SlideShare a Scribd company logo
International Journal of Modern Engineering Research (IJMER)
                   www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376       ISSN: 2249-6645

          The (G'/G) - Expansion Method for Finding Traveling Wave
           Solutions of Some Nonlinear Pdes in Mathematical Physics

                                                          J.F.Alzaidy
                    Mathematics Department, Faculty of Science, Taif University, Kingdom of Saudi Arabia

Abstract: In the present paper, we construct the traveling wave solutions involving parameters of some nonlinear PDEs in
mathematical physics; namely the variable coefficients KdV (vcKdV) equation, the modified dispersive water wave
                                                                                                                          ๐บโ€ฒ
(MDWW) equations and the symmetrically coupled KdV equations by using a simple method which is called the ๐บ -
expansion method, where ๐บ = ๐บ ฮพ satisfies the second order linear ordinary differential equation. When the parameters are
taken special values, the solitary waves are derived from the traveling waves. The traveling wave solutions are expressed by
hyperbolic, trigonometric and rational functions. This method is more powerful and will be used in further works to establish
more entirely new solutions for other kinds of nonlinear PDEs arising in mathematical physics.

Keywords: The(G'/G) expansion method; traveling wave solutions; the variable coefficients KdV (vcKdV) equation; the
modified dispersive water wave (๐‘€๐ท๐‘Š๐‘Š) equations; symmetrically coupled KdV equations, solitary wave solutions.

AMS Subject Classifications: 35K99; 35P05; 35P99.

                                                        I. Introduction
          In recent years, the exact solutions of nonlinear PDEs have been investigated by many authors ( see for example [1-
30] ) who are interested in nonlinear physical phenomena. Many effective methods have been presented ,such as inverse
scattering transform method [1], B๐‘Žcklund transformation [2], Darboux transformation [3], Hirota bilinear method [4], vari-
able separation approach [5], various tanh methods [6โ€“9], homogeneous balance method [10] , similarity reductions method
[11,12] , the reduction mKdV equation method [13], the tri-function method [14,15], the projective Riccati equation method
[16], the Weierstrass elliptic function method [17], the Sine- Cosine method [18,19], the Jacobi elliptic function expansion
[20,21], the complex hyperbolic function method [22], the truncated Painlev๐‘’ โ€ฒ expansion [23], the F-expansion method [24],
the rank analysis method [25] and so on.
                                                                                           ๐บโ€ฒ
           In the present paper, we shall use a simple method which is called the ๐บ -expansion method [26,27]. This method
is firstly proposed by the Chinese Mathematicians Wang et al [28] for which the traveling wave solutions of nonlinear equa-
tions are obtained. The main idea of this method is that the traveling wave solutions of nonlinear equations can be expressed
                        ๐บโ€ฒ
by a polynomial in ๐บ , where ๐บ = ๐บ ฮพ satisfies the second order linear ordinary differential equation ๐บ " ฮพ + ๐œ†๐บ โ€ฒ ฮพ +
 ๐œ‡๐บ ฮพ = 0, where ๐œ‰ = ๐‘˜ ๐‘ฅ โˆ’ ๐‘๐‘ก ,where ๐œ† , ๐œ‡, ๐‘˜ and ๐‘ are constants . The degree of this polynomial can be determined by
considering the homogeneous balance between the highest order derivatives and the nonlinear terms appearing in the given
nonlinear equations .The coefficients of this polynomial can be obtained by solving a set of algebraic equations resulted from
the process of using the proposed method. This new method will play an important role in expressing the traveling wave
solutions for nonlinear evolution equations via the vcKdV equation, the MDWW equations and the symmetrically coupled
KdV equations in terms of hyperbolic, trigonometric and rational functions.

                                                                      ๐‘ฎโ€ฒ
                                    II. Description of the                 - expansion method
                                                                       ๐‘ฎ
Suppose we have the following nonlinear PDE:

                                            ๐‘ƒ ๐‘ข, ๐‘ข ๐‘ก , ๐‘ข ๐‘ฅ , ๐‘ข ๐‘ก๐‘ก , ๐‘ข ๐‘ฅ๐‘ฅ , ๐‘ข ๐‘ฅ๐‘ก , โ€ฆ = 0,                                   (1)
         Where ๐‘ข = ๐‘ข(๐‘ฅ, ๐‘ก) is an unknown function, ๐‘ƒ is a polynomial in ๐‘ข = ๐‘ข(๐‘ฅ, ๐‘ก) and its various partial derivatives in
which the highest order derivatives and nonlinear terms are involved. In the following we give the main steps of a deforma-
tion method:
Setp1. Suppose that
                                              ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ข ฮพ ,          ฮพ = ฮพ ๐‘ฅ, ๐‘ก .                                         (2)
The traveling wave variable (2) permits us reducing (1) to an ODE for ๐‘ข = ๐‘ข ฮพ in the form:
                                                       ๐‘ƒ(๐‘ข, ๐‘ขโ€ฒ , ๐‘ขโ€ฒโ€ฒ , โ€ฆ ) = 0,                                            (3)
             ๐‘‘
where โ€ฒ =      .
            ๐‘‘ฮพ

                                                           www.ijmer.com                                           369 | Page
International Journal of Modern Engineering Research (IJMER)
                 www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376       ISSN: 2249-6645

                                                                                                ๐บโ€ฒ
Setp2. Suppose that the solution Eq.(3) can be expressed by a polynomial in                     ๐บ
                                                                                                     as follows:
                                                                      ๐‘›                 ๐‘–
                                                                                   ๐บโ€ฒ
                                                         ๐‘ข ฮพ =                ๐‘Ž๐‘–      ,                                       (4)
                                                                                   ๐บ
                                                                     ๐‘–=0

While ๐บ = ๐บ ฮพ satisfies the second order linear differential equation in the form:
                                                     ๐บ " ฮพ + ๐œ†๐บ โ€ฒ ฮพ + ๐œ‡๐บ ฮพ = 0,                                               (5)
Where ๐‘Ž ๐‘– ๐‘– = 0,1, โ€ฆ , ๐‘› , ๐œ† and ๐œ‡ are constants to be determined later.
Setp3. The positive integer " ๐‘› " can be determined by considering the homogeneous balance between the highest derivative
term and the nonlinear terms appearing in Eq.(3). Therefore, we can get the value of ๐‘› in Eq.( 4).
                                                                                                                   ๐บโ€ฒ
Setp4. Substituting Eq.( 4) into Eq.( 3) and using Eq.(5), collecting all terms with the same power of ๐บ together and then
equating each coefficient of the resulted polynomial to zero, yield a set of algebraic equations for ๐‘Ž ๐‘– , ๐œ† , ๐œ‡ , ๐‘ and ๐‘˜.
Setp5. Solving the algebraic equations by use of Maple or Mathematica, we obtain values for ๐‘Ž ๐‘– , ๐œ† , ๐œ‡ , ๐‘ and ๐‘˜.
Setp6. Since the general solutions of Eq. (5) have been well known for us, then substituting the obtained coefficients and the
general solution of Eq. (5) into Eq. (4), we have the travelling wave solutions of the nonlinear PDE (1).

                                                III. Applications of the method
                                          ๐บโ€ฒ
        In this section, we apply the ๐บ -expansion method to construct the traveling wave solutions for some nonlinear
PDEs, namely the vcKdV equation, the MDWW equations and the symmetrically coupled KdV equations which are very
important nonlinear evolution equations in mathematical physics and have been paid attention by many researchers.
3.1.     Example1. The cvKdV equation
We start with the cvKdV equation [29] in the form:
                                                     ๐‘ข ๐‘ก + ๐‘“ ๐‘ก ๐‘ข๐‘ข ๐‘ฅ + ๐‘” ๐‘ก ๐‘ข ๐‘ฅ๐‘ฅ๐‘ฅ = 0,                                          (6)
          Where ๐‘“ ๐‘ก โ‰  0, ๐‘” ๐‘ก โ‰  0 are some given functions.This equation is well-known as a model equation describing
the propagation of weakly-nonlinear weakly-dispersive waves in inhomogeneous media.. Obtaining exact solutions for non-
linear differential equations have long been one of the central themes of perpetual interest in mathematics and physics. To
study the travelling wave solutions of Eq. (6), we take the following transformation
                                                                         ๐œ” ๐‘ก
                                           ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ข ฮพ ,        ๐œ‰ = ๐‘ฅ+       ๐‘” ๐‘ก ๐‘‘ ๐‘ก,                                  (7)
                                                                         ๐›ผ 0
Where ๐œ”the wave is speed and ๐›ผ is a constant. By using Eq. (7), Eq.(6) is converted into an ODE
                                                ๐œ” โ€ฒ
                                                  ๐‘ข + 2๐‘ข๐‘ขโ€ฒ + ๐‘ขโ€ฒโ€ฒโ€ฒ = 0,                                                  (8)
                                                ๐›ผ
Where the functions ๐‘“ ๐‘ก and ๐‘” ๐‘ก in Eq.(6) should satisfy the condition
                                                        ๐‘“ ๐‘ก = 2๐‘” ๐‘ก .                                                          (9)
Integrating Eq.(8) with respect to ๐œ‰ once and taking the constant of integration to be zero, we obtain
                                             ๐œ”
                                               ๐‘ข + ๐‘ข2 + ๐‘ขโ€ฒโ€ฒ = 0,                                                             (10)
                                             ๐›ผ
                                                                                       ๐บโ€ฒ
Suppose that the solution of ODE (10) can be expressed by polynomial in terms of ๐บ as follows:
                                                         ๐‘›                ๐‘–
                                                                     ๐บโ€ฒ
                                                ๐‘ข ฮพ =         ๐‘Ž๐‘–        ,                                                    (11)
                                                                     ๐บ
                                                        ๐‘–=0

        Where ๐‘Ž ๐‘– ๐‘– = 0,1, โ€ฆ , ๐‘› are arbitrary constants, while ๐บ ฮพ satisfies the second order linear ODE (5). Considering
the homogeneous balance between the highest order derivatives and the nonlinear terms in Eq. (10), we get ๐‘› = 2. Thus, we
have
                                                                                        2
                                                                   ๐บโ€ฒ              ๐บโ€ฒ
                                       ๐‘ข ฮพ = ๐‘Ž0 + ๐‘Ž1                  + ๐‘Ž2                  ,                                (12)
                                                                   ๐บ               ๐บ
         Where ๐‘Ž0 , ๐‘Ž1 and ๐‘Ž2 are constants to be determined later. Substituting Eq.(12) with Eq.(5) into Eq.(10) and collect-
                                           ๐บโ€ฒ
ing all terms with the same power of            . Setting each coefficients of this polynomial to be zero, we have the following
                                           ๐บ
system of algebraic equations:


                                                               www.ijmer.com                                            370 | Page
International Journal of Modern Engineering Research (IJMER)
                            www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376       ISSN: 2249-6645
       0
 ๐บโ€ฒ               ๐œ” ๐‘Ž0
           :             + ๐‘Ž0 + ๐œ†๐œ‡๐‘Ž1 + 2๐œ‡2 ๐‘Ž2 = 0,
                            2
  ๐บ                ๐›ผ
       1
 ๐บโ€ฒ                                       ๐œ” ๐‘Ž1
           :     ๐œ†2 ๐‘Ž1 + 2๐œ‡๐‘Ž1 +                    + 2๐‘Ž0 ๐‘Ž1 + 6๐œ†๐œ‡๐‘Ž2 = 0,
  ๐บ                                         ๐›ผ
       2
 ๐บโ€ฒ                                                          ๐œ” ๐‘Ž2
           : 3๐œ†๐‘Ž1 + ๐‘Ž1 + 4๐œ†2 ๐‘Ž2 + 8๐œ‡๐‘Ž2 +
                     2
                                                                    + 2๐‘Ž0 ๐‘Ž2 = 0,
  ๐บ                                                            ๐›ผ
       3
 ๐บโ€ฒ
           : 2๐‘Ž1 + 10๐œ†๐‘Ž2 + 2๐‘Ž1 ๐‘Ž2 = 0,
  ๐บ
       4
  ๐บโ€ฒ                    2
               : 6๐‘Ž2 + ๐‘Ž2 = 0,                                                                                                            (13)
  ๐บ
On solving the above algebraic Eqs. (13) By using the Maple or Mathematica, we have
                                        ๐‘Ž0 = โˆ’6๐œ‡,                    ๐‘Ž1 = โˆ’6๐œ†,        ๐‘Ž2 = โˆ’6,         ๐œ” = โˆ’๐›ผ๐‘€,                           (14)

Where ๐‘€ = ๐œ†2 โˆ’ 4๐œ‡.
Substituting Eq. (14) into Eq.(12) yields
                                                                                          2
                                                                               ๐บโ€ฒ    ๐บโ€ฒ
                                                       ๐‘ข ฮพ = โˆ’6๐œ‡ โˆ’ 6๐œ†             โˆ’6          ,                                           (15)
                                                                               ๐บ     ๐บ
Where
                                ๐‘ก
       ๐œ‰= ๐‘ฅโˆ’ ๐‘€                      ๐‘” ๐‘ก ๐‘‘ ๐‘ก.                                                                                              (16)
                            0

On solving Eq.( 5), we deduce that
                                                         1                            1
                                               1 ๐ด cosh 2 ๐‘€ ฮพ               + ๐ต sinh 2 ๐‘€ ฮพ   ๐œ†
                                             ๐‘€                                             โˆ’                         if     ๐‘€ > 0,
                                               2         1                            1      2
                                                 ๐ด sinh 2 ๐‘€ ฮพ               + ๐ต cosh 2 ๐‘€ ฮพ
                            ๐บโ€ฒ                         1                             1
                               =        1      โˆ’๐ด sin 2 โˆ’๐‘€ ฮพ                + ๐ต cos 2 โˆ’๐‘€ ฮพ     ๐œ†
                            ๐บ             โˆ’๐‘€                                                โˆ’               if            ๐‘€ < 0,          (17)
                                        2              1                            1          2
                                                ๐ด cos 2 โˆ’๐‘€ ฮพ                + ๐ต sin 2 โˆ’๐‘€ ฮพ
                                                    ๐ต      ๐œ†
                                                        โˆ’                                              if        ๐‘€ = 0,
                                                ๐ตฮพ + A 2
Where ๐ด and ๐ต are arbitrary constants and ๐‘€ = ๐œ†2 โˆ’ 4๐œ‡.
On substituting Eq.(17) into Eq.(15), we deduce the following three types of traveling wave solutions:
Case1. If                ๐‘€ > 0 , Then we have the hyperbolic solution
                                                                                                       2
                                                                           1                  1
                                               3๐‘€                   ๐ด cosh 2     ๐‘€ ฮพ + ๐ต sinh 2   ๐‘€ฮพ
                                         ๐‘ข ฮพ =    1โˆ’                                                        ,                             (18)
                                               2                           1                  1
                                                                    ๐ด sinh 2     ๐‘€ ฮพ + ๐ต cosh 2   ๐‘€ฮพ

Case2. If                ๐‘€ < 0 , Then we have the trigonometric solution
                                                                                                            2
                                                            1               1
                                               3๐‘€    โˆ’๐ด sin 2 โˆ’๐‘€ ฮพ + ๐ต cos 2 โˆ’๐‘€ ฮพ
                                         ๐‘ข ฮพ =    1+                                                             ,                        (19)
                                               2            1              1
                                                      ๐ด cos   โˆ’๐‘€ ฮพ + ๐ต sin    โˆ’๐‘€ ฮพ
                                                            2              2
Case3. If                ๐‘€ = 0 , Then we have the the rational solution
                                                    2
                                3 2             ๐ต
                                  ๐œ† โˆ’6 ๐œ‡+๐‘ข ฮพ =        ,                                                                                   (20)
                                2            ๐ตฮพ + A
In particular, if we set ๐ต = 0, ๐ด โ‰  0, ๐œ† > 0, ๐œ‡ = 0, in Eq.(18), then we get
                              3ฮป2        ฮป
                      ๐‘ข ฮพ =โˆ’       csch2 ฮพ ,                                                                                              (21)
                               2         2
While, if ๐ต โ‰  0 , ๐œ† > 0 , ๐ด2 > ๐ต 2 ๐‘Ž๐‘›๐‘‘ ๐œ‡ = 0 , then we deduce that:



                                                                               www.ijmer.com                                         371 | Page
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376       ISSN: 2249-6645


                                                3ฮป2         ฮป
                                          ๐‘ข ฮพ =     sech2 ฮพ + +ฮพ0 ,                                                                                            (22)
                                                 2          2
                      ๐ด
Where ฮพ0 = tanhโˆ’1         .The solutions (21) and (22) represent the solitary wave solutions of Eq. (6).
                      ๐ต

3.2.    Example 2. The MDWW equation
In this subsection, we study the MDWW equations [30] in the forms:
                                                    1     1
                                         ๐‘ข๐‘ก = โˆ’       ๐‘ฃ +   ๐‘ข๐‘ฃ                               ,                                                                 (23)
                                                    4 ๐‘ฅ๐‘ฅ 2                           ๐‘ฅ

                                                                                 3
                                         ๐‘ฃ ๐‘ก = โˆ’๐‘ข ๐‘ฅ๐‘ฅ โˆ’ 2๐‘ข๐‘ข ๐‘ฅ +                     ๐‘ฃ๐‘ฃ .                                                                        (24)
                                                                                 2 ๐‘ฅ
The traveling wave variables below
                              ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ข ฮพ ,                ๐‘ฃ ๐‘ฅ, ๐‘ก = ๐‘ฃ ฮพ ,                              ๐œ‰ = ๐‘˜ ๐‘ฅ + ๐œ”๐‘ก ,                                         (25)
permit us converting the equations (23) and (24) into ODEs for ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ข ฮพ and ๐‘ฃ ๐‘ฅ, ๐‘ก = ๐‘ฃ ฮพ as follows:
                                 1 โ€ฒโ€ฒ 1
                                     โˆ’
                                    ๐‘˜๐‘ฃ +     ๐‘ข๐‘ฃ โ€ฒ โˆ’ ๐œ”๐‘ขโ€ฒ = 0,                                                         (26)
                                 4        2
                                               3
                               โˆ’๐‘˜๐‘ขโ€ฒโ€ฒ โˆ’ 2๐‘ข๐‘ขโ€ฒ + ๐‘ฃ๐‘ฃ โ€ฒ โˆ’ ๐œ”๐‘ฃ โ€ฒ = 0,                                                       (27)
                                               2
Where ๐‘˜ and ๐œ” are the wave number and the wave speed, respectively. On integrating Eqs.(26) and (27) with respect to ๐œ‰
once, yields
                                     1 โ€ฒ 1
                                  k1 โˆ’  ๐‘˜๐‘ฃ +     ๐‘ข๐‘ฃ โˆ’ ๐œ”๐‘ข = 0,                                                                                                  (28)
                                     4        2
                                                3
                              k 2 โˆ’ ๐‘˜๐‘ขโ€ฒ โˆ’ ๐‘ข2 + ๐‘ฃ 2 โˆ’ ๐œ”๐‘ฃ = 0,                                                                                                   (29)
                                                4
Where k1 and k 2 is an integration constants.
                                                                                                                                       ๐บโ€ฒ
Suppose that the solutions of the ODEs (28) and (29) can be expressed by polynomials in terms of                                            as follows:
                                                                                                                                       ๐บ
                                                                 ๐‘›
                                                                              โ€ฒ ๐‘–
                                                                             ๐บ
                                             ๐‘ข ฮพ =                     ๐‘Ž๐‘–                ,                                                                     (30)
                                                                             ๐บ
                                                                ๐‘–=0
                                                                 ๐‘š               ๐‘–
                                                                            ๐บโ€ฒ
                                            ๐‘ฃ ฮพ =                     ๐‘๐‘–       .                                                                               (31)
                                                                            ๐บ
                                                                ๐‘–=0


         Where ๐‘Ž ๐‘– ๐‘– = 0,1, โ€ฆ , ๐‘› and ๐‘ ๐‘– ๐‘– = 0,1, โ€ฆ , ๐‘š are arbitrary constants, while ๐บ ฮพ satisfies the second order linear
ODE (5).Considering the homogeneous balance between the highest order derivatives and the nonlinear terms in Eqs.(28)
and (29), we get ๐‘› = ๐‘š = 1. Thus, we have
                                                          ๐บโ€ฒ
                                        ๐‘ข ฮพ = ๐‘Ž0 + ๐‘Ž1        ,     ๐‘Ž1 โ‰  0,                                              (32)
                                                          ๐บ
                                                          ๐บโ€ฒ
                                         ๐‘ฃ ฮพ = ๐‘0 + ๐‘1       ,     ๐‘1 โ‰  0,                                              (33)
                                                          ๐บ

        Where ๐‘Ž0 , ๐‘Ž1 , ๐‘0 and ๐‘1 are arbitrary constants to be determined later. Substituting Eqs.(32),(33) with Eq.(5) into
                                                                                                 ๐บโ€ฒ
Eqs.(28) and (29), collecting all terms with the same power of                                        and setting them to zero, we have the following system of
                                                                                                 ๐บ
algebraic equations:
                                                     0
                                               ๐บโ€ฒ                                ๐‘Ž0 ๐‘0 1
                                                            :         ๐œ”๐‘Ž0 +           + ๐‘˜๐œ‡๐‘1 + ๐‘˜1 = 0,
                                               ๐บ                                  2    4
                                                    1
                                               ๐บโ€ฒ                            ๐‘Ž1 ๐‘0 1       ๐‘Ž0 ๐‘1
                                                        : ๐œ”๐‘Ž1 +                   + ๐‘˜๐œ†๐‘1 +       = 0,
                                               ๐บ                              2    4        2
                                                    2
                                              ๐บโ€ฒ                ๐‘˜๐‘1 ๐‘Ž1 ๐‘1
                                                        :          +      = 0,
                                              ๐บ                 4    2



                                                                            www.ijmer.com                                                                 372 | Page
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376       ISSN: 2249-6645
                                               0
                                         ๐บโ€ฒ             2
                                                                                3๐‘02
                                                   : โˆ’ ๐‘Ž0 + ๐‘˜๐œ‡๐‘Ž1 + ๐œ”๐‘0 +             + ๐‘˜2 = 0,
                                         ๐บ                                       4
                                                   1
                                          ๐บโ€ฒ                                      3๐‘0 ๐‘1
                                                       : ๐‘˜๐œ†๐‘Ž1 โˆ’ 2๐‘Ž0 ๐‘Ž1 + ๐œ”๐‘1 +           = 0,
                                          ๐บ                                        2
                                                       2
                                           ๐บโ€ฒ              2
                                                             3๐‘12
                                               : ๐‘˜๐‘Ž1 โˆ’ ๐‘Ž1 +        = 0.                                               (34)
                                           ๐บ                  4
Solving the above algebraic Eqs.(34) by using the Maple or Mathematica, yields
                            1
                      ๐‘Ž0 =     ๐œ†๐‘Ž1 โˆ’ ฯ‰ ,         ๐‘Ž1 = ๐‘Ž1 ,      ๐‘ ๐‘œ = ๐œ†๐‘Ž1 โˆ’ ฯ‰,                      ๐‘1 = 2๐‘Ž1 ,
                            2
                                                                                                                      (35)
                               1 2         2
                                                                   1
                          ๐‘˜1 = 4 ๐œ” โˆ’ ๐‘€๐‘Ž1 ,                    ๐‘˜1 = 2        ๐œ”2 โˆ’ ๐‘€๐‘Ž1 ,
                                                                                   2
                                                                                                  ๐‘˜ = โˆ’2๐‘Ž1 .

Substituting Eq.(35) into Eqs.(32) and (33) we obtain
                                                  1                        ๐บโ€ฒ
                                           ๐‘ข ฮพ =      ๐œ†๐‘Ž1 โˆ’ ฯ‰ + ๐‘Ž1            ,                                       (36)
                                                  2                        ๐บ
                                                                   ๐บโ€ฒ
                                            ๐‘ฃ ฮพ = ๐œ†๐‘Ž1 โˆ’ ฯ‰ + 2๐‘Ž1             ,      ,                                  (37)
                                                                    ๐บ
where
                                              ๐œ‰ = โˆ’2๐‘Ž1 (๐‘ฅ + ฯ‰๐‘ก).                                                      (38)
From Eqs.(17),(36) and (37), we deduce the following three types of traveling wave solutions:
Case1. If    ๐‘€ > 0 , then we have the hyperbolic solution
                                                    1                      1
                             1              ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh          2       ๐‘€ฮพ
                       ๐‘ข ฮพ =   ๐‘Ž       ๐‘€                                                  โˆ’ ๐œ” ,                       (39)
                             2 1                    1
                                            ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh
                                                                           1
                                                                                   ๐‘€ฮพ
                                                                           2
                                                  1             1
                                         ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2                 ๐‘€ฮพ
                       ๐‘ฃ ฮพ = ๐‘Ž1      ๐‘€                                                  โˆ’ ๐œ”.                          (40)
                                                 1              1
                                         ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh 2                 ๐‘€ฮพ

Case2. If    ๐‘€ < 0 , then we have the trigonometric solution
                                                1                  1
                              1        โˆ’๐ด sin 2 โˆ’๐‘€ ฮพ + ๐ต cos 2 โˆ’๐‘€ ฮพ
                        ๐‘ข ฮพ =    ๐‘Ž โˆ’๐‘€                                     โˆ’ ๐œ” ,                                       (41)
                              2 1               1                 1
                                         ๐ด cos 2 โˆ’๐‘€ ฮพ + ๐ต sin 2 โˆ’๐‘€ ฮพ
                                              1                 1
                                     โˆ’๐ด sin       โˆ’๐‘€ ฮพ + ๐ต cos      โˆ’๐‘€ ฮพ
                        ๐‘ฃ ฮพ = ๐‘Ž1 โˆ’๐‘€           2                 2        โˆ’ ๐œ”.                                         (42)
                                             1                 1
                                      ๐ด cos      โˆ’๐‘€ ฮพ + ๐ต sin      โˆ’๐‘€ ฮพ
                                             2                 2
Case3. If    ๐‘€ = 0 , then we have the rational solution

                                         ๐ต     ๐œ”
                          ๐‘ข ฮพ = ๐‘Ž1           โˆ’ ,                                                                      (43)
                                      ๐ตฮพ + A  2
                                           ๐ต
                          ๐‘ฃ ฮพ = 2๐‘Ž1            โˆ’ ๐œ”.                                                                   (44)
                                        ๐ตฮพ + A
In particular if ๐ต = 0, ๐ด โ‰  0, ๐œ† > 0 and ๐œ‡ = 0, then we deduce from Eqs.(39) and (40) that:
                                1            ฮป
                           ๐‘ข ฮพ =    ๐‘Ž ๐œ† coth ฮพ โˆ’ ๐œ” ,                                                                  (45)
                                2 1          2
                                           ฮป
                           ๐‘ฃ ฮพ = ๐‘Ž1 ๐œ† coth ฮพ โˆ’ ๐œ”,                                                                     (46)
                                           2
While, if ๐ต โ‰  0 ,    ๐ด2 > ๐ต 2 , ๐œ† > 0 ๐‘Ž๐‘›๐‘‘ ๐œ‡ = 0 , then we deduce that:

                                   1          ฮป
                           ๐‘ข ฮพ =     ๐‘Ž1 ๐œ† tanh ฮพ + ฮพ0 โˆ’ ๐œ” ,                                                            47
                                   2          2

                                                              www.ijmer.com                                      373 | Page
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376       ISSN: 2249-6645

                                                            ฮป
                                     ๐‘ฃ ฮพ = ๐‘Ž1 ๐œ† tanh          ฮพ + ฮพ0 โˆ’ ๐œ”,                                                               48
                                                            2
                           ๐ด
Whereฮพ0 = tanhโˆ’1           ๐ต
                               . The solutions (45)- (48) represent the solitary wave solutions of Eqs.(23) and (24).

3.3.           Example 3. The symmetrically coupled KdV equations
In this subsection, we consider the symmetrically coupled KdV equations [31] in the forms:
                                       ๐‘ข ๐‘ก = ๐‘ข ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฃ ๐‘ฅ๐‘ฅ๐‘ฅ + 6๐‘ข๐‘ข ๐‘ฅ + 4๐‘ข๐‘ฃ ๐‘ฅ + 2๐‘ข ๐‘ฅ ๐‘ฃ = 0,                                               (49)
                                       ๐‘ฃ ๐‘ก = ๐‘ข ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฃ ๐‘ฅ๐‘ฅ๐‘ฅ + 6๐‘ฃ๐‘ฃ ๐‘ฅ + 4๐‘ฃ๐‘ข ๐‘ฅ + 2๐‘ฃ ๐‘ฅ ๐‘ข = 0.                                               (50)

The traveling wave variable (25) permits us converting Eqs.(49) and (50) into the following ODEs:
                                       โˆ’๐œ”๐‘ขโ€ฒ + ๐‘˜ 2 ๐‘ขโ€ฒโ€ฒโ€ฒ + ๐‘ฃ โ€ฒโ€ฒโ€ฒ + 6๐‘ข๐‘ขโ€ฒ + 4๐‘ข๐‘ฃ โ€ฒ + 2๐‘ขโ€ฒ ๐‘ฃ = 0,                                             (51)
                                             โ€ฒ    2   โ€ฒโ€ฒโ€ฒ      โ€ฒโ€ฒโ€ฒ        โ€ฒ     โ€ฒ     โ€ฒ
                                       โˆ’๐œ”๐‘ฃ + ๐‘˜        ๐‘ข + ๐‘ฃ          + 6๐‘ฃ๐‘ฃ + 4๐‘ฃ๐‘ข + 2๐‘ฃ ๐‘ข = 0.                                           (52)

Considering the homogeneous balance between highest order derivatives and nonlinear terms in Eqs.(51) and (52), we have
                                                             2
                                               ๐บโ€ฒ         ๐บโ€ฒ
                               ๐‘ข ฮพ = ๐‘Ž0 + ๐‘Ž1       + ๐‘Ž2         ,       ๐‘Ž2 โ‰  0,                                     (53)
                                                ๐บ          ๐บ
                                                             2
                                               ๐บโ€ฒ         ๐บโ€ฒ
                               ๐‘ฃ ฮพ = ๐‘0 + ๐‘1      + ๐‘2         ,        ๐‘2 โ‰  0,                                     (54)
                                               ๐บ          ๐บ

               Where ๐‘Ž0 , ๐‘Ž1 , ๐‘Ž2 , ๐‘0 , ๐‘1 and ๐‘2 are arbitrary constants to be determined later. Substituting Eqs.(53) and (54) with
                                                                                          ๐บโ€ฒ
Eq.(5) into Eqs.(51) and (52), collecting all terms with the same power of                     and setting them to zero, we have the follow-
                                                                                          ๐บ
ing system of algebraic equations:
       0
  ๐บโ€ฒ
           : โˆ’ ๐‘˜ 2 ๐œ†2 ๐œ‡๐‘Ž1 โˆ’ 2๐‘˜ 2 ๐œ‡2 ๐‘Ž1 + ๐œ‡๐œ”๐‘Ž1 โˆ’ 6๐œ‡๐‘Ž0 ๐‘Ž1 โˆ’ 6๐‘˜ 2 ๐œ†๐œ‡2 ๐‘Ž2 โˆ’ ๐‘˜ 2 ๐œ†2 ๐œ‡๐‘1 โˆ’ 2๐‘˜ 2 ๐œ‡2 ๐‘1 โˆ’ 4๐œ‡๐‘Ž0 ๐‘1 โˆ’ 6๐‘˜ 2 ๐œ†๐œ‡2 ๐‘2 = 0,
  ๐บ
       1
 ๐บโ€ฒ
           :   โˆ’ ๐‘˜ 2 ๐œ†3 ๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ†๐œ‡๐‘Ž1 + ๐œ†๐œ”๐‘Ž1 โˆ’ 6๐œ†๐‘Ž0 ๐‘Ž1 โˆ’ 6๐œ‡๐‘Ž1 โˆ’ 14๐‘˜ 2 ๐œ†2 ๐œ‡๐‘Ž2 โˆ’ 16๐‘˜ 2 ๐œ‡2 ๐‘Ž2 + 2๐œ‡๐œ”๐‘Ž2 โˆ’ 12๐œ‡๐‘Ž0 ๐‘Ž2 โˆ’ ๐‘˜ 2 ๐œ†3 ๐‘1 โˆ’
                                                              2
  ๐บ
                8๐‘˜ 2 ๐œ†๐œ‡๐‘1 โˆ’ 4๐œ†๐‘Ž0 ๐‘1 โˆ’ 6๐œ‡๐‘Ž1 ๐‘1 โˆ’ 14๐‘˜ 2 ๐œ†2 ๐œ‡๐‘2 โˆ’ 16๐‘˜ 2 ๐œ‡2 ๐‘2 โˆ’ 8๐œ‡๐‘Ž0 ๐‘2 = 0,
       2
 ๐บโ€ฒ
           : โˆ’ 7๐‘˜ 2 ๐œ†2 ๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ‡๐‘Ž1 + ๐œ”๐‘Ž1 โˆ’ 6๐‘Ž0 ๐‘Ž1 โˆ’ 6๐œ†๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ†3 ๐‘Ž2 โˆ’ 52๐‘˜ 2 ๐œ†๐œ‡๐‘Ž2 + 2๐œ†๐œ”๐‘Ž2 โˆ’ 12๐œ†๐‘Ž0 ๐‘Ž2 โˆ’ 18๐œ‡๐‘Ž1 ๐‘Ž2 โˆ’
                                                         2
  ๐บ
             7๐‘˜ ๐œ† ๐‘1 โˆ’ 8๐‘˜ ๐œ‡๐‘1 โˆ’ 4๐‘Ž0 ๐‘1 โˆ’ 6๐œ†๐‘Ž1 ๐‘1 โˆ’ 8๐œ‡๐‘Ž2 ๐‘1 โˆ’ 8๐‘˜ 2 ๐œ†3 ๐‘2 โˆ’ 52๐‘˜ 2 ๐œ†๐œ‡๐‘2 โˆ’ 8๐œ†๐‘Ž0 ๐‘2 โˆ’ 10๐œ‡๐‘Ž1 ๐‘2 = 0,
               2 2          2

       3
 ๐บโ€ฒ
  ๐บ
           : โˆ’ 12๐‘˜ 2 ๐œ†๐‘Ž1 โˆ’ 6๐‘Ž1 โˆ’ 38๐‘˜ 2 ๐œ†2 ๐‘Ž2 โˆ’ 40๐‘˜ 2 ๐œ‡๐‘Ž2 + 2๐œ”๐‘Ž2 โˆ’ 12๐‘Ž0 ๐‘Ž2 โˆ’ 18๐œ†๐‘Ž1 ๐‘Ž2 โˆ’ 12๐œ‡๐‘Ž2 โˆ’ 12๐‘˜ 2 ๐œ†๐‘1 โˆ’ 6๐‘Ž1 ๐‘1 โˆ’
                             2                                                             2

             8๐œ†๐‘Ž2 ๐‘1 โˆ’ 38๐‘˜ 2 ๐œ†2 ๐‘2 โˆ’ 40๐‘˜ 2 ๐œ‡๐‘2 โˆ’ 8๐‘Ž0 ๐‘2 โˆ’ 10๐œ†๐‘Ž1 ๐‘2 โˆ’ 12๐œ‡๐‘Ž2 ๐‘2 = 0,
       4
 ๐บโ€ฒ
           : โˆ’ 6๐‘˜ 2 ๐‘Ž1 โˆ’ 54๐‘˜ 2 ๐œ†๐‘Ž2 โˆ’ 18๐‘Ž1 ๐‘Ž2 โˆ’ 12๐œ†๐‘Ž2 โˆ’ 6๐‘˜ 2 ๐‘1 โˆ’ 8๐‘Ž2 ๐‘1 โˆ’ 54๐‘˜ 2 ๐œ†๐‘2 โˆ’ 10๐‘Ž1 ๐‘2 โˆ’ 12๐œ†๐‘Ž2 ๐‘2 = 0,
                                                   2
  ๐บ
       5
 ๐บโ€ฒ
  ๐บ
           : โˆ’ 24๐‘˜ 2 ๐‘Ž2 โˆ’ 12๐‘Ž2 โˆ’ 24๐‘˜ 2 ๐‘2 โˆ’ 12๐‘Ž2 ๐‘2 = 0,
                             2

       0
 ๐บโ€ฒ
  ๐บ
           :   โˆ’ ๐‘˜ 2 ๐œ†2 ๐œ‡๐‘Ž1 โˆ’ 2๐‘˜ 2 ๐œ‡2 ๐‘Ž1 โˆ’ 6๐‘˜ 2 ๐œ†๐œ‡2 ๐‘Ž2 โˆ’ ๐‘˜ 2 ๐œ†2 ๐œ‡๐‘1 โˆ’ 2๐‘˜ 2 ๐œ‡2 ๐‘1 + ๐œ‡๐œ”๐‘1 โˆ’ 2๐œ‡๐‘Ž0 ๐‘1 โˆ’ 6๐‘˜ 2 ๐œ†๐œ‡2 ๐‘2 = 0,
       1
 ๐บโ€ฒ
           :   โˆ’ ๐‘˜ 2 ๐œ†3 ๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ†๐œ‡๐‘Ž1 โˆ’ 14๐‘˜ 2 ๐œ†2 ๐œ‡๐‘Ž2 โˆ’ 16๐‘˜ 2 ๐œ‡2 ๐‘Ž2 โˆ’ ๐‘˜ 2 ๐œ†3 ๐‘1 โˆ’ 8๐‘˜ 2 ๐œ†๐œ‡๐‘1 + ๐œ†๐œ”๐‘1 โˆ’ 2๐œ†๐‘Ž0 ๐‘1 โˆ’ 6๐œ‡๐‘Ž1 ๐‘1 โˆ’ 6๐œ‡๐‘1 โˆ’
                                                                                                                            2
  ๐บ
                   2 2             2 2
               14๐‘˜ ๐œ† ๐œ‡๐‘2 โˆ’ 16๐‘˜ ๐œ‡ ๐‘2 + 2๐œ‡๐œ”๐‘2 โˆ’ 4๐œ‡๐‘Ž0 ๐‘2 = 0,
       2
 ๐บโ€ฒ
  ๐บ
           :   โˆ’ 7๐‘˜ 2 ๐œ†2 ๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ‡๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ†3 ๐‘Ž2 โˆ’ 52๐‘˜ 2 ๐œ†๐œ‡๐‘Ž2 โˆ’ 7๐‘˜ 2 ๐œ†2 ๐‘1 โˆ’ 8๐‘˜ 2 ๐œ‡๐‘1 + ๐œ”๐‘1 โˆ’ 2๐‘Ž0 ๐‘1 โˆ’ 6๐œ†๐‘Ž1 ๐‘1 โˆ’ 10๐œ‡๐‘Ž2 ๐‘1 โˆ’
               6๐œ†๐‘1 โˆ’ 8๐‘˜ 2 ๐œ†3 ๐‘2 โˆ’ 52๐‘˜ 2 ๐œ†๐œ‡๐‘2 + 2๐œ†๐œ”๐‘2 โˆ’ 4๐œ†๐‘Ž0 ๐‘2 โˆ’ 8๐œ‡๐‘Ž1 ๐‘2 โˆ’ 18๐œ‡๐‘1 ๐‘2 = 0,
                  2

       3
 ๐บโ€ฒ
           :   โˆ’ 12๐‘˜ 2 ๐œ†๐‘Ž1 โˆ’ 38๐‘˜ 2 ๐œ†2 ๐‘Ž2 โˆ’ 40๐‘˜ 2 ๐œ‡๐‘Ž2 โˆ’ 12๐‘˜ 2 ๐œ†๐‘1 โˆ’ 6๐‘Ž1 ๐‘1 โˆ’ 10๐œ†๐‘Ž2 ๐‘1 โˆ’ 6๐‘1 โˆ’ 38๐‘˜ 2 ๐œ†2 ๐‘2 โˆ’ 40๐‘˜ 2 ๐œ‡๐‘2 + 2๐œ”๐‘2 โˆ’
                                                                                         2
  ๐บ
                                                                2
               4๐‘Ž0 ๐‘2 โˆ’ 8๐œ†๐‘Ž1 ๐‘2 โˆ’ 12๐œ‡๐‘Ž2 ๐‘2 โˆ’ 18๐œ†๐‘1 ๐‘2 โˆ’ 12๐œ‡๐‘2 = 0,
       4
 ๐บโ€ฒ
  ๐บ
           :   โˆ’ 6๐‘˜ 2 ๐‘Ž1 โˆ’ 54๐‘˜ 2 ๐œ†๐‘Ž2 โˆ’ 6๐‘˜ 2 ๐‘1 โˆ’ 10๐‘Ž2 ๐‘1 โˆ’ 54๐‘˜ 2 ๐œ†๐‘2 โˆ’ 8๐‘Ž1 ๐‘2 โˆ’ 12๐œ†๐‘Ž2 ๐‘2 โˆ’ 18๐‘1 ๐‘2 โˆ’ 12๐œ†๐‘2 = 0,
                                                                                                         2

       5
  ๐บโ€ฒ
           :   โˆ’ 24๐‘˜ 2 ๐‘Ž2 โˆ’ 24๐‘˜ 2 ๐‘2 โˆ’ 12๐‘Ž2 ๐‘2 โˆ’ 12๐‘2 = 0.
                                                    2
                                                                                                                                        55
  ๐บ

                                                                     www.ijmer.com                                               374 | Page
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376       ISSN: 2249-6645

Solving the above algebraic Eqs.(55) by using the Maple or Mathematica, we have
                                                   ๐œ”๐œ†                    ๐œ”                                                          ๐œ”๐œ†
                     ๐‘Ž0 = ๐‘0 = 0,        ๐‘Ž1 = โˆ’ 2       ,     ๐‘Ž2 = โˆ’ 2       ,                             ๐‘1 = โˆ’                        ,
                                                 ๐œ† + 8๐œ‡              ๐œ† + 8๐œ‡                                                    ๐œ†2   + 8๐œ‡
                                                                                                                                                  (56)
                                                                  ๐œ”                              ฯ‰
                                                 ๐‘2 = โˆ’               ,             ๐‘˜=ยฑ                .
                                                            ๐œ†2   + 8๐œ‡                      2๐œ†2   + 16๐œ‡
 Substituting Eq.(56) into Eqs.(53) and (54) yields
                                                                         2
                                                ๐œ”๐œ†   ๐บโ€ฒ          ๐œ”   ๐บโ€ฒ
                                   ๐‘ข ฮพ =โˆ’ 2                โˆ’ 2             ,                                                                      (57)
                                             ๐œ† + 8๐œ‡ ๐บ        ๐œ† + 8๐œ‡ ๐บ
                                                                            2
                                                 ๐œ”๐œ†     ๐บโ€ฒ         ๐œ”    ๐บโ€ฒ
                                    ๐‘ฃ ฮพ =โˆ’ 2                โˆ’ 2               ,                                                                   (58)
                                              ๐œ† + 8๐œ‡1 ๐บ        ๐œ† + 8๐œ‡ ๐บ
   Where
                                                          ฯ‰
                                              ๐œ‰=ยฑ      2๐œ† 2 +16๐œ‡
                                                                   (๐‘ฅ + ฯ‰๐‘ก).                                                                      (59)

   From Eqs. (17), (57) and (58), we deduce the following three types of traveling wave solutions:
Case 1. If ๐‘€ > 0 , Then we have the hyperbolic solution
                                                                                                           2
                                                                1                             1
                                ๐œ”                        ๐ด cosh 2                ๐‘€ ฮพ + ๐ต sinh 2     ๐‘€ฮพ
                    ๐‘ข ฮพ =                     ๐œ†2 โˆ’ ๐‘€                                                               ,                              (60)
                          4 ๐œ† 2 + 8๐œ‡                            1                             1
                                                         ๐ด sinh 2                ๐‘€ ฮพ + ๐ต cosh 2     ๐‘€ฮพ
                                                                                                            2
                                                                 1                            1
                               ๐œ”                          ๐ด cosh 2               ๐‘€ ฮพ + ๐ต sinh 2      ๐‘€ฮพ
                    ๐‘ฃ ฮพ =                     ๐œ†2 โˆ’ ๐‘€                                                                   .                          (61)
                          4 ๐œ†2 + 8๐œ‡                              1                            1
                                                          ๐ด sinh 2               ๐‘€ ฮพ + ๐ต cosh 2      ๐‘€ฮพ

Case2. If    ๐‘€ < 0 , Then we have the trigonometric solution
                                                                                                            2
                                                                 1                            1
                               ๐œ”                          ๐ด cosh 2               ๐‘€ ฮพ + ๐ต sinh 2      ๐‘€ฮพ
                    ๐‘ข ฮพ =                     ๐œ†2 + ๐‘€                                                                   ,                          (62)
                          4 ๐œ†2 + 8๐œ‡                              1                            1
                                                          ๐ด sinh                 ๐‘€ ฮพ + ๐ต cosh        ๐‘€ฮพ
                                                                 2                            2
                                                                                                               2
                                                                 1                            1
                                  ๐œ”                       ๐ด cosh 2               ๐‘€ ฮพ + ๐ต sinh 2      ๐‘€ฮพ
                     ๐‘ฃ ฮพ =                     ๐œ†2 + ๐‘€                                                                      .                      (63)
                             4 ๐œ†2 + 8๐œ‡                           1                            1
                                                          ๐ด sinh 2               ๐‘€ ฮพ + ๐ต cosh 2      ๐‘€ฮพ

Case3. If    ๐‘€ = 0 , Then we have the rational solution
                                                                     2
                                       ๐œ”                     ๐ต
                     ๐‘ข ฮพ =                     ๐œ†2 โˆ’ 4                    ,                                                                        (64)
                              4   ๐œ†2   + 8๐œ‡               ๐ตฮพ + A
                                                                     2
                                    ๐œ”                        ๐ต
                      ๐‘ฃ ฮพ =       2 + 8๐œ‡
                                               ๐œ†2 โˆ’ 4                        .                                                                    (65)
                              4 ๐œ†                         ๐ตฮพ + A

In particular if ๐ต = 0, ๐ด โ‰  0, ๐œ† > 0 and ๐œ‡ = 0, then we deduce from Eq.(60) and Eq.(61) that:
                               โˆ’๐œ”              ฮป
                         ๐‘ข ฮพ =    csch2          ฮพ ,                                                                                              (66)
                               4               2
                               โˆ’๐œ”              ฮป
                         ๐‘ฃ ฮพ =    csch2          ฮพ ,                                                                                              (67)
                                4              2
while, if ๐ต โ‰  0 , ๐ด2 > ๐ต 2 , ๐œ† > 0 ๐‘Ž๐‘›๐‘‘ ๐œ‡ = 0 , then we deduce that:
                                   ๐œ”        ฮป
                          ๐‘ข ฮพ =      sech2 ฮพ + +ฮพ0 ,                                                                                              (68)
                                  4         2
                                     ๐œ”        ฮป
                            ๐‘ฃ ฮพ = sech2 ฮพ + +ฮพ0 ,                                                                                                 (69)
                                    4         2
                     ๐ด
Where ฮพ0 = tanhโˆ’1        . The solutions (66) - (69) represent the solitary wave solutions of Eqs. (49) and (50).
                     ๐ต


                                                                 www.ijmer.com                                                               375 | Page
International Journal of Modern Engineering Research (IJMER)
                   www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376       ISSN: 2249-6645

                                                             IV. Conclusion
          In this work, we have seen that three types of traveling wave solutions in terms of hyperbolic, trigonometric and ra-
 tional functions for the vcKdV equation, the MDWW equations and the symmetrically coupled KdV equations are success-
                                      ๐บโ€ฒ                                                                                                 ๐บโ€ฒ
 fully found out by using the     -expansion method. From our results obtained in this paper, we conclude that the        -
                                ๐บ                                                                                       ๐บ
 expansion method is powerful, effective and convenient. The performance of this method is reliable, simple and gives many
                        ๐บโ€ฒ
 new solutions. The ๐บ -expansion method has more advantages: It is direct and concise. Also, the solutions of the proposed
 nonlinear evolution equations in this paper have many potential applications in physics and engineering. Finally, this method
 provides a powerful mathematical tool to obtain more general exact solutions of a great many nonlinear PDEs in mathemat-
 ical physics.
                                                                 References
[1]    M. J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press,
       Cambridge, 1991.
[2]    C. H. GU Et Al., Soliton Theory and Its Application, Zhejiang Science and Technology Press, Zhejiang, 1990.
[3]    V. B. Matveev and M.A. Salle, Darboux Transformation and Soliton, Springer, Berlin, 1991.
[4]    R. Hirota, the Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.
[5]    S.Y. Lou, J.Z. Lu, Special solutions from variable separation approach: Davey-Stewartson equation, J. Phys. A: Math. Gen. 29
       (1996) 4209.
[6]     E. J. Parkes and B.R. Duffy, Travelling solitary wave solutions to a compound KdV-Burgers equation, Phys. Lett. A 229 (1997)
       217.
[7]    E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000) 212.
[8]    Z. Y. Yan, New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Phys. Lett. A 292
       (2001) 100.
[9]    Y. Chen, Y. Zheng, Generalized extended tanh-function method to construct new explicit exact solutions for the approximate equa-
       tions for long water waves, Int. J. Mod. Phys. C 14 (4) (2003) 601.
[10]   M. L. Wang, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,
       Phys. Lett. A 216 (1996) 67.
[11]   G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989.
[12]   P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.
[13]   Z. Y. Yan, A reduction mKdV method with symbolic computation to constract new doubly- periodic solutions for nonlinear wave
       equations, Int. J. Mod. Phys. C, 14 (2003) 661.
[14]   Z. Y. Yan, The new tri-function method to multiple exact solutions of nonlinear wave equations, Physica Scripta, 78 (2008) 035001.
[15]   Z. Y. Yan, Periodic, solitary and rational wave solutions of the 3D extended quantum Zakharovโ€“ Kuznetsov equation in dense
       quantum plasmas, Physics Letters A, 373 (2009) 2432.
[16]   D. C. Lu and B. J. Hong, New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup system, Appl. Math. Comput,
       199(2008)572.
[17]   A. V. Porubov, Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid, Phys. Lett . A, 221
       (1996) 391.
[18]   M. Wazwaz, The tanh and sine- cosine method for compact and noncompact solutions of nonlinear Klein Gordon equation, Appl.
       Math. Comput, 167 (2005)1179.
[19]   Z. Y. Yan and H. Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whithamโ€“Broerโ€“Kaup equation in
       shallow water, Phys. Lett. A, 285 (2001) 355.
[20]   D. C. Lu, Jacobi elliptic functions solutions for two variant Boussinesq equations, Chaos, Solitons and Fractals, 24 (2005) 1373.
[21]   Z. Y. Yan, Abundant families of Jacobi elliptic functions of the (2+1) dimensional integrable Davey- Stawartson-type equation via a
       new method, Chaos, Solitons and Fractals, 18 (2003) 299.
[22]   C. L. Bai and H. Zhao, Generalized method to construct the solitonic solutions to (3+1)- dimensional nonlinear equation, Phys. Lett.
       A, 354 (2006) 428.
[23]   F. Cariello and M. Tabor, Similarity reductions from extended Painlev๐‘’ โ€ฒ expansions for nonintegrable evolution equations, Physica
       D, 53 (1991) 59.
[24]   M. Wang and X. Li, Extended F-expansion and periodic wave solutions for the generalized Zakharov equations, Phys. Lett. A, 343
       (2005) 48.
[25]   X. Feng, Exploratory approach to explicit solution of nonlinear evolution equations, Int. J. Theor. Phys, 39 (2000) 222.
                                                    ๐บโ€ฒ
[26]   E. M. E. Zayed and K.A.Gepreel, The ๐บ โˆ’expansion method for finding traveling wave solutions of nonlinear PDEs in mathe-
       matical physics, J. Math. Phys., 50 (2009) 013502.
                                       Gโ€ฒ
[27]   A. Bekir, Application of the         โˆ’ expansion method for nonlinear evolution equations, Phys. Lett A, 372 (2008) 3400.
                                       G

                                              Gโ€ฒ
[28]   M. Wang, X. Li and J.Zhang, The        โˆ’expansion method and traveling wave solutions of nonlinear evolution equations in mathe-
                                            G
       matical physics, Phys. Lett A, 372 (2008) 417.
[29]   G.A. El and R. H. J. Grimshaw, Generation of undular bores in the shelves of slowly- varying solitary waves, Chaos, 12 (2002)1015.
[30]   M. Alabdullatif and H. A. Abdusalam, New exact travelling wave solutions for some famous nonlinear partial differential equations
       using the improved tanh-function method, Int. J. Comput. Math,83 (2006)741.
[31]   J. P. Wang, A List of 1+1 Dimensional Intergable Equations and Their Properties, J .Nonlinear Mathemtical Physics,9 (2002)228.




                                                                 www.ijmer.com                                                     376 | Page

More Related Content

What's hot

article_imen_ridha_2016_version_finale
article_imen_ridha_2016_version_finalearticle_imen_ridha_2016_version_finale
article_imen_ridha_2016_version_finaleMdimagh Ridha
ย 
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
mathsjournal
ย 
An approach to Fuzzy clustering of the iris petals by using Ac-means
An approach to Fuzzy clustering of the iris petals by using Ac-meansAn approach to Fuzzy clustering of the iris petals by using Ac-means
An approach to Fuzzy clustering of the iris petals by using Ac-means
ijsc
ย 
Numerical solution of linear volterra fredholm integro-
Numerical solution of linear volterra fredholm integro-Numerical solution of linear volterra fredholm integro-
Numerical solution of linear volterra fredholm integro-
Alexander Decker
ย 
Existence, Uniqueness and Stability Solution of Differential Equations with B...
Existence, Uniqueness and Stability Solution of Differential Equations with B...Existence, Uniqueness and Stability Solution of Differential Equations with B...
Existence, Uniqueness and Stability Solution of Differential Equations with B...
iosrjce
ย 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IVKundan Kumar
ย 
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
arj_online
ย 
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Baasilroy
ย 
Lecture 02
Lecture 02Lecture 02
Lecture 02
njit-ronbrown
ย 
metode iterasi Gauss seidel
metode iterasi Gauss seidelmetode iterasi Gauss seidel
metode iterasi Gauss seidel
Muhammad Ali Subkhan Candra
ย 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
Rai University
ย 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
IJMERJOURNAL
ย 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Rai University
ย 
NPDE-TCA
NPDE-TCANPDE-TCA
NPDE-TCArishav rai
ย 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
IJERA Editor
ย 
A common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spacesA common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spaces
Alexander Decker
ย 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Rai University
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
IOSR Journals
ย 
Predictve data mining
Predictve data miningPredictve data mining
Predictve data miningMintu246
ย 

What's hot (20)

article_imen_ridha_2016_version_finale
article_imen_ridha_2016_version_finalearticle_imen_ridha_2016_version_finale
article_imen_ridha_2016_version_finale
ย 
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
ย 
An approach to Fuzzy clustering of the iris petals by using Ac-means
An approach to Fuzzy clustering of the iris petals by using Ac-meansAn approach to Fuzzy clustering of the iris petals by using Ac-means
An approach to Fuzzy clustering of the iris petals by using Ac-means
ย 
Numerical solution of linear volterra fredholm integro-
Numerical solution of linear volterra fredholm integro-Numerical solution of linear volterra fredholm integro-
Numerical solution of linear volterra fredholm integro-
ย 
Existence, Uniqueness and Stability Solution of Differential Equations with B...
Existence, Uniqueness and Stability Solution of Differential Equations with B...Existence, Uniqueness and Stability Solution of Differential Equations with B...
Existence, Uniqueness and Stability Solution of Differential Equations with B...
ย 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
ย 
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
ย 
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
ย 
Lecture 02
Lecture 02Lecture 02
Lecture 02
ย 
metode iterasi Gauss seidel
metode iterasi Gauss seidelmetode iterasi Gauss seidel
metode iterasi Gauss seidel
ย 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
ย 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
ย 
magnt
magntmagnt
magnt
ย 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
ย 
NPDE-TCA
NPDE-TCANPDE-TCA
NPDE-TCA
ย 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
ย 
A common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spacesA common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spaces
ย 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
ย 
Predictve data mining
Predictve data miningPredictve data mining
Predictve data mining
ย 

Viewers also liked

Cs3210261031
Cs3210261031Cs3210261031
Cs3210261031IJMER
ย 
Bz32915919
Bz32915919Bz32915919
Bz32915919IJMER
ย 
Cb32924927
Cb32924927Cb32924927
Cb32924927IJMER
ย 
A robust algorithm based on a failure sensitive matrix for fault diagnosis of...
A robust algorithm based on a failure sensitive matrix for fault diagnosis of...A robust algorithm based on a failure sensitive matrix for fault diagnosis of...
A robust algorithm based on a failure sensitive matrix for fault diagnosis of...
IJMER
ย 
A017240107
A017240107A017240107
A017240107
IOSR Journals
ย 
F017633538
F017633538F017633538
F017633538
IOSR Journals
ย 
K018217680
K018217680K018217680
K018217680
IOSR Journals
ย 
C012421626
C012421626C012421626
C012421626
IOSR Journals
ย 
Prediction of Fault in Distribution Transformer using Adaptive Neural-Fuzzy I...
Prediction of Fault in Distribution Transformer using Adaptive Neural-Fuzzy I...Prediction of Fault in Distribution Transformer using Adaptive Neural-Fuzzy I...
Prediction of Fault in Distribution Transformer using Adaptive Neural-Fuzzy I...
ijsrd.com
ย 
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
89   jan-roger linna - 7032576 - capillary heating control and fault detectio...89   jan-roger linna - 7032576 - capillary heating control and fault detectio...
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
Mello_Patent_Registry
ย 
H017514655
H017514655H017514655
H017514655
IOSR Journals
ย 
J018127176.publishing paper of mamatha (1)
J018127176.publishing paper of mamatha (1)J018127176.publishing paper of mamatha (1)
J018127176.publishing paper of mamatha (1)
IOSR Journals
ย 
J012537580
J012537580J012537580
J012537580
IOSR Journals
ย 
T180203125133
T180203125133T180203125133
T180203125133
IOSR Journals
ย 
A010630103
A010630103A010630103
A010630103
IOSR Journals
ย 
F012142530
F012142530F012142530
F012142530
IOSR Journals
ย 
G017633943
G017633943G017633943
G017633943
IOSR Journals
ย 

Viewers also liked (20)

Cs3210261031
Cs3210261031Cs3210261031
Cs3210261031
ย 
Bz32915919
Bz32915919Bz32915919
Bz32915919
ย 
Cb32924927
Cb32924927Cb32924927
Cb32924927
ย 
A robust algorithm based on a failure sensitive matrix for fault diagnosis of...
A robust algorithm based on a failure sensitive matrix for fault diagnosis of...A robust algorithm based on a failure sensitive matrix for fault diagnosis of...
A robust algorithm based on a failure sensitive matrix for fault diagnosis of...
ย 
A017240107
A017240107A017240107
A017240107
ย 
ECE610 IEEE
ECE610 IEEEECE610 IEEE
ECE610 IEEE
ย 
F017633538
F017633538F017633538
F017633538
ย 
C0941217
C0941217C0941217
C0941217
ย 
K018217680
K018217680K018217680
K018217680
ย 
C012421626
C012421626C012421626
C012421626
ย 
E0562326
E0562326E0562326
E0562326
ย 
Prediction of Fault in Distribution Transformer using Adaptive Neural-Fuzzy I...
Prediction of Fault in Distribution Transformer using Adaptive Neural-Fuzzy I...Prediction of Fault in Distribution Transformer using Adaptive Neural-Fuzzy I...
Prediction of Fault in Distribution Transformer using Adaptive Neural-Fuzzy I...
ย 
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
89   jan-roger linna - 7032576 - capillary heating control and fault detectio...89   jan-roger linna - 7032576 - capillary heating control and fault detectio...
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
ย 
H017514655
H017514655H017514655
H017514655
ย 
J018127176.publishing paper of mamatha (1)
J018127176.publishing paper of mamatha (1)J018127176.publishing paper of mamatha (1)
J018127176.publishing paper of mamatha (1)
ย 
J012537580
J012537580J012537580
J012537580
ย 
T180203125133
T180203125133T180203125133
T180203125133
ย 
A010630103
A010630103A010630103
A010630103
ย 
F012142530
F012142530F012142530
F012142530
ย 
G017633943
G017633943G017633943
G017633943
ย 

Similar to Ck31369376

International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
ย 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
mathsjournal
ย 
L25052056
L25052056L25052056
L25052056
IJERA Editor
ย 
L25052056
L25052056L25052056
L25052056
IJERA Editor
ย 
Symbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner BasisSymbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner Basis
IJERA Editor
ย 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
BRNSS Publication Hub
ย 
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdfConcepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
JacobBraginsky
ย 
Finite Difference Method for Nonlocal Singularly Perturbed Problem
Finite Difference Method for Nonlocal Singularly Perturbed ProblemFinite Difference Method for Nonlocal Singularly Perturbed Problem
Finite Difference Method for Nonlocal Singularly Perturbed Problem
International Journal of Modern Research in Engineering and Technology
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
Kevin Johnson
ย 
Ijciet 10 01_093
Ijciet 10 01_093Ijciet 10 01_093
Ijciet 10 01_093
IAEME Publication
ย 
Some new exact Solutions for the nonlinear schrรถdinger equation
Some new exact Solutions for the nonlinear schrรถdinger equationSome new exact Solutions for the nonlinear schrรถdinger equation
Some new exact Solutions for the nonlinear schrรถdinger equation
inventy
ย 
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
ijrap
ย 
Waveguides
WaveguidesWaveguides
Waveguides
Modugu Srinivas
ย 
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
SSA KPI
ย 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
International Journal of Innovation Engineering and Science Research
ย 
BKS-MidsemPPT.pptx
BKS-MidsemPPT.pptxBKS-MidsemPPT.pptx
BKS-MidsemPPT.pptx
dr_bhupen
ย 
vj kb kh o15085 17210-1-pb
vj kb kh o15085 17210-1-pbvj kb kh o15085 17210-1-pb
vj kb kh o15085 17210-1-pb
Engr M Javaid
ย 
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsUniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized Equations
IOSR Journals
ย 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
Hassaan Saleem
ย 

Similar to Ck31369376 (20)

H0734651
H0734651H0734651
H0734651
ย 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
ย 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
ย 
L25052056
L25052056L25052056
L25052056
ย 
L25052056
L25052056L25052056
L25052056
ย 
Symbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner BasisSymbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner Basis
ย 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
ย 
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdfConcepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
ย 
Finite Difference Method for Nonlocal Singularly Perturbed Problem
Finite Difference Method for Nonlocal Singularly Perturbed ProblemFinite Difference Method for Nonlocal Singularly Perturbed Problem
Finite Difference Method for Nonlocal Singularly Perturbed Problem
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
ย 
Ijciet 10 01_093
Ijciet 10 01_093Ijciet 10 01_093
Ijciet 10 01_093
ย 
Some new exact Solutions for the nonlinear schrรถdinger equation
Some new exact Solutions for the nonlinear schrรถdinger equationSome new exact Solutions for the nonlinear schrรถdinger equation
Some new exact Solutions for the nonlinear schrรถdinger equation
ย 
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
ย 
Waveguides
WaveguidesWaveguides
Waveguides
ย 
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
ย 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
ย 
BKS-MidsemPPT.pptx
BKS-MidsemPPT.pptxBKS-MidsemPPT.pptx
BKS-MidsemPPT.pptx
ย 
vj kb kh o15085 17210-1-pb
vj kb kh o15085 17210-1-pbvj kb kh o15085 17210-1-pb
vj kb kh o15085 17210-1-pb
ย 
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsUniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized Equations
ย 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
ย 

More from IJMER

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
IJMER
ย 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
IJMER
ย 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
IJMER
ย 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
IJMER
ย 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
IJMER
ย 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
IJMER
ย 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
IJMER
ย 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
IJMER
ย 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
IJMER
ย 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
IJMER
ย 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
IJMER
ย 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
IJMER
ย 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
IJMER
ย 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
IJMER
ย 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
IJMER
ย 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
IJMER
ย 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
IJMER
ย 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
IJMER
ย 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
IJMER
ย 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
IJMER
ย 

More from IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
ย 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
ย 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
ย 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
ย 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
ย 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
ย 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
ย 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
ย 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
ย 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
ย 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
ย 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
ย 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
ย 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
ย 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
ย 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
ย 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
ย 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
ย 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
ย 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
ย 

Ck31369376

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376 ISSN: 2249-6645 The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics J.F.Alzaidy Mathematics Department, Faculty of Science, Taif University, Kingdom of Saudi Arabia Abstract: In the present paper, we construct the traveling wave solutions involving parameters of some nonlinear PDEs in mathematical physics; namely the variable coefficients KdV (vcKdV) equation, the modified dispersive water wave ๐บโ€ฒ (MDWW) equations and the symmetrically coupled KdV equations by using a simple method which is called the ๐บ - expansion method, where ๐บ = ๐บ ฮพ satisfies the second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the traveling waves. The traveling wave solutions are expressed by hyperbolic, trigonometric and rational functions. This method is more powerful and will be used in further works to establish more entirely new solutions for other kinds of nonlinear PDEs arising in mathematical physics. Keywords: The(G'/G) expansion method; traveling wave solutions; the variable coefficients KdV (vcKdV) equation; the modified dispersive water wave (๐‘€๐ท๐‘Š๐‘Š) equations; symmetrically coupled KdV equations, solitary wave solutions. AMS Subject Classifications: 35K99; 35P05; 35P99. I. Introduction In recent years, the exact solutions of nonlinear PDEs have been investigated by many authors ( see for example [1- 30] ) who are interested in nonlinear physical phenomena. Many effective methods have been presented ,such as inverse scattering transform method [1], B๐‘Žcklund transformation [2], Darboux transformation [3], Hirota bilinear method [4], vari- able separation approach [5], various tanh methods [6โ€“9], homogeneous balance method [10] , similarity reductions method [11,12] , the reduction mKdV equation method [13], the tri-function method [14,15], the projective Riccati equation method [16], the Weierstrass elliptic function method [17], the Sine- Cosine method [18,19], the Jacobi elliptic function expansion [20,21], the complex hyperbolic function method [22], the truncated Painlev๐‘’ โ€ฒ expansion [23], the F-expansion method [24], the rank analysis method [25] and so on. ๐บโ€ฒ In the present paper, we shall use a simple method which is called the ๐บ -expansion method [26,27]. This method is firstly proposed by the Chinese Mathematicians Wang et al [28] for which the traveling wave solutions of nonlinear equa- tions are obtained. The main idea of this method is that the traveling wave solutions of nonlinear equations can be expressed ๐บโ€ฒ by a polynomial in ๐บ , where ๐บ = ๐บ ฮพ satisfies the second order linear ordinary differential equation ๐บ " ฮพ + ๐œ†๐บ โ€ฒ ฮพ + ๐œ‡๐บ ฮพ = 0, where ๐œ‰ = ๐‘˜ ๐‘ฅ โˆ’ ๐‘๐‘ก ,where ๐œ† , ๐œ‡, ๐‘˜ and ๐‘ are constants . The degree of this polynomial can be determined by considering the homogeneous balance between the highest order derivatives and the nonlinear terms appearing in the given nonlinear equations .The coefficients of this polynomial can be obtained by solving a set of algebraic equations resulted from the process of using the proposed method. This new method will play an important role in expressing the traveling wave solutions for nonlinear evolution equations via the vcKdV equation, the MDWW equations and the symmetrically coupled KdV equations in terms of hyperbolic, trigonometric and rational functions. ๐‘ฎโ€ฒ II. Description of the - expansion method ๐‘ฎ Suppose we have the following nonlinear PDE: ๐‘ƒ ๐‘ข, ๐‘ข ๐‘ก , ๐‘ข ๐‘ฅ , ๐‘ข ๐‘ก๐‘ก , ๐‘ข ๐‘ฅ๐‘ฅ , ๐‘ข ๐‘ฅ๐‘ก , โ€ฆ = 0, (1) Where ๐‘ข = ๐‘ข(๐‘ฅ, ๐‘ก) is an unknown function, ๐‘ƒ is a polynomial in ๐‘ข = ๐‘ข(๐‘ฅ, ๐‘ก) and its various partial derivatives in which the highest order derivatives and nonlinear terms are involved. In the following we give the main steps of a deforma- tion method: Setp1. Suppose that ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ข ฮพ , ฮพ = ฮพ ๐‘ฅ, ๐‘ก . (2) The traveling wave variable (2) permits us reducing (1) to an ODE for ๐‘ข = ๐‘ข ฮพ in the form: ๐‘ƒ(๐‘ข, ๐‘ขโ€ฒ , ๐‘ขโ€ฒโ€ฒ , โ€ฆ ) = 0, (3) ๐‘‘ where โ€ฒ = . ๐‘‘ฮพ www.ijmer.com 369 | Page
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376 ISSN: 2249-6645 ๐บโ€ฒ Setp2. Suppose that the solution Eq.(3) can be expressed by a polynomial in ๐บ as follows: ๐‘› ๐‘– ๐บโ€ฒ ๐‘ข ฮพ = ๐‘Ž๐‘– , (4) ๐บ ๐‘–=0 While ๐บ = ๐บ ฮพ satisfies the second order linear differential equation in the form: ๐บ " ฮพ + ๐œ†๐บ โ€ฒ ฮพ + ๐œ‡๐บ ฮพ = 0, (5) Where ๐‘Ž ๐‘– ๐‘– = 0,1, โ€ฆ , ๐‘› , ๐œ† and ๐œ‡ are constants to be determined later. Setp3. The positive integer " ๐‘› " can be determined by considering the homogeneous balance between the highest derivative term and the nonlinear terms appearing in Eq.(3). Therefore, we can get the value of ๐‘› in Eq.( 4). ๐บโ€ฒ Setp4. Substituting Eq.( 4) into Eq.( 3) and using Eq.(5), collecting all terms with the same power of ๐บ together and then equating each coefficient of the resulted polynomial to zero, yield a set of algebraic equations for ๐‘Ž ๐‘– , ๐œ† , ๐œ‡ , ๐‘ and ๐‘˜. Setp5. Solving the algebraic equations by use of Maple or Mathematica, we obtain values for ๐‘Ž ๐‘– , ๐œ† , ๐œ‡ , ๐‘ and ๐‘˜. Setp6. Since the general solutions of Eq. (5) have been well known for us, then substituting the obtained coefficients and the general solution of Eq. (5) into Eq. (4), we have the travelling wave solutions of the nonlinear PDE (1). III. Applications of the method ๐บโ€ฒ In this section, we apply the ๐บ -expansion method to construct the traveling wave solutions for some nonlinear PDEs, namely the vcKdV equation, the MDWW equations and the symmetrically coupled KdV equations which are very important nonlinear evolution equations in mathematical physics and have been paid attention by many researchers. 3.1. Example1. The cvKdV equation We start with the cvKdV equation [29] in the form: ๐‘ข ๐‘ก + ๐‘“ ๐‘ก ๐‘ข๐‘ข ๐‘ฅ + ๐‘” ๐‘ก ๐‘ข ๐‘ฅ๐‘ฅ๐‘ฅ = 0, (6) Where ๐‘“ ๐‘ก โ‰  0, ๐‘” ๐‘ก โ‰  0 are some given functions.This equation is well-known as a model equation describing the propagation of weakly-nonlinear weakly-dispersive waves in inhomogeneous media.. Obtaining exact solutions for non- linear differential equations have long been one of the central themes of perpetual interest in mathematics and physics. To study the travelling wave solutions of Eq. (6), we take the following transformation ๐œ” ๐‘ก ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ข ฮพ , ๐œ‰ = ๐‘ฅ+ ๐‘” ๐‘ก ๐‘‘ ๐‘ก, (7) ๐›ผ 0 Where ๐œ”the wave is speed and ๐›ผ is a constant. By using Eq. (7), Eq.(6) is converted into an ODE ๐œ” โ€ฒ ๐‘ข + 2๐‘ข๐‘ขโ€ฒ + ๐‘ขโ€ฒโ€ฒโ€ฒ = 0, (8) ๐›ผ Where the functions ๐‘“ ๐‘ก and ๐‘” ๐‘ก in Eq.(6) should satisfy the condition ๐‘“ ๐‘ก = 2๐‘” ๐‘ก . (9) Integrating Eq.(8) with respect to ๐œ‰ once and taking the constant of integration to be zero, we obtain ๐œ” ๐‘ข + ๐‘ข2 + ๐‘ขโ€ฒโ€ฒ = 0, (10) ๐›ผ ๐บโ€ฒ Suppose that the solution of ODE (10) can be expressed by polynomial in terms of ๐บ as follows: ๐‘› ๐‘– ๐บโ€ฒ ๐‘ข ฮพ = ๐‘Ž๐‘– , (11) ๐บ ๐‘–=0 Where ๐‘Ž ๐‘– ๐‘– = 0,1, โ€ฆ , ๐‘› are arbitrary constants, while ๐บ ฮพ satisfies the second order linear ODE (5). Considering the homogeneous balance between the highest order derivatives and the nonlinear terms in Eq. (10), we get ๐‘› = 2. Thus, we have 2 ๐บโ€ฒ ๐บโ€ฒ ๐‘ข ฮพ = ๐‘Ž0 + ๐‘Ž1 + ๐‘Ž2 , (12) ๐บ ๐บ Where ๐‘Ž0 , ๐‘Ž1 and ๐‘Ž2 are constants to be determined later. Substituting Eq.(12) with Eq.(5) into Eq.(10) and collect- ๐บโ€ฒ ing all terms with the same power of . Setting each coefficients of this polynomial to be zero, we have the following ๐บ system of algebraic equations: www.ijmer.com 370 | Page
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376 ISSN: 2249-6645 0 ๐บโ€ฒ ๐œ” ๐‘Ž0 : + ๐‘Ž0 + ๐œ†๐œ‡๐‘Ž1 + 2๐œ‡2 ๐‘Ž2 = 0, 2 ๐บ ๐›ผ 1 ๐บโ€ฒ ๐œ” ๐‘Ž1 : ๐œ†2 ๐‘Ž1 + 2๐œ‡๐‘Ž1 + + 2๐‘Ž0 ๐‘Ž1 + 6๐œ†๐œ‡๐‘Ž2 = 0, ๐บ ๐›ผ 2 ๐บโ€ฒ ๐œ” ๐‘Ž2 : 3๐œ†๐‘Ž1 + ๐‘Ž1 + 4๐œ†2 ๐‘Ž2 + 8๐œ‡๐‘Ž2 + 2 + 2๐‘Ž0 ๐‘Ž2 = 0, ๐บ ๐›ผ 3 ๐บโ€ฒ : 2๐‘Ž1 + 10๐œ†๐‘Ž2 + 2๐‘Ž1 ๐‘Ž2 = 0, ๐บ 4 ๐บโ€ฒ 2 : 6๐‘Ž2 + ๐‘Ž2 = 0, (13) ๐บ On solving the above algebraic Eqs. (13) By using the Maple or Mathematica, we have ๐‘Ž0 = โˆ’6๐œ‡, ๐‘Ž1 = โˆ’6๐œ†, ๐‘Ž2 = โˆ’6, ๐œ” = โˆ’๐›ผ๐‘€, (14) Where ๐‘€ = ๐œ†2 โˆ’ 4๐œ‡. Substituting Eq. (14) into Eq.(12) yields 2 ๐บโ€ฒ ๐บโ€ฒ ๐‘ข ฮพ = โˆ’6๐œ‡ โˆ’ 6๐œ† โˆ’6 , (15) ๐บ ๐บ Where ๐‘ก ๐œ‰= ๐‘ฅโˆ’ ๐‘€ ๐‘” ๐‘ก ๐‘‘ ๐‘ก. (16) 0 On solving Eq.( 5), we deduce that 1 1 1 ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2 ๐‘€ ฮพ ๐œ† ๐‘€ โˆ’ if ๐‘€ > 0, 2 1 1 2 ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh 2 ๐‘€ ฮพ ๐บโ€ฒ 1 1 = 1 โˆ’๐ด sin 2 โˆ’๐‘€ ฮพ + ๐ต cos 2 โˆ’๐‘€ ฮพ ๐œ† ๐บ โˆ’๐‘€ โˆ’ if ๐‘€ < 0, (17) 2 1 1 2 ๐ด cos 2 โˆ’๐‘€ ฮพ + ๐ต sin 2 โˆ’๐‘€ ฮพ ๐ต ๐œ† โˆ’ if ๐‘€ = 0, ๐ตฮพ + A 2 Where ๐ด and ๐ต are arbitrary constants and ๐‘€ = ๐œ†2 โˆ’ 4๐œ‡. On substituting Eq.(17) into Eq.(15), we deduce the following three types of traveling wave solutions: Case1. If ๐‘€ > 0 , Then we have the hyperbolic solution 2 1 1 3๐‘€ ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2 ๐‘€ฮพ ๐‘ข ฮพ = 1โˆ’ , (18) 2 1 1 ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh 2 ๐‘€ฮพ Case2. If ๐‘€ < 0 , Then we have the trigonometric solution 2 1 1 3๐‘€ โˆ’๐ด sin 2 โˆ’๐‘€ ฮพ + ๐ต cos 2 โˆ’๐‘€ ฮพ ๐‘ข ฮพ = 1+ , (19) 2 1 1 ๐ด cos โˆ’๐‘€ ฮพ + ๐ต sin โˆ’๐‘€ ฮพ 2 2 Case3. If ๐‘€ = 0 , Then we have the the rational solution 2 3 2 ๐ต ๐œ† โˆ’6 ๐œ‡+๐‘ข ฮพ = , (20) 2 ๐ตฮพ + A In particular, if we set ๐ต = 0, ๐ด โ‰  0, ๐œ† > 0, ๐œ‡ = 0, in Eq.(18), then we get 3ฮป2 ฮป ๐‘ข ฮพ =โˆ’ csch2 ฮพ , (21) 2 2 While, if ๐ต โ‰  0 , ๐œ† > 0 , ๐ด2 > ๐ต 2 ๐‘Ž๐‘›๐‘‘ ๐œ‡ = 0 , then we deduce that: www.ijmer.com 371 | Page
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376 ISSN: 2249-6645 3ฮป2 ฮป ๐‘ข ฮพ = sech2 ฮพ + +ฮพ0 , (22) 2 2 ๐ด Where ฮพ0 = tanhโˆ’1 .The solutions (21) and (22) represent the solitary wave solutions of Eq. (6). ๐ต 3.2. Example 2. The MDWW equation In this subsection, we study the MDWW equations [30] in the forms: 1 1 ๐‘ข๐‘ก = โˆ’ ๐‘ฃ + ๐‘ข๐‘ฃ , (23) 4 ๐‘ฅ๐‘ฅ 2 ๐‘ฅ 3 ๐‘ฃ ๐‘ก = โˆ’๐‘ข ๐‘ฅ๐‘ฅ โˆ’ 2๐‘ข๐‘ข ๐‘ฅ + ๐‘ฃ๐‘ฃ . (24) 2 ๐‘ฅ The traveling wave variables below ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ข ฮพ , ๐‘ฃ ๐‘ฅ, ๐‘ก = ๐‘ฃ ฮพ , ๐œ‰ = ๐‘˜ ๐‘ฅ + ๐œ”๐‘ก , (25) permit us converting the equations (23) and (24) into ODEs for ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ข ฮพ and ๐‘ฃ ๐‘ฅ, ๐‘ก = ๐‘ฃ ฮพ as follows: 1 โ€ฒโ€ฒ 1 โˆ’ ๐‘˜๐‘ฃ + ๐‘ข๐‘ฃ โ€ฒ โˆ’ ๐œ”๐‘ขโ€ฒ = 0, (26) 4 2 3 โˆ’๐‘˜๐‘ขโ€ฒโ€ฒ โˆ’ 2๐‘ข๐‘ขโ€ฒ + ๐‘ฃ๐‘ฃ โ€ฒ โˆ’ ๐œ”๐‘ฃ โ€ฒ = 0, (27) 2 Where ๐‘˜ and ๐œ” are the wave number and the wave speed, respectively. On integrating Eqs.(26) and (27) with respect to ๐œ‰ once, yields 1 โ€ฒ 1 k1 โˆ’ ๐‘˜๐‘ฃ + ๐‘ข๐‘ฃ โˆ’ ๐œ”๐‘ข = 0, (28) 4 2 3 k 2 โˆ’ ๐‘˜๐‘ขโ€ฒ โˆ’ ๐‘ข2 + ๐‘ฃ 2 โˆ’ ๐œ”๐‘ฃ = 0, (29) 4 Where k1 and k 2 is an integration constants. ๐บโ€ฒ Suppose that the solutions of the ODEs (28) and (29) can be expressed by polynomials in terms of as follows: ๐บ ๐‘› โ€ฒ ๐‘– ๐บ ๐‘ข ฮพ = ๐‘Ž๐‘– , (30) ๐บ ๐‘–=0 ๐‘š ๐‘– ๐บโ€ฒ ๐‘ฃ ฮพ = ๐‘๐‘– . (31) ๐บ ๐‘–=0 Where ๐‘Ž ๐‘– ๐‘– = 0,1, โ€ฆ , ๐‘› and ๐‘ ๐‘– ๐‘– = 0,1, โ€ฆ , ๐‘š are arbitrary constants, while ๐บ ฮพ satisfies the second order linear ODE (5).Considering the homogeneous balance between the highest order derivatives and the nonlinear terms in Eqs.(28) and (29), we get ๐‘› = ๐‘š = 1. Thus, we have ๐บโ€ฒ ๐‘ข ฮพ = ๐‘Ž0 + ๐‘Ž1 , ๐‘Ž1 โ‰  0, (32) ๐บ ๐บโ€ฒ ๐‘ฃ ฮพ = ๐‘0 + ๐‘1 , ๐‘1 โ‰  0, (33) ๐บ Where ๐‘Ž0 , ๐‘Ž1 , ๐‘0 and ๐‘1 are arbitrary constants to be determined later. Substituting Eqs.(32),(33) with Eq.(5) into ๐บโ€ฒ Eqs.(28) and (29), collecting all terms with the same power of and setting them to zero, we have the following system of ๐บ algebraic equations: 0 ๐บโ€ฒ ๐‘Ž0 ๐‘0 1 : ๐œ”๐‘Ž0 + + ๐‘˜๐œ‡๐‘1 + ๐‘˜1 = 0, ๐บ 2 4 1 ๐บโ€ฒ ๐‘Ž1 ๐‘0 1 ๐‘Ž0 ๐‘1 : ๐œ”๐‘Ž1 + + ๐‘˜๐œ†๐‘1 + = 0, ๐บ 2 4 2 2 ๐บโ€ฒ ๐‘˜๐‘1 ๐‘Ž1 ๐‘1 : + = 0, ๐บ 4 2 www.ijmer.com 372 | Page
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376 ISSN: 2249-6645 0 ๐บโ€ฒ 2 3๐‘02 : โˆ’ ๐‘Ž0 + ๐‘˜๐œ‡๐‘Ž1 + ๐œ”๐‘0 + + ๐‘˜2 = 0, ๐บ 4 1 ๐บโ€ฒ 3๐‘0 ๐‘1 : ๐‘˜๐œ†๐‘Ž1 โˆ’ 2๐‘Ž0 ๐‘Ž1 + ๐œ”๐‘1 + = 0, ๐บ 2 2 ๐บโ€ฒ 2 3๐‘12 : ๐‘˜๐‘Ž1 โˆ’ ๐‘Ž1 + = 0. (34) ๐บ 4 Solving the above algebraic Eqs.(34) by using the Maple or Mathematica, yields 1 ๐‘Ž0 = ๐œ†๐‘Ž1 โˆ’ ฯ‰ , ๐‘Ž1 = ๐‘Ž1 , ๐‘ ๐‘œ = ๐œ†๐‘Ž1 โˆ’ ฯ‰, ๐‘1 = 2๐‘Ž1 , 2 (35) 1 2 2 1 ๐‘˜1 = 4 ๐œ” โˆ’ ๐‘€๐‘Ž1 , ๐‘˜1 = 2 ๐œ”2 โˆ’ ๐‘€๐‘Ž1 , 2 ๐‘˜ = โˆ’2๐‘Ž1 . Substituting Eq.(35) into Eqs.(32) and (33) we obtain 1 ๐บโ€ฒ ๐‘ข ฮพ = ๐œ†๐‘Ž1 โˆ’ ฯ‰ + ๐‘Ž1 , (36) 2 ๐บ ๐บโ€ฒ ๐‘ฃ ฮพ = ๐œ†๐‘Ž1 โˆ’ ฯ‰ + 2๐‘Ž1 , , (37) ๐บ where ๐œ‰ = โˆ’2๐‘Ž1 (๐‘ฅ + ฯ‰๐‘ก). (38) From Eqs.(17),(36) and (37), we deduce the following three types of traveling wave solutions: Case1. If ๐‘€ > 0 , then we have the hyperbolic solution 1 1 1 ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2 ๐‘€ฮพ ๐‘ข ฮพ = ๐‘Ž ๐‘€ โˆ’ ๐œ” , (39) 2 1 1 ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh 1 ๐‘€ฮพ 2 1 1 ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2 ๐‘€ฮพ ๐‘ฃ ฮพ = ๐‘Ž1 ๐‘€ โˆ’ ๐œ”. (40) 1 1 ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh 2 ๐‘€ฮพ Case2. If ๐‘€ < 0 , then we have the trigonometric solution 1 1 1 โˆ’๐ด sin 2 โˆ’๐‘€ ฮพ + ๐ต cos 2 โˆ’๐‘€ ฮพ ๐‘ข ฮพ = ๐‘Ž โˆ’๐‘€ โˆ’ ๐œ” , (41) 2 1 1 1 ๐ด cos 2 โˆ’๐‘€ ฮพ + ๐ต sin 2 โˆ’๐‘€ ฮพ 1 1 โˆ’๐ด sin โˆ’๐‘€ ฮพ + ๐ต cos โˆ’๐‘€ ฮพ ๐‘ฃ ฮพ = ๐‘Ž1 โˆ’๐‘€ 2 2 โˆ’ ๐œ”. (42) 1 1 ๐ด cos โˆ’๐‘€ ฮพ + ๐ต sin โˆ’๐‘€ ฮพ 2 2 Case3. If ๐‘€ = 0 , then we have the rational solution ๐ต ๐œ” ๐‘ข ฮพ = ๐‘Ž1 โˆ’ , (43) ๐ตฮพ + A 2 ๐ต ๐‘ฃ ฮพ = 2๐‘Ž1 โˆ’ ๐œ”. (44) ๐ตฮพ + A In particular if ๐ต = 0, ๐ด โ‰  0, ๐œ† > 0 and ๐œ‡ = 0, then we deduce from Eqs.(39) and (40) that: 1 ฮป ๐‘ข ฮพ = ๐‘Ž ๐œ† coth ฮพ โˆ’ ๐œ” , (45) 2 1 2 ฮป ๐‘ฃ ฮพ = ๐‘Ž1 ๐œ† coth ฮพ โˆ’ ๐œ”, (46) 2 While, if ๐ต โ‰  0 , ๐ด2 > ๐ต 2 , ๐œ† > 0 ๐‘Ž๐‘›๐‘‘ ๐œ‡ = 0 , then we deduce that: 1 ฮป ๐‘ข ฮพ = ๐‘Ž1 ๐œ† tanh ฮพ + ฮพ0 โˆ’ ๐œ” , 47 2 2 www.ijmer.com 373 | Page
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376 ISSN: 2249-6645 ฮป ๐‘ฃ ฮพ = ๐‘Ž1 ๐œ† tanh ฮพ + ฮพ0 โˆ’ ๐œ”, 48 2 ๐ด Whereฮพ0 = tanhโˆ’1 ๐ต . The solutions (45)- (48) represent the solitary wave solutions of Eqs.(23) and (24). 3.3. Example 3. The symmetrically coupled KdV equations In this subsection, we consider the symmetrically coupled KdV equations [31] in the forms: ๐‘ข ๐‘ก = ๐‘ข ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฃ ๐‘ฅ๐‘ฅ๐‘ฅ + 6๐‘ข๐‘ข ๐‘ฅ + 4๐‘ข๐‘ฃ ๐‘ฅ + 2๐‘ข ๐‘ฅ ๐‘ฃ = 0, (49) ๐‘ฃ ๐‘ก = ๐‘ข ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฃ ๐‘ฅ๐‘ฅ๐‘ฅ + 6๐‘ฃ๐‘ฃ ๐‘ฅ + 4๐‘ฃ๐‘ข ๐‘ฅ + 2๐‘ฃ ๐‘ฅ ๐‘ข = 0. (50) The traveling wave variable (25) permits us converting Eqs.(49) and (50) into the following ODEs: โˆ’๐œ”๐‘ขโ€ฒ + ๐‘˜ 2 ๐‘ขโ€ฒโ€ฒโ€ฒ + ๐‘ฃ โ€ฒโ€ฒโ€ฒ + 6๐‘ข๐‘ขโ€ฒ + 4๐‘ข๐‘ฃ โ€ฒ + 2๐‘ขโ€ฒ ๐‘ฃ = 0, (51) โ€ฒ 2 โ€ฒโ€ฒโ€ฒ โ€ฒโ€ฒโ€ฒ โ€ฒ โ€ฒ โ€ฒ โˆ’๐œ”๐‘ฃ + ๐‘˜ ๐‘ข + ๐‘ฃ + 6๐‘ฃ๐‘ฃ + 4๐‘ฃ๐‘ข + 2๐‘ฃ ๐‘ข = 0. (52) Considering the homogeneous balance between highest order derivatives and nonlinear terms in Eqs.(51) and (52), we have 2 ๐บโ€ฒ ๐บโ€ฒ ๐‘ข ฮพ = ๐‘Ž0 + ๐‘Ž1 + ๐‘Ž2 , ๐‘Ž2 โ‰  0, (53) ๐บ ๐บ 2 ๐บโ€ฒ ๐บโ€ฒ ๐‘ฃ ฮพ = ๐‘0 + ๐‘1 + ๐‘2 , ๐‘2 โ‰  0, (54) ๐บ ๐บ Where ๐‘Ž0 , ๐‘Ž1 , ๐‘Ž2 , ๐‘0 , ๐‘1 and ๐‘2 are arbitrary constants to be determined later. Substituting Eqs.(53) and (54) with ๐บโ€ฒ Eq.(5) into Eqs.(51) and (52), collecting all terms with the same power of and setting them to zero, we have the follow- ๐บ ing system of algebraic equations: 0 ๐บโ€ฒ : โˆ’ ๐‘˜ 2 ๐œ†2 ๐œ‡๐‘Ž1 โˆ’ 2๐‘˜ 2 ๐œ‡2 ๐‘Ž1 + ๐œ‡๐œ”๐‘Ž1 โˆ’ 6๐œ‡๐‘Ž0 ๐‘Ž1 โˆ’ 6๐‘˜ 2 ๐œ†๐œ‡2 ๐‘Ž2 โˆ’ ๐‘˜ 2 ๐œ†2 ๐œ‡๐‘1 โˆ’ 2๐‘˜ 2 ๐œ‡2 ๐‘1 โˆ’ 4๐œ‡๐‘Ž0 ๐‘1 โˆ’ 6๐‘˜ 2 ๐œ†๐œ‡2 ๐‘2 = 0, ๐บ 1 ๐บโ€ฒ : โˆ’ ๐‘˜ 2 ๐œ†3 ๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ†๐œ‡๐‘Ž1 + ๐œ†๐œ”๐‘Ž1 โˆ’ 6๐œ†๐‘Ž0 ๐‘Ž1 โˆ’ 6๐œ‡๐‘Ž1 โˆ’ 14๐‘˜ 2 ๐œ†2 ๐œ‡๐‘Ž2 โˆ’ 16๐‘˜ 2 ๐œ‡2 ๐‘Ž2 + 2๐œ‡๐œ”๐‘Ž2 โˆ’ 12๐œ‡๐‘Ž0 ๐‘Ž2 โˆ’ ๐‘˜ 2 ๐œ†3 ๐‘1 โˆ’ 2 ๐บ 8๐‘˜ 2 ๐œ†๐œ‡๐‘1 โˆ’ 4๐œ†๐‘Ž0 ๐‘1 โˆ’ 6๐œ‡๐‘Ž1 ๐‘1 โˆ’ 14๐‘˜ 2 ๐œ†2 ๐œ‡๐‘2 โˆ’ 16๐‘˜ 2 ๐œ‡2 ๐‘2 โˆ’ 8๐œ‡๐‘Ž0 ๐‘2 = 0, 2 ๐บโ€ฒ : โˆ’ 7๐‘˜ 2 ๐œ†2 ๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ‡๐‘Ž1 + ๐œ”๐‘Ž1 โˆ’ 6๐‘Ž0 ๐‘Ž1 โˆ’ 6๐œ†๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ†3 ๐‘Ž2 โˆ’ 52๐‘˜ 2 ๐œ†๐œ‡๐‘Ž2 + 2๐œ†๐œ”๐‘Ž2 โˆ’ 12๐œ†๐‘Ž0 ๐‘Ž2 โˆ’ 18๐œ‡๐‘Ž1 ๐‘Ž2 โˆ’ 2 ๐บ 7๐‘˜ ๐œ† ๐‘1 โˆ’ 8๐‘˜ ๐œ‡๐‘1 โˆ’ 4๐‘Ž0 ๐‘1 โˆ’ 6๐œ†๐‘Ž1 ๐‘1 โˆ’ 8๐œ‡๐‘Ž2 ๐‘1 โˆ’ 8๐‘˜ 2 ๐œ†3 ๐‘2 โˆ’ 52๐‘˜ 2 ๐œ†๐œ‡๐‘2 โˆ’ 8๐œ†๐‘Ž0 ๐‘2 โˆ’ 10๐œ‡๐‘Ž1 ๐‘2 = 0, 2 2 2 3 ๐บโ€ฒ ๐บ : โˆ’ 12๐‘˜ 2 ๐œ†๐‘Ž1 โˆ’ 6๐‘Ž1 โˆ’ 38๐‘˜ 2 ๐œ†2 ๐‘Ž2 โˆ’ 40๐‘˜ 2 ๐œ‡๐‘Ž2 + 2๐œ”๐‘Ž2 โˆ’ 12๐‘Ž0 ๐‘Ž2 โˆ’ 18๐œ†๐‘Ž1 ๐‘Ž2 โˆ’ 12๐œ‡๐‘Ž2 โˆ’ 12๐‘˜ 2 ๐œ†๐‘1 โˆ’ 6๐‘Ž1 ๐‘1 โˆ’ 2 2 8๐œ†๐‘Ž2 ๐‘1 โˆ’ 38๐‘˜ 2 ๐œ†2 ๐‘2 โˆ’ 40๐‘˜ 2 ๐œ‡๐‘2 โˆ’ 8๐‘Ž0 ๐‘2 โˆ’ 10๐œ†๐‘Ž1 ๐‘2 โˆ’ 12๐œ‡๐‘Ž2 ๐‘2 = 0, 4 ๐บโ€ฒ : โˆ’ 6๐‘˜ 2 ๐‘Ž1 โˆ’ 54๐‘˜ 2 ๐œ†๐‘Ž2 โˆ’ 18๐‘Ž1 ๐‘Ž2 โˆ’ 12๐œ†๐‘Ž2 โˆ’ 6๐‘˜ 2 ๐‘1 โˆ’ 8๐‘Ž2 ๐‘1 โˆ’ 54๐‘˜ 2 ๐œ†๐‘2 โˆ’ 10๐‘Ž1 ๐‘2 โˆ’ 12๐œ†๐‘Ž2 ๐‘2 = 0, 2 ๐บ 5 ๐บโ€ฒ ๐บ : โˆ’ 24๐‘˜ 2 ๐‘Ž2 โˆ’ 12๐‘Ž2 โˆ’ 24๐‘˜ 2 ๐‘2 โˆ’ 12๐‘Ž2 ๐‘2 = 0, 2 0 ๐บโ€ฒ ๐บ : โˆ’ ๐‘˜ 2 ๐œ†2 ๐œ‡๐‘Ž1 โˆ’ 2๐‘˜ 2 ๐œ‡2 ๐‘Ž1 โˆ’ 6๐‘˜ 2 ๐œ†๐œ‡2 ๐‘Ž2 โˆ’ ๐‘˜ 2 ๐œ†2 ๐œ‡๐‘1 โˆ’ 2๐‘˜ 2 ๐œ‡2 ๐‘1 + ๐œ‡๐œ”๐‘1 โˆ’ 2๐œ‡๐‘Ž0 ๐‘1 โˆ’ 6๐‘˜ 2 ๐œ†๐œ‡2 ๐‘2 = 0, 1 ๐บโ€ฒ : โˆ’ ๐‘˜ 2 ๐œ†3 ๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ†๐œ‡๐‘Ž1 โˆ’ 14๐‘˜ 2 ๐œ†2 ๐œ‡๐‘Ž2 โˆ’ 16๐‘˜ 2 ๐œ‡2 ๐‘Ž2 โˆ’ ๐‘˜ 2 ๐œ†3 ๐‘1 โˆ’ 8๐‘˜ 2 ๐œ†๐œ‡๐‘1 + ๐œ†๐œ”๐‘1 โˆ’ 2๐œ†๐‘Ž0 ๐‘1 โˆ’ 6๐œ‡๐‘Ž1 ๐‘1 โˆ’ 6๐œ‡๐‘1 โˆ’ 2 ๐บ 2 2 2 2 14๐‘˜ ๐œ† ๐œ‡๐‘2 โˆ’ 16๐‘˜ ๐œ‡ ๐‘2 + 2๐œ‡๐œ”๐‘2 โˆ’ 4๐œ‡๐‘Ž0 ๐‘2 = 0, 2 ๐บโ€ฒ ๐บ : โˆ’ 7๐‘˜ 2 ๐œ†2 ๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ‡๐‘Ž1 โˆ’ 8๐‘˜ 2 ๐œ†3 ๐‘Ž2 โˆ’ 52๐‘˜ 2 ๐œ†๐œ‡๐‘Ž2 โˆ’ 7๐‘˜ 2 ๐œ†2 ๐‘1 โˆ’ 8๐‘˜ 2 ๐œ‡๐‘1 + ๐œ”๐‘1 โˆ’ 2๐‘Ž0 ๐‘1 โˆ’ 6๐œ†๐‘Ž1 ๐‘1 โˆ’ 10๐œ‡๐‘Ž2 ๐‘1 โˆ’ 6๐œ†๐‘1 โˆ’ 8๐‘˜ 2 ๐œ†3 ๐‘2 โˆ’ 52๐‘˜ 2 ๐œ†๐œ‡๐‘2 + 2๐œ†๐œ”๐‘2 โˆ’ 4๐œ†๐‘Ž0 ๐‘2 โˆ’ 8๐œ‡๐‘Ž1 ๐‘2 โˆ’ 18๐œ‡๐‘1 ๐‘2 = 0, 2 3 ๐บโ€ฒ : โˆ’ 12๐‘˜ 2 ๐œ†๐‘Ž1 โˆ’ 38๐‘˜ 2 ๐œ†2 ๐‘Ž2 โˆ’ 40๐‘˜ 2 ๐œ‡๐‘Ž2 โˆ’ 12๐‘˜ 2 ๐œ†๐‘1 โˆ’ 6๐‘Ž1 ๐‘1 โˆ’ 10๐œ†๐‘Ž2 ๐‘1 โˆ’ 6๐‘1 โˆ’ 38๐‘˜ 2 ๐œ†2 ๐‘2 โˆ’ 40๐‘˜ 2 ๐œ‡๐‘2 + 2๐œ”๐‘2 โˆ’ 2 ๐บ 2 4๐‘Ž0 ๐‘2 โˆ’ 8๐œ†๐‘Ž1 ๐‘2 โˆ’ 12๐œ‡๐‘Ž2 ๐‘2 โˆ’ 18๐œ†๐‘1 ๐‘2 โˆ’ 12๐œ‡๐‘2 = 0, 4 ๐บโ€ฒ ๐บ : โˆ’ 6๐‘˜ 2 ๐‘Ž1 โˆ’ 54๐‘˜ 2 ๐œ†๐‘Ž2 โˆ’ 6๐‘˜ 2 ๐‘1 โˆ’ 10๐‘Ž2 ๐‘1 โˆ’ 54๐‘˜ 2 ๐œ†๐‘2 โˆ’ 8๐‘Ž1 ๐‘2 โˆ’ 12๐œ†๐‘Ž2 ๐‘2 โˆ’ 18๐‘1 ๐‘2 โˆ’ 12๐œ†๐‘2 = 0, 2 5 ๐บโ€ฒ : โˆ’ 24๐‘˜ 2 ๐‘Ž2 โˆ’ 24๐‘˜ 2 ๐‘2 โˆ’ 12๐‘Ž2 ๐‘2 โˆ’ 12๐‘2 = 0. 2 55 ๐บ www.ijmer.com 374 | Page
  • 7. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376 ISSN: 2249-6645 Solving the above algebraic Eqs.(55) by using the Maple or Mathematica, we have ๐œ”๐œ† ๐œ” ๐œ”๐œ† ๐‘Ž0 = ๐‘0 = 0, ๐‘Ž1 = โˆ’ 2 , ๐‘Ž2 = โˆ’ 2 , ๐‘1 = โˆ’ , ๐œ† + 8๐œ‡ ๐œ† + 8๐œ‡ ๐œ†2 + 8๐œ‡ (56) ๐œ” ฯ‰ ๐‘2 = โˆ’ , ๐‘˜=ยฑ . ๐œ†2 + 8๐œ‡ 2๐œ†2 + 16๐œ‡ Substituting Eq.(56) into Eqs.(53) and (54) yields 2 ๐œ”๐œ† ๐บโ€ฒ ๐œ” ๐บโ€ฒ ๐‘ข ฮพ =โˆ’ 2 โˆ’ 2 , (57) ๐œ† + 8๐œ‡ ๐บ ๐œ† + 8๐œ‡ ๐บ 2 ๐œ”๐œ† ๐บโ€ฒ ๐œ” ๐บโ€ฒ ๐‘ฃ ฮพ =โˆ’ 2 โˆ’ 2 , (58) ๐œ† + 8๐œ‡1 ๐บ ๐œ† + 8๐œ‡ ๐บ Where ฯ‰ ๐œ‰=ยฑ 2๐œ† 2 +16๐œ‡ (๐‘ฅ + ฯ‰๐‘ก). (59) From Eqs. (17), (57) and (58), we deduce the following three types of traveling wave solutions: Case 1. If ๐‘€ > 0 , Then we have the hyperbolic solution 2 1 1 ๐œ” ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2 ๐‘€ฮพ ๐‘ข ฮพ = ๐œ†2 โˆ’ ๐‘€ , (60) 4 ๐œ† 2 + 8๐œ‡ 1 1 ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh 2 ๐‘€ฮพ 2 1 1 ๐œ” ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2 ๐‘€ฮพ ๐‘ฃ ฮพ = ๐œ†2 โˆ’ ๐‘€ . (61) 4 ๐œ†2 + 8๐œ‡ 1 1 ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh 2 ๐‘€ฮพ Case2. If ๐‘€ < 0 , Then we have the trigonometric solution 2 1 1 ๐œ” ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2 ๐‘€ฮพ ๐‘ข ฮพ = ๐œ†2 + ๐‘€ , (62) 4 ๐œ†2 + 8๐œ‡ 1 1 ๐ด sinh ๐‘€ ฮพ + ๐ต cosh ๐‘€ฮพ 2 2 2 1 1 ๐œ” ๐ด cosh 2 ๐‘€ ฮพ + ๐ต sinh 2 ๐‘€ฮพ ๐‘ฃ ฮพ = ๐œ†2 + ๐‘€ . (63) 4 ๐œ†2 + 8๐œ‡ 1 1 ๐ด sinh 2 ๐‘€ ฮพ + ๐ต cosh 2 ๐‘€ฮพ Case3. If ๐‘€ = 0 , Then we have the rational solution 2 ๐œ” ๐ต ๐‘ข ฮพ = ๐œ†2 โˆ’ 4 , (64) 4 ๐œ†2 + 8๐œ‡ ๐ตฮพ + A 2 ๐œ” ๐ต ๐‘ฃ ฮพ = 2 + 8๐œ‡ ๐œ†2 โˆ’ 4 . (65) 4 ๐œ† ๐ตฮพ + A In particular if ๐ต = 0, ๐ด โ‰  0, ๐œ† > 0 and ๐œ‡ = 0, then we deduce from Eq.(60) and Eq.(61) that: โˆ’๐œ” ฮป ๐‘ข ฮพ = csch2 ฮพ , (66) 4 2 โˆ’๐œ” ฮป ๐‘ฃ ฮพ = csch2 ฮพ , (67) 4 2 while, if ๐ต โ‰  0 , ๐ด2 > ๐ต 2 , ๐œ† > 0 ๐‘Ž๐‘›๐‘‘ ๐œ‡ = 0 , then we deduce that: ๐œ” ฮป ๐‘ข ฮพ = sech2 ฮพ + +ฮพ0 , (68) 4 2 ๐œ” ฮป ๐‘ฃ ฮพ = sech2 ฮพ + +ฮพ0 , (69) 4 2 ๐ด Where ฮพ0 = tanhโˆ’1 . The solutions (66) - (69) represent the solitary wave solutions of Eqs. (49) and (50). ๐ต www.ijmer.com 375 | Page
  • 8. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-369-376 ISSN: 2249-6645 IV. Conclusion In this work, we have seen that three types of traveling wave solutions in terms of hyperbolic, trigonometric and ra- tional functions for the vcKdV equation, the MDWW equations and the symmetrically coupled KdV equations are success- ๐บโ€ฒ ๐บโ€ฒ fully found out by using the -expansion method. From our results obtained in this paper, we conclude that the - ๐บ ๐บ expansion method is powerful, effective and convenient. The performance of this method is reliable, simple and gives many ๐บโ€ฒ new solutions. The ๐บ -expansion method has more advantages: It is direct and concise. Also, the solutions of the proposed nonlinear evolution equations in this paper have many potential applications in physics and engineering. Finally, this method provides a powerful mathematical tool to obtain more general exact solutions of a great many nonlinear PDEs in mathemat- ical physics. References [1] M. J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991. [2] C. H. GU Et Al., Soliton Theory and Its Application, Zhejiang Science and Technology Press, Zhejiang, 1990. [3] V. B. Matveev and M.A. Salle, Darboux Transformation and Soliton, Springer, Berlin, 1991. [4] R. Hirota, the Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004. [5] S.Y. Lou, J.Z. Lu, Special solutions from variable separation approach: Davey-Stewartson equation, J. Phys. A: Math. Gen. 29 (1996) 4209. [6] E. J. Parkes and B.R. Duffy, Travelling solitary wave solutions to a compound KdV-Burgers equation, Phys. Lett. A 229 (1997) 217. [7] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000) 212. [8] Z. Y. Yan, New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Phys. Lett. A 292 (2001) 100. [9] Y. Chen, Y. Zheng, Generalized extended tanh-function method to construct new explicit exact solutions for the approximate equa- tions for long water waves, Int. J. Mod. Phys. C 14 (4) (2003) 601. [10] M. L. Wang, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A 216 (1996) 67. [11] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989. [12] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986. [13] Z. Y. Yan, A reduction mKdV method with symbolic computation to constract new doubly- periodic solutions for nonlinear wave equations, Int. J. Mod. Phys. C, 14 (2003) 661. [14] Z. Y. Yan, The new tri-function method to multiple exact solutions of nonlinear wave equations, Physica Scripta, 78 (2008) 035001. [15] Z. Y. Yan, Periodic, solitary and rational wave solutions of the 3D extended quantum Zakharovโ€“ Kuznetsov equation in dense quantum plasmas, Physics Letters A, 373 (2009) 2432. [16] D. C. Lu and B. J. Hong, New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup system, Appl. Math. Comput, 199(2008)572. [17] A. V. Porubov, Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid, Phys. Lett . A, 221 (1996) 391. [18] M. Wazwaz, The tanh and sine- cosine method for compact and noncompact solutions of nonlinear Klein Gordon equation, Appl. Math. Comput, 167 (2005)1179. [19] Z. Y. Yan and H. Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whithamโ€“Broerโ€“Kaup equation in shallow water, Phys. Lett. A, 285 (2001) 355. [20] D. C. Lu, Jacobi elliptic functions solutions for two variant Boussinesq equations, Chaos, Solitons and Fractals, 24 (2005) 1373. [21] Z. Y. Yan, Abundant families of Jacobi elliptic functions of the (2+1) dimensional integrable Davey- Stawartson-type equation via a new method, Chaos, Solitons and Fractals, 18 (2003) 299. [22] C. L. Bai and H. Zhao, Generalized method to construct the solitonic solutions to (3+1)- dimensional nonlinear equation, Phys. Lett. A, 354 (2006) 428. [23] F. Cariello and M. Tabor, Similarity reductions from extended Painlev๐‘’ โ€ฒ expansions for nonintegrable evolution equations, Physica D, 53 (1991) 59. [24] M. Wang and X. Li, Extended F-expansion and periodic wave solutions for the generalized Zakharov equations, Phys. Lett. A, 343 (2005) 48. [25] X. Feng, Exploratory approach to explicit solution of nonlinear evolution equations, Int. J. Theor. Phys, 39 (2000) 222. ๐บโ€ฒ [26] E. M. E. Zayed and K.A.Gepreel, The ๐บ โˆ’expansion method for finding traveling wave solutions of nonlinear PDEs in mathe- matical physics, J. Math. Phys., 50 (2009) 013502. Gโ€ฒ [27] A. Bekir, Application of the โˆ’ expansion method for nonlinear evolution equations, Phys. Lett A, 372 (2008) 3400. G Gโ€ฒ [28] M. Wang, X. Li and J.Zhang, The โˆ’expansion method and traveling wave solutions of nonlinear evolution equations in mathe- G matical physics, Phys. Lett A, 372 (2008) 417. [29] G.A. El and R. H. J. Grimshaw, Generation of undular bores in the shelves of slowly- varying solitary waves, Chaos, 12 (2002)1015. [30] M. Alabdullatif and H. A. Abdusalam, New exact travelling wave solutions for some famous nonlinear partial differential equations using the improved tanh-function method, Int. J. Comput. Math,83 (2006)741. [31] J. P. Wang, A List of 1+1 Dimensional Intergable Equations and Their Properties, J .Nonlinear Mathemtical Physics,9 (2002)228. www.ijmer.com 376 | Page