SlideShare a Scribd company logo
1 of 60
Download to read offline
Roots and Coefficients
Roots and Coefficients
 Quadratics   ax 2  bx  c  0
Roots and Coefficients
 Quadratics   ax 2  bx  c  0
              b
        
              a
Roots and Coefficients
 Quadratics   ax 2  bx  c  0
              b                        c
                              
              a                        a
Roots and Coefficients
 Quadratics      ax 2  bx  c  0
                 b                          c
                                   
                 a                          a

Cubics      ax 3  bx 2  cx  d  0
Roots and Coefficients
 Quadratics      ax 2  bx  c  0
                 b                          c
                                   
                 a                          a

Cubics      ax 3  bx 2  cx  d  0
                 b
       
                 a
Roots and Coefficients
 Quadratics      ax 2  bx  c  0
                 b                          c
                                   
                 a                          a

Cubics      ax 3  bx 2  cx  d  0
               b                                c
                               
               a                                a
Roots and Coefficients
 Quadratics      ax 2  bx  c  0
                 b                          c
                                   
                 a                          a

Cubics      ax 3  bx 2  cx  d  0
               b                                c
                               
               a                                a
                           d
                     
                           a
Roots and Coefficients
  Quadratics        ax 2  bx  c  0
                   b                              c
                                         
                   a                              a

 Cubics       ax 3  bx 2  cx  d  0
                b                                  c
                                  
                a                                  a
                             d
                       
                             a

Quartics       ax 4  bx 3  cx 2  dx  e  0
Roots and Coefficients
  Quadratics        ax 2  bx  c  0
                   b                              c
                                         
                   a                              a

 Cubics       ax 3  bx 2  cx  d  0
                b                                  c
                                  
                a                                  a
                             d
                       
                             a

Quartics       ax 4  bx 3  cx 2  dx  e  0
                 b
       
                 a
Roots and Coefficients
  Quadratics        ax 2  bx  c  0
                   b                              c
                                         
                   a                              a

 Cubics       ax 3  bx 2  cx  d  0
                b                                  c
                                  
                a                                  a
                             d
                       
                             a

Quartics       ax 4  bx 3  cx 2  dx  e  0
                 b                                     c
                           
                 a                                     a
Roots and Coefficients
       Quadratics       ax 2  bx  c  0
                       b                              c
                                             
                       a                              a

     Cubics       ax 3  bx 2  cx  d  0
                     b                                 c
                                      
                     a                                 a
                                 d
                           
                                 a

    Quartics       ax 4  bx 3  cx 2  dx  e  0
                     b                                  c
                            
                     a                                  a
                          d
        
                          a
Roots and Coefficients
       Quadratics       ax 2  bx  c  0
                       b                              c
                                             
                       a                              a

     Cubics       ax 3  bx 2  cx  d  0
                     b                                 c
                                      
                     a                                 a
                                 d
                           
                                 a

    Quartics       ax 4  bx 3  cx 2  dx  e  0
                     b                                  c
                            
                     a                                  a
                          d                      e
                         
                          a                     a
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                    b
                a             (sum of roots, one at a time)
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                    b
               a              (sum of roots, one at a time)
                  c
              a               (sum of roots, two at a time)
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                   b
              a               (sum of roots, one at a time)
                 c
            a                 (sum of roots, two at a time)
                   d
             a               (sum of roots, three at a time)
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                      b
                
                      a
                                  (sum of roots, one at a time)
                    c
               
                    a
                                  (sum of roots, two at a time)
                      d
              
                      a
                                   (sum of roots, three at a time)

                    e
             
                    a
                                   (sum of roots, four at a time)
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                      b
                
                      a
                                   (sum of roots, one at a time)
                    c
               
                    a
                                   (sum of roots, two at a time)
                      d
              
                      a
                                   (sum of roots, three at a time)

                    e
             
                    a
                                   (sum of roots, four at a time)



                Note:
                                    2 
                             2          2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5
         
                   2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3
                            
                   2                             2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                            5  1
   4  4   4  7  4    7   
                            2  2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                            5  1
   4  4   4  7  4    7   
                            2  2
                          27
                        
                           2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1
b)  
            
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1             
b)           
                       
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1             
b)           
                        
                      3
                       
                    2
                      1
                    
                      2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1             
b)           
                        
                       3
                       
                    2
                       1
                     
                       2
                    3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1             
b)                                 c)  2   2   2
                        
                       3
                       
                    2
                       1
                     
                       2
                    3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                           5  1
  4  4   4  7  4    7   
                           2  2
                          27
                        
                           2
   1 1 1             
b)                                 c)  2   2   2
                   
                                              2      
                                                      2

                    3
                  
                2
                    1
                  
                    2
                3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                           5  1
  4  4   4  7  4    7   
                           2  2
                          27
                        
                           2
   1 1 1             
b)                                 c)  2   2   2
                   
                                              2      
                                                      2

                    3
                  
                                             2
                                         5        3
                2                        2  
                    1                   2         2
                  
                    2
                3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                           5  1
  4  4   4  7  4    7   
                           2  2
                          27
                        
                           2
   1 1 1             
b)                                 c)  2   2   2
                   
                                              2      
                                                      2

                    3
                  
                                             2
                                         5        3
                2                        2  
                    1                   2         2
                                        37
                    2                 
                3                       4
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
        0
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
        0

(ii) 
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
        0

(ii) 
     1
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
         0

(ii) 
          1

         1       1       1
(iii)               
                       
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
         0

(ii) 
          1

         1       1       1
(iii)               
                       
         1       1       1           
                           
                                  
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
         0

(ii) 
          1

         1       1       1
(iii)               
                       
         1       1       1           
                           
                                  
                               3
                             
                               1
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
         0

(ii) 
          1

         1       1       1
(iii)               
                       
         1       1       1           
                           
                                  
                               3
                             
                               1
                             3
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                      
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
  
               2
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
  
               2
              3
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3                2 3   3  k  3  6  0
                                        3        2
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3                2 3   3  k  3  6  0
                                        3        2



                                              54  9  3k  6  0
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3                2 3   3  k  3  6  0
                                        3        2



                                              54  9  3k  6  0
                                                           3k  39
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3                2 3   3  k  3  6  0
                                        3        2



                                              54  9  3k  6  0
                                                           3k  39
                                                             k  13
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s
               s   2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s        1     t
               s   2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s        1     t
               s   2                                t 2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s         1     t
               s   2                                 t 2
                                   s  t  0
Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15,
             16ad, 17, 18, 19

More Related Content

Viewers also liked

11 x1 t01 03 factorising (2013)
11 x1 t01 03 factorising (2013)11 x1 t01 03 factorising (2013)
11 x1 t01 03 factorising (2013)
Nigel Simmons
 
11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)
Nigel Simmons
 
11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)
Nigel Simmons
 
11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)
Nigel Simmons
 
12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams
Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
Nigel Simmons
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
Nigel Simmons
 
11X1 T16 01 definitions
11X1 T16 01 definitions11X1 T16 01 definitions
11X1 T16 01 definitions
Nigel Simmons
 
11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)
Nigel Simmons
 
11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)
Nigel Simmons
 
11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)
Nigel Simmons
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)
Nigel Simmons
 
11X1 T08 02 sum and difference of angles (2010)
11X1 T08 02 sum and difference of angles (2010)11X1 T08 02 sum and difference of angles (2010)
11X1 T08 02 sum and difference of angles (2010)
Nigel Simmons
 
11X1 T13 06 roots & coefficients
11X1 T13 06 roots & coefficients11X1 T13 06 roots & coefficients
11X1 T13 06 roots & coefficients
Nigel Simmons
 
11X1 T08 05 product rule
11X1 T08 05 product rule11X1 T08 05 product rule
11X1 T08 05 product rule
Nigel Simmons
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
Nigel Simmons
 
11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)
Nigel Simmons
 
11X1 T11 06 tangents and normals II
11X1 T11 06 tangents and normals II11X1 T11 06 tangents and normals II
11X1 T11 06 tangents and normals II
Nigel Simmons
 

Viewers also liked (20)

11 x1 t01 03 factorising (2013)
11 x1 t01 03 factorising (2013)11 x1 t01 03 factorising (2013)
11 x1 t01 03 factorising (2013)
 
11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)
 
11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)
 
11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)
 
12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
 
11X1 T16 01 definitions
11X1 T16 01 definitions11X1 T16 01 definitions
11X1 T16 01 definitions
 
11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)
 
11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)
 
11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)
 
11X1 T08 02 sum and difference of angles (2010)
11X1 T08 02 sum and difference of angles (2010)11X1 T08 02 sum and difference of angles (2010)
11X1 T08 02 sum and difference of angles (2010)
 
11X1 T13 06 roots & coefficients
11X1 T13 06 roots & coefficients11X1 T13 06 roots & coefficients
11X1 T13 06 roots & coefficients
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
11X1 T08 05 product rule
11X1 T08 05 product rule11X1 T08 05 product rule
11X1 T08 05 product rule
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
 
X2 T08 02 induction
X2 T08 02 inductionX2 T08 02 induction
X2 T08 02 induction
 
11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)
 
11X1 T11 06 tangents and normals II
11X1 T11 06 tangents and normals II11X1 T11 06 tangents and normals II
11X1 T11 06 tangents and normals II
 

Similar to 11X1 T16 06 roots & coefficients

11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)
Nigel Simmons
 
11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics
Nigel Simmons
 
11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)
Nigel Simmons
 
11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)
Nigel Simmons
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
Nigel Simmons
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
Nigel Simmons
 

Similar to 11X1 T16 06 roots & coefficients (8)

11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)
 
11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics
 
11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)
 
11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
Peter Brusilovsky
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
EADTU
 

Recently uploaded (20)

diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio App
 
PSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptxPSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptx
 
male presentation...pdf.................
male presentation...pdf.................male presentation...pdf.................
male presentation...pdf.................
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopal
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
 
Graduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptxGraduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptx
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 

11X1 T16 06 roots & coefficients

  • 2. Roots and Coefficients Quadratics ax 2  bx  c  0
  • 3. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a
  • 4. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a
  • 5. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0
  • 6. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b       a
  • 7. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a
  • 8. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a
  • 9. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0
  • 10. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0 b        a
  • 11. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0 b c                    a a
  • 12. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0 b c                    a a d          a
  • 13. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0 b c                    a a d e            a a
  • 14. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0
  • 15. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time)
  • 16. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time) c   a (sum of roots, two at a time)
  • 17. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time) c   a (sum of roots, two at a time) d    a (sum of roots, three at a time)
  • 18. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b   a (sum of roots, one at a time) c   a (sum of roots, two at a time) d   a (sum of roots, three at a time) e   a (sum of roots, four at a time)
  • 19. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b   a (sum of roots, one at a time) c   a (sum of roots, two at a time) d   a (sum of roots, three at a time) e   a (sum of roots, four at a time) Note:       2  2 2
  • 20. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7
  • 21. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2
  • 22. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3             2 2
  • 23. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2
  • 24. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2
  • 25. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2
  • 26. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1 b)     
  • 27. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)       
  • 28. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3   2 1  2
  • 29. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3   2 1  2  3
  • 30. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2     3   2 1  2  3
  • 31. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2             2       2 3   2 1  2  3
  • 32. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2             2       2 3  2  5  3  2     2   1 2  2  2  3
  • 33. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2             2       2 3  2  5  3  2     2   1 2  2  37 2   3 4
  • 34. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)     
  • 35. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0
  • 36. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii) 
  • 37. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1
  • 38. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1 1 1 1 (iii)     
  • 39. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1 1 1 1 (iii)      1 1 1            
  • 40. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1 1 1 1 (iii)      1 1 1             3  1
  • 41. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1 1 1 1 (iii)      1 1 1             3  1 3
  • 42. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k.
  • 43. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and  
  • 44. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6      2
  • 45. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6      2   3
  • 46. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3
  • 47. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3 2 3   3  k  3  6  0 3 2
  • 48. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3 2 3   3  k  3  6  0 3 2  54  9  3k  6  0
  • 49. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39
  • 50. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39 k  13
  • 51. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r
  • 52. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r
  • 53. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1
  • 54. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t
  • 55. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s
  • 56. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2
  • 57. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s 1     t s   2
  • 58. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s 1     t s   2 t 2
  • 59. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s 1     t s   2 t 2 s  t  0
  • 60. Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15, 16ad, 17, 18, 19