Chapter 2: Random Variables
Probability and Random Process (EEEg-2114)
Random Variables
Outline
 Introduction
 The Cumulative Distribution Function
 Probability Density and Mass Functions
 Expected Value, Variance and Moments
 Some Special Distributions
 Functions of One Random Variable
2
Introduction
 A random variable X is a function that assigns a real number
X(ω) to each outcome ω in the sample space Ω of a random
experiment.
 The sample space Ω is the domain of the random variable and the
set RX of all values taken on by X is the range of the random
variable.
 Thus, RX is the subset of all real numbers.


Line
al
Re
x
X 
)
(
x
A
B
3
Introduction Cont’d……
 If X is a random variable, then {ω: X(ω)≤ x}={X≤ x} is an event
for every X in RX.
Example: Consider a random experiment of tossing a fair coin three
times. The sequence of heads and tails is noted and the sample
space Ω is given by:
Let X be the number of heads in three coin tosses. X assigns
each possible outcome ω in the sample space Ω a number from
the set RX={0, 1, 2, 3}.
}
TTT
,
,
,
,
,
,
,
{ TTH
HTT
THT
THH
HTH
HHT
HHH


0
1
1
1
2
2
2
3
:
)
(
:


X
TTT
TTH
HTT
THT
THH
HTH
HHT
HHH
4
The Cumulative Distribution Function
 The cumulative distribution function (cdf) of a random variable
X is defined as the probability of the event {X≤ x}.
Properties of the cdf, FX(x):
 The cdf has the following properties.
1
)
(
0
i.e.,
function,
negative
-
non
a
is
)
(
.

 x
F
x
F
i
X
X
1
)
(
lim
. 


x
F
ii X
x
0
)
(
lim
. 


x
F
iii X
x
)
(
)
( x
X
P
x
FX 

5
The Cumulative Distribution Function Cont’d…..
)
(
)
(
then
,
If
i.e.,
,
of
function
decreasing
-
non
a
is
)
(
.
2
1
2
1 x
F
x
F
x
x
X
x
F
iv
X
X
X


)
(
)
(
)
(
. 1
2
2
1 x
F
x
F
x
X
x
P
v X
X 



)
(
1
)
(
. x
F
x
X
P
vi X



Example:
Find the cdf of the random variable X which is defined as the
number of heads in three tosses of a fair coin.
6
The Cumulative Distribution Function
Solution:
 We know that X takes on only the values 0, 1, 2 and 3 with
probabilities 1/8, 3/8, 3/8 and 1/8 respectively.
 Thus, FX(x) is simply the sum of the probabilities of the
outcomes from the set {0, 1, 2, 3} that are less than or equal to x.



















3
,
1
3
2
,
8
/
7
2
1
,
2
/
1
1
0
,
8
/
1
0
,
0
)
(
x
x
x
x
x
x
FX
7
Types of Random Variables
 There are two basic types of random variables.
i. Continuous Random Variable
 A continuous random variable is defined as a random variable
whose cdf, FX(x), is continuous every where and can be written as
an integral of some non-negative function f(x), i.e.,
ii. Discrete Random Variable
 A discrete random variable is defined as a random variable whose
cdf, FX(x), is a right continuous, staircase function of X with
jumps at a countable set of points x0, x1, x2,……




 du
u
f
x
FX )
(
)
(
8
The Probability Density Function
 The probability density function (pdf) of a continuous random
variable X is defined as the derivative of the cdf, FX(x), i.e.,
Properties of the pdf, fX(x):
dx
x
dF
x
f X
X
)
(
)
( 










2
1
)
(
)
(
.
1
)
(
.
0
)
(
,
of
values
all
For
.
2
1
x
x
X
X
X
dx
x
f
x
X
x
P
iii
dx
x
f
ii
x
f
X
i
9
The Probability Mass Function
 The probability mass function (pmf) of a discrete random
variable X is defined as:
Properties of the pmf, PX (xi ):
)
(
)
(
)
(
)
( 1




 i
X
i
X
i
X
i
X x
F
x
F
x
P
x
X
P
 






k
k
X
k
X
i
X
x
P
iii
k
x
x
x
P
ii
k
x
P
i
1
)
(
.
.....
2,
,
1
,
if
,
0
)
(
.
.....
2,
,
1
,
1
)
(
0
.
10
Calculating the Cumulative Distribution Function
 The cdf of a continuous random variable X can be obtained by
integrating the pdf, i.e.,
 Similarly, the cdf of a discrete random variable X can be obtained by
using the formula:



x
X
X du
u
f
x
F )
(
)
(




x
x
k
k
X
X
k
x
x
U
x
P
x
F )
(
)
(
)
(
11
Expected Value, Variance and Moments
i. Expected Value (Mean)
 The expected value (mean) of a continuous random variable X,
denoted by μX or E(X), is defined as:
 Similarly, the expected value of a discrete random variable X is
given by:
 Mean represents the average value of the random variable in a
very large number of trials.





 dx
x
xf
X
E X
X )
(
)
(




k
k
X
k
X x
P
x
X
E )
(
)
(

12
Expected Value, Variance and Moments Cont’d…..
ii. Variance
 The variance of a continuous random variable X, denoted by
σ2
X or VAR(X), is defined as:
 Expanding (x-μX )2 in the above equation and simplifying the
resulting equation, we will get:











dx
x
f
x
X
Var
X
E
X
Var
X
X
X
X
X
)
(
)
(
)
(
]
)
[(
)
(
2
2
2
2




2
2
2
)]
(
[
)
(
)
( X
E
X
E
X
Var
X 



13
Expected Value, Variance and Moments Cont’d…..
 The variance of a discrete random variable X is given by:
 The standard deviation of a random variable X, denoted by σX, is
simply the square root of the variance, i.e.,
iii.Moments
 The nth moment of a continuous random variable X is defined as:
 


k
k
X
X
k
X x
P
x
X
Var )
(
)
(
)
( 2
2


)
(
)
( 2
X
Var
X
E X
X 

 






 1
,
)
(
)
( n
dx
x
f
x
X
E X
n
n
14
Expected Value, Variance and Moments Cont’d…..
 Similarly, the nth moment of a discrete random variable X is
given by:
 Mean of X is the first moment of the random variable X.
1
,
)
(
)
( 
  n
x
P
x
X
E
k
k
X
n
k
15
Some Special Distributions
i. Continuous Probability Distributions
1. Normal (Gaussian) Distribution
 The random variable X is said to be normal or Gaussian
random variable if its pdf is given by:
 The corresponding distribution function is given by:
where
.
2
1
)
(
2
2
2
/
)
(
2





 x
X e
x
f
 








 


x
y
X
x
G
dy
e
x
F




 2
2
2
/
)
(
2
2
1
)
(
dy
e
x
G y
x
2
/
2
2
1
)
( 





16
Some Special Distributions Cont’d……
 The normal or Gaussian distribution is the most common
continuous probability distribution.
)
(x
fX
x

Fig. Normal or Gaussian Distribution
17
Some Special Distributions Cont’d……
2. Uniform Distribution
3. Exponential Distribution
)
(x
fX
x
a b
a
b 
1
Fig. Uniform Distribution








otherwise.
0,
,
0
,
1
)
(
/
x
e
x
f
x
X


)
(x
fX
x
Fig. Exponential Distribution









otherwise.
0,
,
1
)
(
b
x
a
a
b
x
fX
18
Some Special Distributions Cont’d……
4. Gamma Distribution
5. Beta Distribution
where










otherwise.
0,
,
0
,
)
(
)
(
/
1
x
e
x
x
f
x
X
















otherwise.
0,
,
1
0
,
)
1
(
)
,
(
1
)
(
1
1
x
x
x
b
a
x
f
b
a
X 





1
0
1
1
.
)
1
(
)
,
( du
u
u
b
a b
a

19
Some Special Distributions Cont’d……
6. Rayleigh Distribution
7. Cauchy Distribution
8. Laplace Distribution








otherwise.
0,
,
0
,
)
(
2
2
2
/
2
x
e
x
x
f
x
X


.
,
)
(
/
)
( 2
2







 x
x
x
fX




.
,
2
1
)
( /
|
|





 
x
e
x
f x
X


20
Some Special Distributions Cont’d….
i. Discrete Probability Distributions
1. Bernoulli Distribution
2. Binomial Distribution
3. Poisson Distribution
.
)
1
(
,
)
0
( p
X
P
q
X
P 



.
,
,
2
,
1
,
0
,
)
( n
k
q
p
k
n
k
X
P k
n
k











 
.
,
,
2
,
1
,
0
,
!
)
( 


 

k
k
e
k
X
P
k


21
Some Special Distributions Cont’d….
4. Hypergeometric Distribution
5. Geometric Distribution
6. Negative Binomial Distribution
, max(0, ) min( , )
( )
m N m
k n k
N
n
m n N k m n
P X k
 
 
 
 
   
   
 
 
 
 


   
 
.
1
,
,
,
2
,
1
,
0
,
)
( p
q
k
pq
k
X
P k





 
1
( ) , , 1, .
1
r k r
k
P X k p q k r r
r


 
   
 

 
22
Random Variable Examples
Example-1:
The pdf of a continuous random variable is given by:
.
of
variance
and
mean
the
Evaluate
.
)
1
4
/
1
(
Find
.
.
of
cdf
ing
correspond
the
Find
.
.
of
value
the
Determine
.
constant.
a
is
re
whe
otherwise
,
0
1
0
,
)
(
X
d
X
P
c
X
b
k
a
k
x
kx
x
fX






 


23
Random Variable Examples Cont’d……
Solution:
2
1
2
1
0
1
2
1
1
)
(
.
2
1
0
















 




k
k
x
k
kxdx
dx
x
f
a X
otherwise
,
0
1
0
,
2
)
(


 



x
x
x
fX
24
Random Variable Examples Cont’d……
Solution:
0
2
)
(
)
(
1
0
for
:
2
Case
0
for
,
0
)
(
since
,
0
)
(
0
for
:
1
Case
)
(
)
(
:
by
given
is
of
cdf
The
.
2
0 0
2
X
x
x
u
udu
du
u
f
x
F
x
x
x
f
x
F
x
du
u
f
x
F
X
b
x x
X
X
X
x
X
X











 
 

25
Random Variable Examples Cont’d……
Solution:
1
,
1
1
0
,
0
,
0
)
(
by
given
is
cdf
The
1
0
1
2
)
(
)
(
1
for
:
3
Case
2
1
0
1
0
2
















 
x
x
x
x
x
F
u
udu
du
u
f
x
F
x
X
X
X
26
Random Variable Examples Cont’d……
Solution:
16
/
15
)
1
4
/
1
(
16
/
15
)
4
/
1
(
1
)
1
4
/
1
(
)
4
/
1
(
)
1
(
)
1
4
/
1
(
cdf
the
Using
.
16
/
15
)
1
4
/
1
(
16
/
15
4
/
1
1
)
1
4
/
1
(
2
)
(
)
1
4
/
1
(
pdf
the
Using
.
)
1
4
/
1
(
.
2
2
1
4
/
1
1
4
/
1





























 
X
P
X
P
F
F
X
P
ii
X
P
x
X
P
dx
x
dx
x
f
X
P
i
X
P
c
X
X
X
27
Random Variable Examples Cont’d……
Solution:
18
/
1
)
3
/
2
(
2
/
1
)
(
2
/
1
2
)
(
)
(
)]
(
[
)
(
)
(
Variance
.
3
/
2
0
1
3
2
2
)
(
)
(
Mean
.
Variance
and
Mean
.
2
2
1
0
1
0
3
2
2
2
2
2
3
1
0
1
0
2

















 
 
x
Var
dx
x
dx
x
f
x
X
E
X
E
X
E
X
Var
ii
x
dx
x
dx
x
xf
X
E
i
d
X
X
X
X
X
X




28
Random Variable Examples Cont’d……..
Example-2:
Consider a discrete random variable X whose pmf is given by:
.
of
variance
and
mean
the
Find
otherwise
,
0
1
0,
,
1
,
3
/
1
)
(
X
x
x
P
k
k
X




 


29
Random Variable Examples Cont’d……
Solution:
3
/
2
)
0
(
3
/
2
)
(
3
/
2
]
)
1
(
)
0
(
)
1
[(
3
/
1
)
(
)
(
)]
(
[
)
(
)
(
Variance
.
0
)
1
0
1
(
3
/
1
)
(
)
(
Mean
.
2
2
1
1
2
2
2
2
2
2
2
2
1
1



























x
Var
x
P
x
X
E
X
E
X
E
X
Var
ii
x
P
x
X
E
i
X
k
k
X
k
X
k
k
X
k
X



30
Functions of One Random Variable
 Let X be a continuous random variable with pdf fX(x) and suppose
g(x) is a function of the random variable X defined as:
 We can determine the cdf and pdf of Y in terms of that of X.
 Consider some of the following functions.
31
)
(X
g
Y 
)
(X
g
Y 
b
aX 
2
X
|
| X
X
)
(
|
| x
U
X
X
e
X
log
X
sin
X
1
Functions of a Random Variable Cont’d…..
 Steps to determine fY(y) from fX(x):
Method I:
1. Sketch the graph of Y=g(X) and determine the range space of Y.
2. Determine the cdf of Y using the following basic approach.
3. Obtain fY(y) from FY(y) by using direct differentiation, i.e.,
32
)
(
)
)
(
(
)
( y
Y
P
y
X
g
P
y
FY 



dy
y
dF
y
f Y
Y
)
(
)
( 
Functions of a Random Variable Cont’d…..
Method II:
1. Sketch the graph of Y=g(X) and determine the range space of Y.
2. If Y=g(X) is one to one function and has an inverse
transformation x=g-1(y)=h(y), then the pdf of Y is given by:
3. Obtain Y=g(x) is not one-to-one function, then the pdf of Y can
be obtained as follows.
i. Find the real roots of the function Y=g(x) and denote them by xi
33
)]
(
[
)
(
)
(
)
( y
h
f
dy
y
dh
x
f
dy
dx
y
f X
X
Y 

Functions of a Random Variable Cont’d…..
ii. Determine the derivative of function g(xi ) at every real root xi ,
i.e. ,
iii. Find the pdf of Y by using the following formula.
34

 

i
i
X
i
i
X
i
i
Y x
f
x
g
x
f
dy
dx
y
f )
(
)
(
)
(
)
(
dy
dx
x
g i
i 
)
(
Examples on Functions of One Random Variable
Examples:
35
.
of
pdf
the
determine
,
tan
If
].
2
,
2
[
interval
in the
uniform
is
X
variable
random
The
.
).
(
Find
.
1
Let
.
).
(
Find
.
Let
.
).
(
Find
.
Let
.
2
Y
X
Y
d
y
f
X
Y
c
y
f
X
Y
b
y
f
b
aX
Y
a
Y
Y
Y








Examples on Functions of One Random Variable…..
Solutions:
36
)
(
1
)
(
)
(
)
(
)
(
)
(
)
(
0
that
Suppose
Method
Using
.
.
i
a
b
y
f
a
dy
y
dF
y
f
a
b
y
F
y
F
a
b
y
X
P
y
b
aX
P
y
Y
P
y
F
a
I
i
b
aX
Y
a
X
Y
Y
X
Y
y





 








 






 











Examples on Functions of One Random Variable…..
Solutions:
37
)
(
1
)
(
)
(
1
)
(
)
(
)
(
)
(
then
,
0
if
other
On the
Method
Using
.
.
ii
a
b
y
f
a
dy
y
dF
y
f
a
b
y
F
y
F
a
b
y
X
P
y
b
aX
P
y
Y
P
y
F
a
I
i
b
aX
Y
a
X
Y
Y
X
Y
y





 









 







 











Examples on Functions of One Random Variable…..
Solutions:
38
a
a
b
y
f
a
y
f
ii
i
I
i
b
aX
Y
a
X
Y all
for
,
1
)
(
:
obtain
we
,
)
(
and
)
(
equations
From
Method
Using
.
.





 




Examples on Functions of One Random Variable…..
Solutions:
39
    




 
















a
b
y
f
a
y
f
y
h
f
dy
y
dh
x
f
dy
dx
y
f
a
dy
dx
a
dy
y
dh
dy
dx
y
h
a
b
y
x
y
IR
Y
b
aX
Y
II
ii
b
aX
Y
a
X
Y
X
X
Y
1
)
(
)
(
)
(
)
(
1
1
)
(
solution
principal
the
is
)
(
,
any
For
is
of
space
range
the
and
one
-
to
-
one
is
function
The
Method
Using
.
.
Examples on Functions of One Random Variable…..
Solutions:
40
y
and
by
given
solutions
two
are
there
,
0
each
For
0
is
of
space
range
the
and
one
-
to
-
one
not
is
function
The
.
2
1
2






x
y
x
y
y
Y
X
Y
b
Examples on Functions of One Random Variable…..
Solutions:
41
   
 






















otherwise
y
y
f
y
f
y
y
f
x
f
dy
dx
x
f
dy
dx
y
f
x
f
dy
dx
y
f
y
dy
dx
y
dy
dx
y
dy
dx
y
dy
dx
b
X
X
Y
X
X
Y
i
X
i
i
Y
,
0
0
,
2
1
)
(
)
(
)
(
)
(
)
(
)
(
2
1
2
1
and
2
1
2
1
.
2
2
1
1
2
2
1
1
Examples on Functions of One Random Variable…..
Solutions:
42
 
   
 
0
/
,
y
1
1
)
(
1
1
)
(
)
(
)
(
)
(
1
)
(
solution
principal
the
is
)
(
1
,
any
For
0
/
is
of
space
range
the
and
one
-
to
-
one
is
1
function
The
.
2
2
2
IR
f
y
y
f
y
f
y
y
f
y
h
f
dy
y
dh
x
f
dy
dx
y
f
y
dy
y
dh
dy
dx
y
h
y
x
y
IR
Y
X
Y
c
X
Y
X
Y
X
X
Y




























Examples on Functions of One Random Variable…..
Solutions:
43
   






















y
y
y
f
y
y
f
y
h
f
dy
y
dh
x
f
dy
dx
y
f
y
dy
y
dh
dy
dx
y
h
y
x
y
Y
X
Y
d
Y
Y
X
X
Y
,
)
1
(
1
)
(
1
/
1
)
(
)
(
)
(
)
(
1
1
)
(
solution
principal
the
is
)
(
tan
,
any
For
)
,
(
is
of
space
range
the
and
one
-
to
-
one
is
tan
function
The
.
2
2
2
1


Examples on Functions of One Random Variable…..
Solutions:
44
Assignment-II
1. The continuous random variable X has the pdf given by:
.
of
variance
and
mean
the
.
)
1
(
.
.
of
cdf
the
.
.
of
value
the
.
:
Find
constant.
a
is
re
whe
otherwise
,
0
2
0
,
)
2
(
)
(
2
X
d
X
P
c
X
b
k
a
k
x
x
x
k
x
fX





 



45
Assignment-II Cont’d…..
2. The cdf of continuous random variable X is given by:
.
of
variance
and
mean
the
.
.
of
pdf
the
.
.
of
value
the
.
:
Determine
constant.
a
is
re
whe
1
1,
1
0
,
0
,
0
)
(
X
c
X
b
k
a
k
x
x
x
k
x
x
X
F












46
Assignment-II Cont’d…..
3. The random variable X is uniform in the interval [0, 1]. Find
the pdf of the random variable Y if Y=-lnX.
47

02-Random Variables.ppt

  • 1.
    Chapter 2: RandomVariables Probability and Random Process (EEEg-2114)
  • 2.
    Random Variables Outline  Introduction The Cumulative Distribution Function  Probability Density and Mass Functions  Expected Value, Variance and Moments  Some Special Distributions  Functions of One Random Variable 2
  • 3.
    Introduction  A randomvariable X is a function that assigns a real number X(ω) to each outcome ω in the sample space Ω of a random experiment.  The sample space Ω is the domain of the random variable and the set RX of all values taken on by X is the range of the random variable.  Thus, RX is the subset of all real numbers.   Line al Re x X  ) ( x A B 3
  • 4.
    Introduction Cont’d……  IfX is a random variable, then {ω: X(ω)≤ x}={X≤ x} is an event for every X in RX. Example: Consider a random experiment of tossing a fair coin three times. The sequence of heads and tails is noted and the sample space Ω is given by: Let X be the number of heads in three coin tosses. X assigns each possible outcome ω in the sample space Ω a number from the set RX={0, 1, 2, 3}. } TTT , , , , , , , { TTH HTT THT THH HTH HHT HHH   0 1 1 1 2 2 2 3 : ) ( :   X TTT TTH HTT THT THH HTH HHT HHH 4
  • 5.
    The Cumulative DistributionFunction  The cumulative distribution function (cdf) of a random variable X is defined as the probability of the event {X≤ x}. Properties of the cdf, FX(x):  The cdf has the following properties. 1 ) ( 0 i.e., function, negative - non a is ) ( .   x F x F i X X 1 ) ( lim .    x F ii X x 0 ) ( lim .    x F iii X x ) ( ) ( x X P x FX   5
  • 6.
    The Cumulative DistributionFunction Cont’d….. ) ( ) ( then , If i.e., , of function decreasing - non a is ) ( . 2 1 2 1 x F x F x x X x F iv X X X   ) ( ) ( ) ( . 1 2 2 1 x F x F x X x P v X X     ) ( 1 ) ( . x F x X P vi X    Example: Find the cdf of the random variable X which is defined as the number of heads in three tosses of a fair coin. 6
  • 7.
    The Cumulative DistributionFunction Solution:  We know that X takes on only the values 0, 1, 2 and 3 with probabilities 1/8, 3/8, 3/8 and 1/8 respectively.  Thus, FX(x) is simply the sum of the probabilities of the outcomes from the set {0, 1, 2, 3} that are less than or equal to x.                    3 , 1 3 2 , 8 / 7 2 1 , 2 / 1 1 0 , 8 / 1 0 , 0 ) ( x x x x x x FX 7
  • 8.
    Types of RandomVariables  There are two basic types of random variables. i. Continuous Random Variable  A continuous random variable is defined as a random variable whose cdf, FX(x), is continuous every where and can be written as an integral of some non-negative function f(x), i.e., ii. Discrete Random Variable  A discrete random variable is defined as a random variable whose cdf, FX(x), is a right continuous, staircase function of X with jumps at a countable set of points x0, x1, x2,……      du u f x FX ) ( ) ( 8
  • 9.
    The Probability DensityFunction  The probability density function (pdf) of a continuous random variable X is defined as the derivative of the cdf, FX(x), i.e., Properties of the pdf, fX(x): dx x dF x f X X ) ( ) (            2 1 ) ( ) ( . 1 ) ( . 0 ) ( , of values all For . 2 1 x x X X X dx x f x X x P iii dx x f ii x f X i 9
  • 10.
    The Probability MassFunction  The probability mass function (pmf) of a discrete random variable X is defined as: Properties of the pmf, PX (xi ): ) ( ) ( ) ( ) ( 1      i X i X i X i X x F x F x P x X P         k k X k X i X x P iii k x x x P ii k x P i 1 ) ( . ..... 2, , 1 , if , 0 ) ( . ..... 2, , 1 , 1 ) ( 0 . 10
  • 11.
    Calculating the CumulativeDistribution Function  The cdf of a continuous random variable X can be obtained by integrating the pdf, i.e.,  Similarly, the cdf of a discrete random variable X can be obtained by using the formula:    x X X du u f x F ) ( ) (     x x k k X X k x x U x P x F ) ( ) ( ) ( 11
  • 12.
    Expected Value, Varianceand Moments i. Expected Value (Mean)  The expected value (mean) of a continuous random variable X, denoted by μX or E(X), is defined as:  Similarly, the expected value of a discrete random variable X is given by:  Mean represents the average value of the random variable in a very large number of trials.       dx x xf X E X X ) ( ) (     k k X k X x P x X E ) ( ) (  12
  • 13.
    Expected Value, Varianceand Moments Cont’d….. ii. Variance  The variance of a continuous random variable X, denoted by σ2 X or VAR(X), is defined as:  Expanding (x-μX )2 in the above equation and simplifying the resulting equation, we will get:            dx x f x X Var X E X Var X X X X X ) ( ) ( ) ( ] ) [( ) ( 2 2 2 2     2 2 2 )] ( [ ) ( ) ( X E X E X Var X     13
  • 14.
    Expected Value, Varianceand Moments Cont’d…..  The variance of a discrete random variable X is given by:  The standard deviation of a random variable X, denoted by σX, is simply the square root of the variance, i.e., iii.Moments  The nth moment of a continuous random variable X is defined as:     k k X X k X x P x X Var ) ( ) ( ) ( 2 2   ) ( ) ( 2 X Var X E X X            1 , ) ( ) ( n dx x f x X E X n n 14
  • 15.
    Expected Value, Varianceand Moments Cont’d…..  Similarly, the nth moment of a discrete random variable X is given by:  Mean of X is the first moment of the random variable X. 1 , ) ( ) (    n x P x X E k k X n k 15
  • 16.
    Some Special Distributions i.Continuous Probability Distributions 1. Normal (Gaussian) Distribution  The random variable X is said to be normal or Gaussian random variable if its pdf is given by:  The corresponding distribution function is given by: where . 2 1 ) ( 2 2 2 / ) ( 2       x X e x f               x y X x G dy e x F      2 2 2 / ) ( 2 2 1 ) ( dy e x G y x 2 / 2 2 1 ) (       16
  • 17.
    Some Special DistributionsCont’d……  The normal or Gaussian distribution is the most common continuous probability distribution. ) (x fX x  Fig. Normal or Gaussian Distribution 17
  • 18.
    Some Special DistributionsCont’d…… 2. Uniform Distribution 3. Exponential Distribution ) (x fX x a b a b  1 Fig. Uniform Distribution         otherwise. 0, , 0 , 1 ) ( / x e x f x X   ) (x fX x Fig. Exponential Distribution          otherwise. 0, , 1 ) ( b x a a b x fX 18
  • 19.
    Some Special DistributionsCont’d…… 4. Gamma Distribution 5. Beta Distribution where           otherwise. 0, , 0 , ) ( ) ( / 1 x e x x f x X                 otherwise. 0, , 1 0 , ) 1 ( ) , ( 1 ) ( 1 1 x x x b a x f b a X       1 0 1 1 . ) 1 ( ) , ( du u u b a b a  19
  • 20.
    Some Special DistributionsCont’d…… 6. Rayleigh Distribution 7. Cauchy Distribution 8. Laplace Distribution         otherwise. 0, , 0 , ) ( 2 2 2 / 2 x e x x f x X   . , ) ( / ) ( 2 2         x x x fX     . , 2 1 ) ( / | |        x e x f x X   20
  • 21.
    Some Special DistributionsCont’d…. i. Discrete Probability Distributions 1. Bernoulli Distribution 2. Binomial Distribution 3. Poisson Distribution . ) 1 ( , ) 0 ( p X P q X P     . , , 2 , 1 , 0 , ) ( n k q p k n k X P k n k              . , , 2 , 1 , 0 , ! ) (       k k e k X P k   21
  • 22.
    Some Special DistributionsCont’d…. 4. Hypergeometric Distribution 5. Geometric Distribution 6. Negative Binomial Distribution , max(0, ) min( , ) ( ) m N m k n k N n m n N k m n P X k                                 . 1 , , , 2 , 1 , 0 , ) ( p q k pq k X P k        1 ( ) , , 1, . 1 r k r k P X k p q k r r r              22
  • 23.
    Random Variable Examples Example-1: Thepdf of a continuous random variable is given by: . of variance and mean the Evaluate . ) 1 4 / 1 ( Find . . of cdf ing correspond the Find . . of value the Determine . constant. a is re whe otherwise , 0 1 0 , ) ( X d X P c X b k a k x kx x fX           23
  • 24.
    Random Variable ExamplesCont’d…… Solution: 2 1 2 1 0 1 2 1 1 ) ( . 2 1 0                       k k x k kxdx dx x f a X otherwise , 0 1 0 , 2 ) (        x x x fX 24
  • 25.
    Random Variable ExamplesCont’d…… Solution: 0 2 ) ( ) ( 1 0 for : 2 Case 0 for , 0 ) ( since , 0 ) ( 0 for : 1 Case ) ( ) ( : by given is of cdf The . 2 0 0 2 X x x u udu du u f x F x x x f x F x du u f x F X b x x X X X x X X                 25
  • 26.
    Random Variable ExamplesCont’d…… Solution: 1 , 1 1 0 , 0 , 0 ) ( by given is cdf The 1 0 1 2 ) ( ) ( 1 for : 3 Case 2 1 0 1 0 2                   x x x x x F u udu du u f x F x X X X 26
  • 27.
    Random Variable ExamplesCont’d…… Solution: 16 / 15 ) 1 4 / 1 ( 16 / 15 ) 4 / 1 ( 1 ) 1 4 / 1 ( ) 4 / 1 ( ) 1 ( ) 1 4 / 1 ( cdf the Using . 16 / 15 ) 1 4 / 1 ( 16 / 15 4 / 1 1 ) 1 4 / 1 ( 2 ) ( ) 1 4 / 1 ( pdf the Using . ) 1 4 / 1 ( . 2 2 1 4 / 1 1 4 / 1                                X P X P F F X P ii X P x X P dx x dx x f X P i X P c X X X 27
  • 28.
    Random Variable ExamplesCont’d…… Solution: 18 / 1 ) 3 / 2 ( 2 / 1 ) ( 2 / 1 2 ) ( ) ( )] ( [ ) ( ) ( Variance . 3 / 2 0 1 3 2 2 ) ( ) ( Mean . Variance and Mean . 2 2 1 0 1 0 3 2 2 2 2 2 3 1 0 1 0 2                      x Var dx x dx x f x X E X E X E X Var ii x dx x dx x xf X E i d X X X X X X     28
  • 29.
    Random Variable ExamplesCont’d…….. Example-2: Consider a discrete random variable X whose pmf is given by: . of variance and mean the Find otherwise , 0 1 0, , 1 , 3 / 1 ) ( X x x P k k X         29
  • 30.
    Random Variable ExamplesCont’d…… Solution: 3 / 2 ) 0 ( 3 / 2 ) ( 3 / 2 ] ) 1 ( ) 0 ( ) 1 [( 3 / 1 ) ( ) ( )] ( [ ) ( ) ( Variance . 0 ) 1 0 1 ( 3 / 1 ) ( ) ( Mean . 2 2 1 1 2 2 2 2 2 2 2 2 1 1                            x Var x P x X E X E X E X Var ii x P x X E i X k k X k X k k X k X    30
  • 31.
    Functions of OneRandom Variable  Let X be a continuous random variable with pdf fX(x) and suppose g(x) is a function of the random variable X defined as:  We can determine the cdf and pdf of Y in terms of that of X.  Consider some of the following functions. 31 ) (X g Y  ) (X g Y  b aX  2 X | | X X ) ( | | x U X X e X log X sin X 1
  • 32.
    Functions of aRandom Variable Cont’d…..  Steps to determine fY(y) from fX(x): Method I: 1. Sketch the graph of Y=g(X) and determine the range space of Y. 2. Determine the cdf of Y using the following basic approach. 3. Obtain fY(y) from FY(y) by using direct differentiation, i.e., 32 ) ( ) ) ( ( ) ( y Y P y X g P y FY     dy y dF y f Y Y ) ( ) ( 
  • 33.
    Functions of aRandom Variable Cont’d….. Method II: 1. Sketch the graph of Y=g(X) and determine the range space of Y. 2. If Y=g(X) is one to one function and has an inverse transformation x=g-1(y)=h(y), then the pdf of Y is given by: 3. Obtain Y=g(x) is not one-to-one function, then the pdf of Y can be obtained as follows. i. Find the real roots of the function Y=g(x) and denote them by xi 33 )] ( [ ) ( ) ( ) ( y h f dy y dh x f dy dx y f X X Y  
  • 34.
    Functions of aRandom Variable Cont’d….. ii. Determine the derivative of function g(xi ) at every real root xi , i.e. , iii. Find the pdf of Y by using the following formula. 34     i i X i i X i i Y x f x g x f dy dx y f ) ( ) ( ) ( ) ( dy dx x g i i  ) (
  • 35.
    Examples on Functionsof One Random Variable Examples: 35 . of pdf the determine , tan If ]. 2 , 2 [ interval in the uniform is X variable random The . ). ( Find . 1 Let . ). ( Find . Let . ). ( Find . Let . 2 Y X Y d y f X Y c y f X Y b y f b aX Y a Y Y Y        
  • 36.
    Examples on Functionsof One Random Variable….. Solutions: 36 ) ( 1 ) ( ) ( ) ( ) ( ) ( ) ( 0 that Suppose Method Using . . i a b y f a dy y dF y f a b y F y F a b y X P y b aX P y Y P y F a I i b aX Y a X Y Y X Y y                                    
  • 37.
    Examples on Functionsof One Random Variable….. Solutions: 37 ) ( 1 ) ( ) ( 1 ) ( ) ( ) ( ) ( then , 0 if other On the Method Using . . ii a b y f a dy y dF y f a b y F y F a b y X P y b aX P y Y P y F a I i b aX Y a X Y Y X Y y                                      
  • 38.
    Examples on Functionsof One Random Variable….. Solutions: 38 a a b y f a y f ii i I i b aX Y a X Y all for , 1 ) ( : obtain we , ) ( and ) ( equations From Method Using . .           
  • 39.
    Examples on Functionsof One Random Variable….. Solutions: 39                            a b y f a y f y h f dy y dh x f dy dx y f a dy dx a dy y dh dy dx y h a b y x y IR Y b aX Y II ii b aX Y a X Y X X Y 1 ) ( ) ( ) ( ) ( 1 1 ) ( solution principal the is ) ( , any For is of space range the and one - to - one is function The Method Using . .
  • 40.
    Examples on Functionsof One Random Variable….. Solutions: 40 y and by given solutions two are there , 0 each For 0 is of space range the and one - to - one not is function The . 2 1 2       x y x y y Y X Y b
  • 41.
    Examples on Functionsof One Random Variable….. Solutions: 41                             otherwise y y f y f y y f x f dy dx x f dy dx y f x f dy dx y f y dy dx y dy dx y dy dx y dy dx b X X Y X X Y i X i i Y , 0 0 , 2 1 ) ( ) ( ) ( ) ( ) ( ) ( 2 1 2 1 and 2 1 2 1 . 2 2 1 1 2 2 1 1
  • 42.
    Examples on Functionsof One Random Variable….. Solutions: 42         0 / , y 1 1 ) ( 1 1 ) ( ) ( ) ( ) ( 1 ) ( solution principal the is ) ( 1 , any For 0 / is of space range the and one - to - one is 1 function The . 2 2 2 IR f y y f y f y y f y h f dy y dh x f dy dx y f y dy y dh dy dx y h y x y IR Y X Y c X Y X Y X X Y                            
  • 43.
    Examples on Functionsof One Random Variable….. Solutions: 43                           y y y f y y f y h f dy y dh x f dy dx y f y dy y dh dy dx y h y x y Y X Y d Y Y X X Y , ) 1 ( 1 ) ( 1 / 1 ) ( ) ( ) ( ) ( 1 1 ) ( solution principal the is ) ( tan , any For ) , ( is of space range the and one - to - one is tan function The . 2 2 2 1  
  • 44.
    Examples on Functionsof One Random Variable….. Solutions: 44
  • 45.
    Assignment-II 1. The continuousrandom variable X has the pdf given by: . of variance and mean the . ) 1 ( . . of cdf the . . of value the . : Find constant. a is re whe otherwise , 0 2 0 , ) 2 ( ) ( 2 X d X P c X b k a k x x x k x fX           45
  • 46.
    Assignment-II Cont’d….. 2. Thecdf of continuous random variable X is given by: . of variance and mean the . . of pdf the . . of value the . : Determine constant. a is re whe 1 1, 1 0 , 0 , 0 ) ( X c X b k a k x x x k x x X F             46
  • 47.
    Assignment-II Cont’d….. 3. Therandom variable X is uniform in the interval [0, 1]. Find the pdf of the random variable Y if Y=-lnX. 47