SlideShare a Scribd company logo
1 of 60
Download to read offline
Complex Numbers
Solving Quadratics
Complex Numbers
Solving Quadratics
              x2 1  0
Complex Numbers
Solving Quadratics
                 x2 1  0
                x 2  1
           no real solutions
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number

                     i   1 or i 2  1
                   i is an imaginary number
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number

                     i   1 or i 2  1
                   i is an imaginary number

                         x 2  1
                          x   1
                          x  i
e.g . x 2  3 x  7  0
e.g . x 2  3 x  7  0

       3  9  28
   x
            2
       3   19
    
           2
e.g . x 2  3 x  7  0

       3  9  28
   x
            2
       3   19
    
           2
       3  19i
    
           2
e.g . x 2  3 x  7  0

       3  9  28
  x
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0          x 2  3x  7  0

       3  9  28
  x                        OR
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0            x 2  3x  7  0
                                         2
                                 x  3  19
       3  9  28                       0
  x                        OR       2     4
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0            x 2  3x  7  0
                                         2
                                 x  3  19
       3  9  28                       0
  x                        OR       2     4
            2                            2
       3   19                  x  3  19 i 2
                                              0
           2                          2    4
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0                 x 2  3x  7  0
                                              2
                                      x  3  19
       3  9  28                            0
  x                        OR            2     4
            2                                 2
       3   19                       x  3  19 i 2
                                                   0
           2                               2    4
       3  19i                    3  19      3  19 
                                x    i  x     i  0
           2                       2  2       2  2 
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0                 x 2  3x  7  0
                                              2
                                      x  3  19
       3  9  28                            0
  x                        OR            2     4
            2                                 2
       3   19                       x  3  19 i 2
                                                   0
           2                               2    4
       3  19i                    3  19      3  19 
                                x    i  x     i  0
           2                       2  2       2  2 
    3  19i          3  19i
x            or x                 3  19           3  19
        2                 2      x     i or x       i
                                    2  2            2  2
All complex numbers (z) can be written as; z = x + iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
          Re z   3
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
          Re z   3   Im z   5
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                             Re z   x
                             Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                             Re z   x
                             Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
(4) Every complex number z = x + iy, has a complex conjugate
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
          3
    e.g . ,  , e,4
          4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
    e.g . z  2  7i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
          3
    e.g . ,  , e,4
          4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
    e.g . z  2  7i               z  2  7i
Complex Numbers
     x + iy
Complex Numbers
     x + iy

             Real Numbers
                  y=0
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
                         Rational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
                         Rational Numbers




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals
                                           Zero




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals
                                           Zero

                         Negatives



                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
       Pure           Fractions      Integers
Imaginary Numbers                    Naturals
    x  0, y  0
                                           Zero

                         Negatives



                         Irrational Numbers
Complex Numbers
                      x + iy
   Imaginary Numbers            Real Numbers
         y0                         y=0
                             Rational Numbers
          Pure            Fractions      Integers
   Imaginary Numbers                     Naturals
       x  0, y  0
                                               Zero

                             Negatives
NOTE: Imaginary numbers
   cannot be ordered

                             Irrational Numbers
Basic Operations
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
          4  3i    8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
          4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i        4  3i     8  2i 
         32  8i  24i  6i 2               
                                    8  2i   8  2i 
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i         4  3i     8  2i 
         32  8i  24i  6i 2                
                                     8  2i   8  2i 
         32  32i  6
                                     32  8i  24i  6
         26  32i               
                                          64  4
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i         4  3i     8  2i 
         32  8i  24i  6i 2                
                                     8  2i   8  2i 
         32  32i  6
                                     32  8i  24i  6
         26  32i               
                                          64  4
                                     38  16i
                                  
                                        68
                                     19 8
                                         i
                                     34 34
Exercise 4A; 1 to 16 evens

More Related Content

What's hot

X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)Nigel Simmons
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grauWollker Colares
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manualMahrukh Khalid
 
Sulalgtrig7e Isg 1 2
Sulalgtrig7e Isg 1 2Sulalgtrig7e Isg 1 2
Sulalgtrig7e Isg 1 2Joseph Eulo
 
MODULE 5- Inequalities
MODULE 5- InequalitiesMODULE 5- Inequalities
MODULE 5- Inequalitiesguestcc333c
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equationsErik Tjersland
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate PlaneRudy Alfonso
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Functionguestcc333c
 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing EquationsRudy Alfonso
 
Hitting a home run factorising
Hitting a home run factorisingHitting a home run factorising
Hitting a home run factorisingAngela Phillips
 

What's hot (16)

0307 ch 3 day 7
0307 ch 3 day 70307 ch 3 day 7
0307 ch 3 day 7
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
 
Unexpected ineq
Unexpected ineqUnexpected ineq
Unexpected ineq
 
0308 ch 3 day 8
0308 ch 3 day 80308 ch 3 day 8
0308 ch 3 day 8
 
Real for student
Real for studentReal for student
Real for student
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Sulalgtrig7e Isg 1 2
Sulalgtrig7e Isg 1 2Sulalgtrig7e Isg 1 2
Sulalgtrig7e Isg 1 2
 
MODULE 5- Inequalities
MODULE 5- InequalitiesMODULE 5- Inequalities
MODULE 5- Inequalities
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
Ca8e Ppt 5 6
Ca8e Ppt 5 6Ca8e Ppt 5 6
Ca8e Ppt 5 6
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Function
 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing Equations
 
Stepenovanje
StepenovanjeStepenovanje
Stepenovanje
 
Hitting a home run factorising
Hitting a home run factorisingHitting a home run factorising
Hitting a home run factorising
 

Viewers also liked

X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)Nigel Simmons
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagramNigel Simmons
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)Nigel Simmons
 
11X1 T14 07 approximations
11X1 T14 07 approximations11X1 T14 07 approximations
11X1 T14 07 approximationsNigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2012)
11 x1 t14 08 mathematical induction 1 (2012)11 x1 t14 08 mathematical induction 1 (2012)
11 x1 t14 08 mathematical induction 1 (2012)Nigel Simmons
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
Xcms bst dms_38332_38333_2
Xcms bst dms_38332_38333_2Xcms bst dms_38332_38333_2
Xcms bst dms_38332_38333_2Luxemburger Wort
 
X-Ciel Consulting Pvt. Ltd.
X-Ciel Consulting Pvt. Ltd.X-Ciel Consulting Pvt. Ltd.
X-Ciel Consulting Pvt. Ltd.Gagan Parashar
 
Xangokutsu mikkeli
Xangokutsu mikkeliXangokutsu mikkeli
Xangokutsu mikkeliNoora Ruuth
 
Xango xatita
Xango xatitaXango xatita
Xango xatitaserveduc
 
Xarxa que reequilibra el territori
Xarxa que reequilibra el territoriXarxa que reequilibra el territori
Xarxa que reequilibra el territoriXarxa Punt TIC
 
Xebec Communications Comprehensive Presentation
Xebec Communications Comprehensive PresentationXebec Communications Comprehensive Presentation
Xebec Communications Comprehensive PresentationJulia Dutta
 
Xarxes socials, les i taxo bloom
Xarxes socials, les  i taxo bloomXarxes socials, les  i taxo bloom
Xarxes socials, les i taxo bloomNuria Alart
 
X3 pure couples intro&chapt 1
X3 pure couples intro&chapt 1X3 pure couples intro&chapt 1
X3 pure couples intro&chapt 1bcotter
 

Viewers also liked (20)

X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagram
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
11X1 T14 07 approximations
11X1 T14 07 approximations11X1 T14 07 approximations
11X1 T14 07 approximations
 
11 x1 t14 08 mathematical induction 1 (2012)
11 x1 t14 08 mathematical induction 1 (2012)11 x1 t14 08 mathematical induction 1 (2012)
11 x1 t14 08 mathematical induction 1 (2012)
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Xanthi2
Xanthi2Xanthi2
Xanthi2
 
Xcms bst dms_38332_38333_2
Xcms bst dms_38332_38333_2Xcms bst dms_38332_38333_2
Xcms bst dms_38332_38333_2
 
Xarxa turística
Xarxa turísticaXarxa turística
Xarxa turística
 
Xclusive Brochure
Xclusive BrochureXclusive Brochure
Xclusive Brochure
 
X-Ciel Consulting Pvt. Ltd.
X-Ciel Consulting Pvt. Ltd.X-Ciel Consulting Pvt. Ltd.
X-Ciel Consulting Pvt. Ltd.
 
Xangokutsu mikkeli
Xangokutsu mikkeliXangokutsu mikkeli
Xangokutsu mikkeli
 
X brilhante
X brilhanteX brilhante
X brilhante
 
Xango xatita
Xango xatitaXango xatita
Xango xatita
 
Xarxa que reequilibra el territori
Xarxa que reequilibra el territoriXarxa que reequilibra el territori
Xarxa que reequilibra el territori
 
Xebec Communications Comprehensive Presentation
Xebec Communications Comprehensive PresentationXebec Communications Comprehensive Presentation
Xebec Communications Comprehensive Presentation
 
Xarxes socials, les i taxo bloom
Xarxes socials, les  i taxo bloomXarxes socials, les  i taxo bloom
Xarxes socials, les i taxo bloom
 
X3 pure couples intro&chapt 1
X3 pure couples intro&chapt 1X3 pure couples intro&chapt 1
X3 pure couples intro&chapt 1
 

Similar to X2 t01 01 complex definitions (2012)

X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)Nigel Simmons
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
Taller matemáticas empresariales.
Taller matemáticas empresariales.Taller matemáticas empresariales.
Taller matemáticas empresariales.Daniela Vélez
 
Taller matemáticas empresariales
Taller matemáticas empresarialesTaller matemáticas empresariales
Taller matemáticas empresarialesDaniela Vélez
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)Nigel Simmons
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)Nigel Simmons
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 

Similar to X2 t01 01 complex definitions (2012) (20)

X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
Taller matemáticas empresariales.
Taller matemáticas empresariales.Taller matemáticas empresariales.
Taller matemáticas empresariales.
 
Taller matemáticas empresariales
Taller matemáticas empresarialesTaller matemáticas empresariales
Taller matemáticas empresariales
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 

Recently uploaded (20)

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 

X2 t01 01 complex definitions (2012)

  • 3. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions
  • 4. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number
  • 5. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i   1 or i 2  1 i is an imaginary number
  • 6. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i   1 or i 2  1 i is an imaginary number x 2  1 x   1 x  i
  • 7. e.g . x 2  3 x  7  0
  • 8. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2
  • 9. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2
  • 10. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 11. e.g . x 2  3 x  7  0 x 2  3x  7  0  3  9  28 x OR 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 12. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 13. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  x  3  19 i 2     0 2  2 4  3  19i  2  3  19i  3  19i x or x  2 2
  • 14. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  x  3  19 i 2     0 2  2 4  3  19i  3 19  3 19   x  i  x   i  0 2  2 2  2 2   3  19i  3  19i x or x  2 2
  • 15. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  x  3  19 i 2     0 2  2 4  3  19i  3 19  3 19   x  i  x   i  0 2  2 2  2 2   3  19i  3  19i x or x  3 19 3 19 2 2 x  i or x    i 2 2 2 2
  • 16. All complex numbers (z) can be written as; z = x + iy
  • 17. All complex numbers (z) can be written as; z = x + iy Definitions;
  • 18. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part
  • 19. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y
  • 20. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i
  • 21. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3
  • 22. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5
  • 23. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number
  • 24. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i
  • 25. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number
  • 26. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4
  • 27. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate
  • 28. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy
  • 29. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy e.g . z  2  7i
  • 30. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy e.g . z  2  7i z  2  7i
  • 31. Complex Numbers x + iy
  • 32. Complex Numbers x + iy Real Numbers y=0
  • 33. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0
  • 34. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers
  • 35. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Irrational Numbers
  • 36. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Irrational Numbers
  • 37. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Irrational Numbers
  • 38. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Irrational Numbers
  • 39. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Zero Irrational Numbers
  • 40. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Zero Negatives Irrational Numbers
  • 41. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Pure Fractions Integers Imaginary Numbers Naturals x  0, y  0 Zero Negatives Irrational Numbers
  • 42. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Pure Fractions Integers Imaginary Numbers Naturals x  0, y  0 Zero Negatives NOTE: Imaginary numbers cannot be ordered Irrational Numbers
  • 44. Basic Operations As i a surd, the operations with complex numbers are the same as surds
  • 45. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition
  • 46. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i 
  • 47. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i   4  i
  • 48. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i   4  i
  • 49. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i
  • 50. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i
  • 51. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication
  • 52. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i 
  • 53. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2
  • 54. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6
  • 55. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 56. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 57. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  26  32i
  • 58. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  32  8i  24i  6  26  32i  64  4
  • 59. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  32  8i  24i  6  26  32i  64  4  38  16i  68  19 8   i 34 34
  • 60. Exercise 4A; 1 to 16 evens