulated Emission of Radiation



E2
     ħω   ħω
          ħω                    Active medium
E1
 Active medium
                                     a

                                         EC


                                                         ħω


                                         EV


                                                              11
Nano Laser




[1] M.T. Hill,et al., “Lasing in metallic-coated nanocavities,”
Nat Photon, vol. 1, Oct. 2007, pp. 589-594.

                                                                  12
References
■   Datta, “Quantum Phenomena,” Modular Series on Solid State Devices, Vol VIII, Addison-
    Wesley (1989). page 12-28.
■   Joannopoulus, et al., “Photonic Crystals: Molding the flow of light,” 2nd Ed, Princeton
    (2008). page 22 and Appendix A. (E-book download from TWiki)




                                                                                         13
Solid-State and Photonic Crystal




                               14
Summary




      15

Schrodingermaxwell

  • 1.
    Schrödinger and Maxwell'sEquations: on their similarities Friday Talk, 16th April 2010 Oka Kurniawan Computational Electronics and Photonics 1
  • 2.
    Electron and Photon E2 E2 ħω ħω E1 E1 2
  • 3.
    The equations 2 2  ℏ 2  E 2 iℏ =−  V  0 0 = E t 2m t 2 i 2 m  2 B − 2 =  0 0 2 = 2 B ℏ t t 2 2 f 2 c 2 = f t 3
  • 4.
    Classical Case E EC2 EC1 z 0 1 T(E) 4
  • 5.
    Comparison with ClassicalCase E EC2 EC1 z 0 1 T(E) 5
  • 6.
    The case ofa single barrier EC2 EC1 ε1 ε2 z z ik x x ik y y −iEt/ ħ x x y y −i  t  r ,t =C  z  e e e E y r , t=C E y0  z  e e e 2     2 d  2m 2 2 d E y0 2  n z  2 2 2 2  2  E −E C  z −k x −k y =0  − x − y E y0 =0 dz ħ dz 2 c2 6
  • 7.
    The analogy: Quantumand Optics ■ Streams of electrons ■ Streams of photons (EM wave) ■ At interface: ■ At interface:  Reflection  Reflection  Transmission  Transmission ■ Interface → energy ■ Interface → refractive barrier index difference 2 2 R=  k 1−k 2 k 1k 2  R=  n1−n2 n1n2  2 2 T=  k 2 2 k1 k 1 k 1k 2  T=  2 v 2 2 n1 1 v 1 n1n 2  1 2 I =  v E0 2 7
  • 8.
    Another simple case V(x) a x a d 2  ħ2 d 2 E0 2 2  E =0 k E 0 =0 dx 2m dx 2 = An sin k n x  E 0 = Aq sin  k q x  =0 , for x=0 and x=a E 0 =0, for x =0 and x=a n q k n= k q= a a 8
  • 9.
    Simple example: discretefrequencies V(x) a x a v = c/2a E = π2Ћ2/2ma2 9
  • 10.
    Quantum and OpticalConfinement EC ħω EV Taken from wikipedia 10
  • 11.
    Laser: Light Amplificationby Stimulated Emission of Radiation E2 ħω ħω ħω Active medium E1 Active medium a EC ħω EV 11
  • 12.
    Nano Laser [1] M.T.Hill,et al., “Lasing in metallic-coated nanocavities,” Nat Photon, vol. 1, Oct. 2007, pp. 589-594. 12
  • 13.
    References ■ Datta, “Quantum Phenomena,” Modular Series on Solid State Devices, Vol VIII, Addison- Wesley (1989). page 12-28. ■ Joannopoulus, et al., “Photonic Crystals: Molding the flow of light,” 2nd Ed, Princeton (2008). page 22 and Appendix A. (E-book download from TWiki) 13
  • 14.
  • 15.