SlideShare a Scribd company logo
Roots and Coefficients
Roots and Coefficients
 Quadratics   ax 2  bx  c  0
Roots and Coefficients
 Quadratics   ax 2  bx  c  0
              b
        
              a
Roots and Coefficients
 Quadratics   ax 2  bx  c  0
              b                        c
                              
              a                        a
Roots and Coefficients
 Quadratics      ax 2  bx  c  0
                 b                          c
                                   
                 a                          a

Cubics      ax 3  bx 2  cx  d  0
Roots and Coefficients
 Quadratics      ax 2  bx  c  0
                 b                          c
                                   
                 a                          a

Cubics      ax 3  bx 2  cx  d  0
                 b
       
                 a
Roots and Coefficients
 Quadratics      ax 2  bx  c  0
                 b                          c
                                   
                 a                          a

Cubics      ax 3  bx 2  cx  d  0
               b                                c
                               
               a                                a
Roots and Coefficients
 Quadratics      ax 2  bx  c  0
                 b                          c
                                   
                 a                          a

Cubics      ax 3  bx 2  cx  d  0
               b                                c
                               
               a                                a
                           d
                     
                           a
Roots and Coefficients
  Quadratics        ax 2  bx  c  0
                   b                              c
                                         
                   a                              a

 Cubics       ax 3  bx 2  cx  d  0
                b                                  c
                                  
                a                                  a
                             d
                       
                             a

Quartics       ax 4  bx 3  cx 2  dx  e  0
Roots and Coefficients
  Quadratics        ax 2  bx  c  0
                   b                              c
                                         
                   a                              a

 Cubics       ax 3  bx 2  cx  d  0
                b                                  c
                                  
                a                                  a
                             d
                       
                             a

Quartics       ax 4  bx 3  cx 2  dx  e  0
                 b
       
                 a
Roots and Coefficients
  Quadratics        ax 2  bx  c  0
                   b                              c
                                         
                   a                              a

 Cubics       ax 3  bx 2  cx  d  0
                b                                  c
                                  
                a                                  a
                             d
                       
                             a

Quartics       ax 4  bx 3  cx 2  dx  e  0
                 b                                     c
                           
                 a                                     a
Roots and Coefficients
       Quadratics       ax 2  bx  c  0
                       b                              c
                                             
                       a                              a

     Cubics       ax 3  bx 2  cx  d  0
                     b                                 c
                                      
                     a                                 a
                                 d
                           
                                 a

    Quartics       ax 4  bx 3  cx 2  dx  e  0
                     b                                  c
                            
                     a                                  a
                          d
        
                          a
Roots and Coefficients
       Quadratics       ax 2  bx  c  0
                       b                              c
                                             
                       a                              a

     Cubics       ax 3  bx 2  cx  d  0
                     b                                 c
                                      
                     a                                 a
                                 d
                           
                                 a

    Quartics       ax 4  bx 3  cx 2  dx  e  0
                     b                                  c
                            
                     a                                  a
                          d                      e
                         
                          a                     a
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                    b
                a             (sum of roots, one at a time)
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                    b
               a              (sum of roots, one at a time)
                  c
              a               (sum of roots, two at a time)
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                   b
              a               (sum of roots, one at a time)
                 c
            a                 (sum of roots, two at a time)
                   d
             a               (sum of roots, three at a time)
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                      b
                
                      a
                                  (sum of roots, one at a time)
                    c
               
                    a
                                  (sum of roots, two at a time)
                      d
              
                      a
                                   (sum of roots, three at a time)

                    e
             
                    a
                                   (sum of roots, four at a time)
For the polynomial equation;
                ax n  bx n1  cx n2  dx n3    0
                      b
                
                      a
                                   (sum of roots, one at a time)
                    c
               
                    a
                                   (sum of roots, two at a time)
                      d
              
                      a
                                   (sum of roots, three at a time)

                    e
             
                    a
                                   (sum of roots, four at a time)



                Note:
                                    2 
                             2          2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5
         
                   2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3
                            
                   2                             2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                            5  1
   4  4   4  7  4    7   
                            2  2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                            5  1
   4  4   4  7  4    7   
                            2  2
                          27
                        
                           2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1
b)  
            
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1             
b)           
                       
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1             
b)           
                        
                      3
                       
                    2
                      1
                    
                      2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                              3                      1
                                                 
                   2                              2                      2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1             
b)           
                        
                       3
                       
                    2
                       1
                     
                       2
                    3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                           5  1
  4  4   4  7  4    7   
                           2  2
                         27
                       
                          2
   1 1 1             
b)                                 c)  2   2   2
                        
                       3
                       
                    2
                       1
                     
                       2
                    3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                           5  1
  4  4   4  7  4    7   
                           2  2
                          27
                        
                           2
   1 1 1             
b)                                 c)  2   2   2
                   
                                              2      
                                                      2

                    3
                  
                2
                    1
                  
                    2
                3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                           5  1
  4  4   4  7  4    7   
                           2  2
                          27
                        
                           2
   1 1 1             
b)                                 c)  2   2   2
                   
                                              2      
                                                      2

                    3
                  
                                             2
                                         5        3
                2                        2  
                    1                   2         2
                  
                    2
                3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
         values of;
 a) 4  4   4  7
                   5                             3                       1
                                                 
                   2                             2                       2
                           5  1
  4  4   4  7  4    7   
                           2  2
                          27
                        
                           2
   1 1 1             
b)                                 c)  2   2   2
                   
                                              2      
                                                      2

                    3
                  
                                             2
                                         5        3
                2                        2  
                    1                   2         2
                                        37
                    2                 
                3                       4
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
        0
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
        0

(ii) 
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
        0

(ii) 
     1
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
         0

(ii) 
          1

         1       1       1
(iii)               
                       
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
         0

(ii) 
          1

         1       1       1
(iii)               
                       
         1       1       1           
                           
                                  
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
         0

(ii) 
          1

         1       1       1
(iii)               
                       
         1       1       1           
                           
                                  
                               3
                             
                               1
1988 Extension 1 HSC Q2c)
If  ,  and  are the roots of x  3 x  1  0 find:
                                 3


(i)     
         0

(ii) 
          1

         1       1       1
(iii)               
                       
         1       1       1           
                           
                                  
                               3
                             
                               1
                             3
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                      
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
  
               2
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
  
               2
              3
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3                2 3   3  k  3  6  0
                                        3        2
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3                2 3   3  k  3  6  0
                                        3        2



                                              54  9  3k  6  0
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3                2 3   3  k  3  6  0
                                        3        2



                                              54  9  3k  6  0
                                                           3k  39
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
                      1
Let the roots be  , and 
                       
     1      6
                                        P   3  0
               2
              3                2 3   3  k  3  6  0
                                        3        2



                                              54  9  3k  6  0
                                                           3k  39
                                                             k  13
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s
               s   2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s        1     t
               s   2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s        1     t
               s   2                                t 2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
   1       r
             r  1

(ii) Find the value of s + t
   1   1         s         1     t
               s   2                                 t 2
                                   s  t  0
Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15,
             16ad, 17, 18, 19

More Related Content

Viewers also liked

11 x1 t01 03 factorising (2013)
11 x1 t01 03 factorising (2013)11 x1 t01 03 factorising (2013)
11 x1 t01 03 factorising (2013)
Nigel Simmons
 
11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)
Nigel Simmons
 
11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)
Nigel Simmons
 
11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)
Nigel Simmons
 
12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams
Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
Nigel Simmons
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
Nigel Simmons
 
11X1 T16 01 definitions
11X1 T16 01 definitions11X1 T16 01 definitions
11X1 T16 01 definitions
Nigel Simmons
 
11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)
Nigel Simmons
 
11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)
Nigel Simmons
 
11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)Nigel Simmons
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)
Nigel Simmons
 
11X1 T08 02 sum and difference of angles (2010)
11X1 T08 02 sum and difference of angles (2010)11X1 T08 02 sum and difference of angles (2010)
11X1 T08 02 sum and difference of angles (2010)Nigel Simmons
 
11X1 T13 06 roots & coefficients
11X1 T13 06 roots & coefficients11X1 T13 06 roots & coefficients
11X1 T13 06 roots & coefficients
Nigel Simmons
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
Nigel Simmons
 
11X1 T08 05 product rule
11X1 T08 05 product rule11X1 T08 05 product rule
11X1 T08 05 product rule
Nigel Simmons
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
Nigel Simmons
 
X2 T08 02 induction
X2 T08 02 inductionX2 T08 02 induction
X2 T08 02 induction
Nigel Simmons
 
11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)
Nigel Simmons
 
11X1 T11 06 tangents and normals II
11X1 T11 06 tangents and normals II11X1 T11 06 tangents and normals II
11X1 T11 06 tangents and normals II
Nigel Simmons
 

Viewers also liked (20)

11 x1 t01 03 factorising (2013)
11 x1 t01 03 factorising (2013)11 x1 t01 03 factorising (2013)
11 x1 t01 03 factorising (2013)
 
11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)
 
11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)
 
11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)
 
12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
 
11X1 T16 01 definitions
11X1 T16 01 definitions11X1 T16 01 definitions
11X1 T16 01 definitions
 
11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)11 x1 t14 01 definitions & arithmetic series (2012)
11 x1 t14 01 definitions & arithmetic series (2012)
 
11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)
 
11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)
 
11X1 T08 02 sum and difference of angles (2010)
11X1 T08 02 sum and difference of angles (2010)11X1 T08 02 sum and difference of angles (2010)
11X1 T08 02 sum and difference of angles (2010)
 
11X1 T13 06 roots & coefficients
11X1 T13 06 roots & coefficients11X1 T13 06 roots & coefficients
11X1 T13 06 roots & coefficients
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
11X1 T08 05 product rule
11X1 T08 05 product rule11X1 T08 05 product rule
11X1 T08 05 product rule
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
 
X2 T08 02 induction
X2 T08 02 inductionX2 T08 02 induction
X2 T08 02 induction
 
11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)
 
11X1 T11 06 tangents and normals II
11X1 T11 06 tangents and normals II11X1 T11 06 tangents and normals II
11X1 T11 06 tangents and normals II
 

Similar to 11X1 T16 06 roots & coefficients

11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)
Nigel Simmons
 
11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics
Nigel Simmons
 
11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)
Nigel Simmons
 
11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
Nigel Simmons
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
Nigel Simmons
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
Nigel Simmons
 

Similar to 11X1 T16 06 roots & coefficients (8)

11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)
 
11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics
 
11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)
 
11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
sayalidalavi006
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
Celine George
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 

Recently uploaded (20)

S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 

11X1 T16 06 roots & coefficients

  • 2. Roots and Coefficients Quadratics ax 2  bx  c  0
  • 3. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a
  • 4. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a
  • 5. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0
  • 6. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b       a
  • 7. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a
  • 8. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a
  • 9. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0
  • 10. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0 b        a
  • 11. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0 b c                    a a
  • 12. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0 b c                    a a d          a
  • 13. Roots and Coefficients Quadratics ax 2  bx  c  0 b c      a a Cubics ax 3  bx 2  cx  d  0 b c             a a d    a Quartics ax 4  bx 3  cx 2  dx  e  0 b c                    a a d e            a a
  • 14. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0
  • 15. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time)
  • 16. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time) c   a (sum of roots, two at a time)
  • 17. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time) c   a (sum of roots, two at a time) d    a (sum of roots, three at a time)
  • 18. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b   a (sum of roots, one at a time) c   a (sum of roots, two at a time) d   a (sum of roots, three at a time) e   a (sum of roots, four at a time)
  • 19. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b   a (sum of roots, one at a time) c   a (sum of roots, two at a time) d   a (sum of roots, three at a time) e   a (sum of roots, four at a time) Note:       2  2 2
  • 20. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7
  • 21. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2
  • 22. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3             2 2
  • 23. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2
  • 24. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2
  • 25. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2
  • 26. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1 b)     
  • 27. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)       
  • 28. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3   2 1  2
  • 29. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3   2 1  2  3
  • 30. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2     3   2 1  2  3
  • 31. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2             2       2 3   2 1  2  3
  • 32. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2             2       2 3  2  5  3  2     2   1 2  2  2  3
  • 33. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5 3 1                2 2 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2             2       2 3  2  5  3  2     2   1 2  2  37 2   3 4
  • 34. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)     
  • 35. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0
  • 36. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii) 
  • 37. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1
  • 38. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1 1 1 1 (iii)     
  • 39. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1 1 1 1 (iii)      1 1 1            
  • 40. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1 1 1 1 (iii)      1 1 1             3  1
  • 41. 1988 Extension 1 HSC Q2c) If  ,  and  are the roots of x  3 x  1  0 find: 3 (i)           0 (ii)    1 1 1 1 (iii)      1 1 1             3  1 3
  • 42. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k.
  • 43. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and  
  • 44. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6      2
  • 45. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6      2   3
  • 46. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3
  • 47. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3 2 3   3  k  3  6  0 3 2
  • 48. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3 2 3   3  k  3  6  0 3 2  54  9  3k  6  0
  • 49. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39
  • 50. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and    1      6    P   3  0   2   3 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39 k  13
  • 51. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r
  • 52. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r
  • 53. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1
  • 54. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t
  • 55. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s
  • 56. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2
  • 57. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s 1     t s   2
  • 58. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s 1     t s   2 t 2
  • 59. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s 1     t s   2 t 2 s  t  0
  • 60. Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15, 16ad, 17, 18, 19