•

22 likes•12,926 views

Logistic Regression can not only be used for modeling binary outcomes but also multinomial outcome with some extension. In this talk, DB will talk about basic idea of binary logistic regression step by step, and then extend to multinomial one. He will show how easy it's with Spark to parallelize this iterative algorithm by utilizing the in-memory RDD cache to scale horizontally (the numbers of training data.) However, there is mathematical limitation on scaling vertically (the numbers of training features) while many recent applications from document classification and computational linguistics are of this type. He will talk about how to address this problem by L-BFGS optimizer instead of Newton optimizer. Bio: DB Tsai is a machine learning engineer working at Alpine Data Labs. He is recently working with Spark MLlib team to add support of L-BFGS optimizer and multinomial logistic regression in the upstream. He also led the Apache Spark development at Alpine Data Labs. Before joining Alpine Data labs, he was working on large-scale optimization of optical quantum circuits at Stanford as a PhD student.

Report

Share

Report

Share

Download to read offline

2014-06-20 Multinomial Logistic Regression with Apache Spark

Logistic Regression can not only be used for modeling binary outcomes but also multinomial outcome with some extension. In this talk, DB will talk about basic idea of binary logistic regression step by step, and then extend to multinomial one. He will show how easy it's with Spark to parallelize this iterative algorithm by utilizing the in-memory RDD cache to scale horizontally (the numbers of training data.) However, there is mathematical limitation on scaling vertically (the numbers of training features) while many recent applications from document classification and computational linguistics are of this type. He will talk about how to address this problem by L-BFGS optimizer instead of Newton optimizer.
Bio:
DB Tsai is a machine learning engineer working at Alpine Data Labs. He is recently working with Spark MLlib team to add support of L-BFGS optimizer and multinomial logistic regression in the upstream. He also led the Apache Spark development at Alpine Data Labs. Before joining Alpine Data labs, he was working on large-scale optimization of optical quantum circuits at Stanford as a PhD student.

Building Random Forest at Scale

- Powered by the open source machine learning software H2O.ai. Contributors welcome at: https://github.com/h2oai
- To view videos on H2O open source machine learning software, go to: https://www.youtube.com/user/0xdata

BigTable And Hbase

BigTable is a distributed storage system with three main components: a master server that manages tablet assignment and load balancing, tablet servers that handle reads/writes and split tablets, and a client library. It uses a column-oriented data model indexed by row, column, and timestamp, with tablets located through a hierarchy and assigned by the master to tablet servers. HBase is an open source Apache project that is a BigTable clone written in Java without Chubby or a CMS server, instead using ZooKeeper and the JobTracker.

06. graph mining

이번 슬라이드는 Graph mining의 기초에 대한 것이다.
고전 문제인 Graph cut에 대한 개념과 수학적인 배경을 설명하고, 이 개념이 clustering (클러스터링)에서 어떻게 사용되는지를 설명한다.
Graph mining, cut, clustring의 기초를 알기에 매우 적합한 자료이다.

Presto best practices for Cluster admins, data engineers and analysts

This document provides best practices for using Presto across three categories: cluster admins, data engineers, and end users. For admins, it recommends optimizing JVM size, setting concurrency limits, using spot instances to reduce costs, enabling data caching, and using resource groups for isolation. For data engineers, it suggests best practices for data storage like using columnar formats and statistics. For end users, tips include using deterministic filters, explaining queries, and addressing skew through techniques like broadcast joins.

Spark shuffle introduction

This document discusses Spark shuffle, which is an expensive operation that involves data partitioning, serialization/deserialization, compression, and disk I/O. It provides an overview of how shuffle works in Spark and the history of optimizations like sort-based shuffle and an external shuffle service. Key concepts discussed include shuffle writers, readers, and the pluggable block transfer service that handles data transfer. The document also covers shuffle-related configuration options and potential future work.

KSQL Performance Tuning for Fun and Profit ( Nick Dearden, Confluent) Kafka S...

Ever wondered just how many CPU cores of KSQL Server you need to provision to handle your planned stream processing workload ? Or how many GBits of aggregate network bandwidth, spread across some number of processing threads, you'll need to deal with combined peak throughput of multiple queries ? In this talk we'll first explore the basic drivers of KSQL throughput and hardware requirements, building up to more advanced query plan analysis and capacity-planning techniques, and review some real-world testing results along the way. Finally we will recap how and what to monitor to know you got it right!

Everything I Ever Learned About JVM Performance Tuning @Twitter

Summarizes about a year worth of experiences and case studies in performance tuning the JVM for various services at Twitter.

2014-06-20 Multinomial Logistic Regression with Apache Spark

Logistic Regression can not only be used for modeling binary outcomes but also multinomial outcome with some extension. In this talk, DB will talk about basic idea of binary logistic regression step by step, and then extend to multinomial one. He will show how easy it's with Spark to parallelize this iterative algorithm by utilizing the in-memory RDD cache to scale horizontally (the numbers of training data.) However, there is mathematical limitation on scaling vertically (the numbers of training features) while many recent applications from document classification and computational linguistics are of this type. He will talk about how to address this problem by L-BFGS optimizer instead of Newton optimizer.
Bio:
DB Tsai is a machine learning engineer working at Alpine Data Labs. He is recently working with Spark MLlib team to add support of L-BFGS optimizer and multinomial logistic regression in the upstream. He also led the Apache Spark development at Alpine Data Labs. Before joining Alpine Data labs, he was working on large-scale optimization of optical quantum circuits at Stanford as a PhD student.

Building Random Forest at Scale

- Powered by the open source machine learning software H2O.ai. Contributors welcome at: https://github.com/h2oai
- To view videos on H2O open source machine learning software, go to: https://www.youtube.com/user/0xdata

BigTable And Hbase

BigTable is a distributed storage system with three main components: a master server that manages tablet assignment and load balancing, tablet servers that handle reads/writes and split tablets, and a client library. It uses a column-oriented data model indexed by row, column, and timestamp, with tablets located through a hierarchy and assigned by the master to tablet servers. HBase is an open source Apache project that is a BigTable clone written in Java without Chubby or a CMS server, instead using ZooKeeper and the JobTracker.

06. graph mining

이번 슬라이드는 Graph mining의 기초에 대한 것이다.
고전 문제인 Graph cut에 대한 개념과 수학적인 배경을 설명하고, 이 개념이 clustering (클러스터링)에서 어떻게 사용되는지를 설명한다.
Graph mining, cut, clustring의 기초를 알기에 매우 적합한 자료이다.

Presto best practices for Cluster admins, data engineers and analysts

This document provides best practices for using Presto across three categories: cluster admins, data engineers, and end users. For admins, it recommends optimizing JVM size, setting concurrency limits, using spot instances to reduce costs, enabling data caching, and using resource groups for isolation. For data engineers, it suggests best practices for data storage like using columnar formats and statistics. For end users, tips include using deterministic filters, explaining queries, and addressing skew through techniques like broadcast joins.

Spark shuffle introduction

This document discusses Spark shuffle, which is an expensive operation that involves data partitioning, serialization/deserialization, compression, and disk I/O. It provides an overview of how shuffle works in Spark and the history of optimizations like sort-based shuffle and an external shuffle service. Key concepts discussed include shuffle writers, readers, and the pluggable block transfer service that handles data transfer. The document also covers shuffle-related configuration options and potential future work.

KSQL Performance Tuning for Fun and Profit ( Nick Dearden, Confluent) Kafka S...

Ever wondered just how many CPU cores of KSQL Server you need to provision to handle your planned stream processing workload ? Or how many GBits of aggregate network bandwidth, spread across some number of processing threads, you'll need to deal with combined peak throughput of multiple queries ? In this talk we'll first explore the basic drivers of KSQL throughput and hardware requirements, building up to more advanced query plan analysis and capacity-planning techniques, and review some real-world testing results along the way. Finally we will recap how and what to monitor to know you got it right!

Everything I Ever Learned About JVM Performance Tuning @Twitter

Summarizes about a year worth of experiences and case studies in performance tuning the JVM for various services at Twitter.

Iceberg + Alluxio for Fast Data Analytics

Alluxio Day VIII
December 14, 2021
https://www.alluxio.io/alluxio-day/
Speakers:
Shouwei Chen & Beinan Wang, Alluxio

A Deep Dive into Query Execution Engine of Spark SQL

Spark SQL enables Spark to perform efficient and fault-tolerant relational query processing with analytics database technologies. The relational queries are compiled to the executable physical plans consisting of transformations and actions on RDDs with the generated Java code. The code is compiled to Java bytecode, executed at runtime by JVM and optimized by JIT to native machine code at runtime. This talk will take a deep dive into Spark SQL execution engine. The talk includes pipelined execution, whole-stage code generation, UDF execution, memory management, vectorized readers, lineage based RDD transformation and action.

Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...

Big Data with Hadoop & Spark Training: http://bit.ly/2sf2z6i
This CloudxLab Introduction to Spark SQL & DataFrames tutorial helps you to understand Spark SQL & DataFrames in detail. Below are the topics covered in this slide:
1) Introduction to DataFrames
2) Creating DataFrames from JSON
3) DataFrame Operations
4) Running SQL Queries Programmatically
5) Datasets
6) Inferring the Schema Using Reflection
7) Programmatically Specifying the Schema

Google Bigtable Paper Presentation

As part of NoSQL series, I presented Google Bigtable paper. In presentation I tried to give some plain introduction to Hadoop, MapReduce, HBase
www.scalability.rs

How Pulsar Stores Your Data - Pulsar Summit NA 2021

In order to leverage the best performance characters of your stream backend, it is important to understand the nitty gritty details of how pulsar stores your data. Understanding this empowers you to design your use case solutioning so as to make the best use of resources at hand as well as get the optimum amount of consistency, availability, latency and throughput for a given amount of resources at hand.
With this underlying philosophy, in this talk, we will get to the bottom of storage tier of pulsar (apache bookkeeper), the barebones of the bookkeeper storage semantics, how it is used in different use cases ( even other than pulsar), understand the object models of storage in pulsar, different kinds of data structures and algorithms pulsar uses therein and how that maps to the semantics of the storage class shipped with pulsar by default. Oh yes, you can change the storage backend too with some additional code!
This session will empower you with the right background to map your data right with pulsar.

Hive + Tez: A Performance Deep Dive

This document provides a summary of improvements made to Hive's performance through the use of Apache Tez and other optimizations. Some key points include:
- Hive was improved to use Apache Tez as its execution engine instead of MapReduce, reducing latency for interactive queries and improving throughput for batch queries.
- Statistics collection was optimized to gather column-level statistics from ORC file footers, speeding up statistics gathering.
- The cost-based optimizer Optiq was added to Hive, allowing it to choose better execution plans.
- Vectorized query processing, broadcast joins, dynamic partitioning, and other optimizations improved individual query performance by over 100x in some cases.

Parquet performance tuning: the missing guide

Parquet performance tuning focuses on optimizing Parquet reads by leveraging columnar organization, encoding, and filtering techniques. Statistics and dictionary filtering can eliminate unnecessary data reads by filtering at the row group and page levels. However, these optimizations require columns to be sorted and fully dictionary encoded within files. Increasing dictionary size thresholds and decreasing row group sizes can help avoid dictionary encoding fallback and improve filtering effectiveness. Future work may include new encodings, compression algorithms like Brotli, and page-level filtering in the Parquet format.

Linear algebra

기초적인 Linear Algebra 와 Matrix Calculus 부터 Back-propagation 까지 유도하는 슬라이드입니다. 본 슬라이드에서는 NumPy 와 선형대수를 다룹니다.

HDFS Analysis for Small Files

This document summarizes a presentation about analyzing small files in HDFS clusters. It outlines the problems small files can cause, such as inefficient data access and slower jobs. It then describes the architecture of the small files analysis solution, which processes the HDFS fsimage to attribute and aggregate file information. This information is stored and used to power dashboards showing metrics like small file counts and distributions over time. Future work includes improving performance and developing a customizable compaction utility.

How to understand and analyze Apache Hive query execution plan for performanc...

How to understand and analyze Apache Hive query execution plan for performanc...DataWorks Summit/Hadoop Summit

The document compares the query execution plans produced by Apache Hive and PostgreSQL. It shows that Hive's old-style execution plans are overly verbose and difficult to understand, providing many low-level details across multiple stages. In contrast, PostgreSQL's plans are more concise and readable, showing the logical query plan in a top-down manner with actual table names and fewer lines of text. The document advocates for Hive to adopt a simpler execution plan format similar to PostgreSQL's.Cardinality Estimation through Histogram in Apache Spark 2.3 with Ron Hu and ...

Apache Spark 2.2 shipped with a state-of-art cost-based optimization framework that collects and leverages a variety of per-column data statistics (e.g., cardinality, number of distinct values, NULL values, max/min, avg/max length, etc.) to improve the quality of query execution plans. Skewed data distributions are often inherent in many real world applications. In order to deal with skewed distributions effectively, we added equal-height histograms to Apache Spark 2.3. Leveraging reliable statistics and histogram helps Spark make better decisions in picking the most optimal query plan for real world scenarios.
In this talk, we’ll take a deep dive into how Spark’s Cost-Based Optimizer estimates the cardinality and size of each database operator. Specifically, for skewed distribution workload such as TPC-DS, we will show histogram’s impact on query plan change, hence leading to performance gain.

Security and Multi-Tenancy with Apache Pulsar in Yahoo! (Verizon Media) - Pul...

This document summarizes a presentation about Apache Pulsar multi-tenancy and security features at Verizon Media. It discusses how Pulsar implements tenant and namespace isolation through storage quotas, throttling policies, broker and bookie isolation. It also covers authentication, authorization, encryption in transit and at rest, and how Pulsar proxy supports SNI routing for hybrid cloud deployments and cross-organization replication. Future plans include tenant-based broker virtualization and hybrid cloud deployments with geo-replication.

[232] TensorRT를 활용한 딥러닝 Inference 최적화

This document describes the steps to convert a TensorFlow model to a TensorRT engine for inference. It includes steps to parse the model, optimize it, generate a runtime engine, serialize and deserialize the engine, as well as perform inference using the engine. It also provides code snippets for a PReLU plugin implementation in C++.

Understanding Presto - Presto meetup @ Tokyo #1

This document summarizes a presentation about Presto, an open source distributed SQL query engine. It discusses Presto's distributed and plug-in architecture, query planning process, and cluster configuration options. For architecture, it explains that Presto uses coordinators, workers, and connectors to distribute queries across data sources. For query planning, it shows how SQL queries are converted into logical and physical query plans with stages, tasks, and splits. For configuration, it reviews single-server, multi-worker, and multi-coordinator cluster topologies. It also provides an overview of Presto's recent updates.

Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark

The slides explain how shuffle works in Spark and help people understand more details about Spark internal. It shows how the major classes are implemented, including: ShuffleManager (SortShuffleManager), ShuffleWriter (SortShuffleWriter, BypassMergeSortShuffleWriter, UnsafeShuffleWriter), ShuffleReader (BlockStoreShuffleReader).

RDD

referance:Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Hadoop

The document summarizes a technical seminar on Hadoop. It discusses Hadoop's history and origin, how it was developed from Google's distributed systems, and how it provides an open-source framework for distributed storage and processing of large datasets. It also summarizes key aspects of Hadoop including HDFS, MapReduce, HBase, Pig, Hive and YARN, and how they address challenges of big data analytics. The seminar provides an overview of Hadoop's architecture and ecosystem and how it can effectively process large datasets measured in petabytes.

The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro

Zstandard is a fast compression algorithm which you can use in Apache Spark in various way. In this talk, I briefly summarized the evolution history of Apache Spark in this area and four main use cases and the benefits and the next steps:
1) ZStandard can optimize Spark local disk IO by compressing shuffle files significantly. This is very useful in K8s environments. It’s beneficial not only when you use `emptyDir` with `memory` medium, but also it maximizes OS cache benefit when you use shared SSDs or container local storage. In Spark 3.2, SPARK-34390 takes advantage of ZStandard buffer pool feature and its performance gain is impressive, too.
2) Event log compression is another area to save your storage cost on the cloud storage like S3 and to improve the usability. SPARK-34503 officially switched the default event log compression codec from LZ4 to Zstandard.
3) Zstandard data file compression can give you more benefits when you use ORC/Parquet files as your input and output. Apache ORC 1.6 supports Zstandardalready and Apache Spark enables it via SPARK-33978. The upcoming Parquet 1.12 will support Zstandard compression.
4) Last, but not least, since Apache Spark 3.0, Zstandard is used to serialize/deserialize MapStatus data instead of Gzip.
There are more community works to utilize Zstandard to improve Spark. For example, Apache Avro community also supports Zstandard and SPARK-34479 aims to support Zstandard in Spark’s avro file format in Spark 3.2.0.

Enabling Vectorized Engine in Apache Spark

This is a presentation deck for Data+AI Summit 2021 at
https://databricks.com/session_na21/enabling-vectorized-engine-in-apache-spark

Locality sensitive hashing

Locality Sensitive Hashing (LSH) is a technique for solving near neighbor queries in high dimensional spaces. It works by using random projections to map similar data points to the same "buckets" with high probability, allowing efficient retrieval of nearest neighbors. The key properties required of the hash functions used are that they are locality sensitive, meaning nearby points are hashed to the same value more often than distant points. LSH allows solving near neighbor queries approximately in sub-linear time versus expensive exact algorithms like kd-trees that require at least linear time.

Linear Regression Using SPSS

Linear regression analysis predicts the value of a dependent variable based on the value of an independent variable. It requires continuous variables, a linear relationship between variables, no outliers, independent observations, homoscedasticity, and normally distributed residuals. The analysis identifies whether changes in the independent variable reliably predict changes in the dependent variable.

Logistic regression

This document provides an overview of logistic regression. It begins by defining logistic regression as a specialized form of regression used when the dependent variable is dichotomous while the independent variables can be of any type. It notes logistic regression allows prediction of discrete variables from continuous and discrete predictors without assumptions about variable distributions. The document then discusses why logistic regression is used when assumptions of other regressions like normality and equal variance are violated. It also outlines how to perform and interpret logistic regression including assessing model fit. Finally, it provides an example research question and hypotheses about predicting solar panel adoption using household income and mortgage as predictors.

Iceberg + Alluxio for Fast Data Analytics

Alluxio Day VIII
December 14, 2021
https://www.alluxio.io/alluxio-day/
Speakers:
Shouwei Chen & Beinan Wang, Alluxio

A Deep Dive into Query Execution Engine of Spark SQL

Spark SQL enables Spark to perform efficient and fault-tolerant relational query processing with analytics database technologies. The relational queries are compiled to the executable physical plans consisting of transformations and actions on RDDs with the generated Java code. The code is compiled to Java bytecode, executed at runtime by JVM and optimized by JIT to native machine code at runtime. This talk will take a deep dive into Spark SQL execution engine. The talk includes pipelined execution, whole-stage code generation, UDF execution, memory management, vectorized readers, lineage based RDD transformation and action.

Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...

Big Data with Hadoop & Spark Training: http://bit.ly/2sf2z6i
This CloudxLab Introduction to Spark SQL & DataFrames tutorial helps you to understand Spark SQL & DataFrames in detail. Below are the topics covered in this slide:
1) Introduction to DataFrames
2) Creating DataFrames from JSON
3) DataFrame Operations
4) Running SQL Queries Programmatically
5) Datasets
6) Inferring the Schema Using Reflection
7) Programmatically Specifying the Schema

Google Bigtable Paper Presentation

As part of NoSQL series, I presented Google Bigtable paper. In presentation I tried to give some plain introduction to Hadoop, MapReduce, HBase
www.scalability.rs

How Pulsar Stores Your Data - Pulsar Summit NA 2021

In order to leverage the best performance characters of your stream backend, it is important to understand the nitty gritty details of how pulsar stores your data. Understanding this empowers you to design your use case solutioning so as to make the best use of resources at hand as well as get the optimum amount of consistency, availability, latency and throughput for a given amount of resources at hand.
With this underlying philosophy, in this talk, we will get to the bottom of storage tier of pulsar (apache bookkeeper), the barebones of the bookkeeper storage semantics, how it is used in different use cases ( even other than pulsar), understand the object models of storage in pulsar, different kinds of data structures and algorithms pulsar uses therein and how that maps to the semantics of the storage class shipped with pulsar by default. Oh yes, you can change the storage backend too with some additional code!
This session will empower you with the right background to map your data right with pulsar.

Hive + Tez: A Performance Deep Dive

This document provides a summary of improvements made to Hive's performance through the use of Apache Tez and other optimizations. Some key points include:
- Hive was improved to use Apache Tez as its execution engine instead of MapReduce, reducing latency for interactive queries and improving throughput for batch queries.
- Statistics collection was optimized to gather column-level statistics from ORC file footers, speeding up statistics gathering.
- The cost-based optimizer Optiq was added to Hive, allowing it to choose better execution plans.
- Vectorized query processing, broadcast joins, dynamic partitioning, and other optimizations improved individual query performance by over 100x in some cases.

Parquet performance tuning: the missing guide

Parquet performance tuning focuses on optimizing Parquet reads by leveraging columnar organization, encoding, and filtering techniques. Statistics and dictionary filtering can eliminate unnecessary data reads by filtering at the row group and page levels. However, these optimizations require columns to be sorted and fully dictionary encoded within files. Increasing dictionary size thresholds and decreasing row group sizes can help avoid dictionary encoding fallback and improve filtering effectiveness. Future work may include new encodings, compression algorithms like Brotli, and page-level filtering in the Parquet format.

Linear algebra

기초적인 Linear Algebra 와 Matrix Calculus 부터 Back-propagation 까지 유도하는 슬라이드입니다. 본 슬라이드에서는 NumPy 와 선형대수를 다룹니다.

HDFS Analysis for Small Files

This document summarizes a presentation about analyzing small files in HDFS clusters. It outlines the problems small files can cause, such as inefficient data access and slower jobs. It then describes the architecture of the small files analysis solution, which processes the HDFS fsimage to attribute and aggregate file information. This information is stored and used to power dashboards showing metrics like small file counts and distributions over time. Future work includes improving performance and developing a customizable compaction utility.

How to understand and analyze Apache Hive query execution plan for performanc...

How to understand and analyze Apache Hive query execution plan for performanc...DataWorks Summit/Hadoop Summit

The document compares the query execution plans produced by Apache Hive and PostgreSQL. It shows that Hive's old-style execution plans are overly verbose and difficult to understand, providing many low-level details across multiple stages. In contrast, PostgreSQL's plans are more concise and readable, showing the logical query plan in a top-down manner with actual table names and fewer lines of text. The document advocates for Hive to adopt a simpler execution plan format similar to PostgreSQL's.Cardinality Estimation through Histogram in Apache Spark 2.3 with Ron Hu and ...

Apache Spark 2.2 shipped with a state-of-art cost-based optimization framework that collects and leverages a variety of per-column data statistics (e.g., cardinality, number of distinct values, NULL values, max/min, avg/max length, etc.) to improve the quality of query execution plans. Skewed data distributions are often inherent in many real world applications. In order to deal with skewed distributions effectively, we added equal-height histograms to Apache Spark 2.3. Leveraging reliable statistics and histogram helps Spark make better decisions in picking the most optimal query plan for real world scenarios.
In this talk, we’ll take a deep dive into how Spark’s Cost-Based Optimizer estimates the cardinality and size of each database operator. Specifically, for skewed distribution workload such as TPC-DS, we will show histogram’s impact on query plan change, hence leading to performance gain.

Security and Multi-Tenancy with Apache Pulsar in Yahoo! (Verizon Media) - Pul...

This document summarizes a presentation about Apache Pulsar multi-tenancy and security features at Verizon Media. It discusses how Pulsar implements tenant and namespace isolation through storage quotas, throttling policies, broker and bookie isolation. It also covers authentication, authorization, encryption in transit and at rest, and how Pulsar proxy supports SNI routing for hybrid cloud deployments and cross-organization replication. Future plans include tenant-based broker virtualization and hybrid cloud deployments with geo-replication.

[232] TensorRT를 활용한 딥러닝 Inference 최적화

This document describes the steps to convert a TensorFlow model to a TensorRT engine for inference. It includes steps to parse the model, optimize it, generate a runtime engine, serialize and deserialize the engine, as well as perform inference using the engine. It also provides code snippets for a PReLU plugin implementation in C++.

Understanding Presto - Presto meetup @ Tokyo #1

This document summarizes a presentation about Presto, an open source distributed SQL query engine. It discusses Presto's distributed and plug-in architecture, query planning process, and cluster configuration options. For architecture, it explains that Presto uses coordinators, workers, and connectors to distribute queries across data sources. For query planning, it shows how SQL queries are converted into logical and physical query plans with stages, tasks, and splits. For configuration, it reviews single-server, multi-worker, and multi-coordinator cluster topologies. It also provides an overview of Presto's recent updates.

Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark

The slides explain how shuffle works in Spark and help people understand more details about Spark internal. It shows how the major classes are implemented, including: ShuffleManager (SortShuffleManager), ShuffleWriter (SortShuffleWriter, BypassMergeSortShuffleWriter, UnsafeShuffleWriter), ShuffleReader (BlockStoreShuffleReader).

RDD

referance:Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Hadoop

The document summarizes a technical seminar on Hadoop. It discusses Hadoop's history and origin, how it was developed from Google's distributed systems, and how it provides an open-source framework for distributed storage and processing of large datasets. It also summarizes key aspects of Hadoop including HDFS, MapReduce, HBase, Pig, Hive and YARN, and how they address challenges of big data analytics. The seminar provides an overview of Hadoop's architecture and ecosystem and how it can effectively process large datasets measured in petabytes.

The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro

Zstandard is a fast compression algorithm which you can use in Apache Spark in various way. In this talk, I briefly summarized the evolution history of Apache Spark in this area and four main use cases and the benefits and the next steps:
1) ZStandard can optimize Spark local disk IO by compressing shuffle files significantly. This is very useful in K8s environments. It’s beneficial not only when you use `emptyDir` with `memory` medium, but also it maximizes OS cache benefit when you use shared SSDs or container local storage. In Spark 3.2, SPARK-34390 takes advantage of ZStandard buffer pool feature and its performance gain is impressive, too.
2) Event log compression is another area to save your storage cost on the cloud storage like S3 and to improve the usability. SPARK-34503 officially switched the default event log compression codec from LZ4 to Zstandard.
3) Zstandard data file compression can give you more benefits when you use ORC/Parquet files as your input and output. Apache ORC 1.6 supports Zstandardalready and Apache Spark enables it via SPARK-33978. The upcoming Parquet 1.12 will support Zstandard compression.
4) Last, but not least, since Apache Spark 3.0, Zstandard is used to serialize/deserialize MapStatus data instead of Gzip.
There are more community works to utilize Zstandard to improve Spark. For example, Apache Avro community also supports Zstandard and SPARK-34479 aims to support Zstandard in Spark’s avro file format in Spark 3.2.0.

Enabling Vectorized Engine in Apache Spark

This is a presentation deck for Data+AI Summit 2021 at
https://databricks.com/session_na21/enabling-vectorized-engine-in-apache-spark

Locality sensitive hashing

Locality Sensitive Hashing (LSH) is a technique for solving near neighbor queries in high dimensional spaces. It works by using random projections to map similar data points to the same "buckets" with high probability, allowing efficient retrieval of nearest neighbors. The key properties required of the hash functions used are that they are locality sensitive, meaning nearby points are hashed to the same value more often than distant points. LSH allows solving near neighbor queries approximately in sub-linear time versus expensive exact algorithms like kd-trees that require at least linear time.

Iceberg + Alluxio for Fast Data Analytics

Iceberg + Alluxio for Fast Data Analytics

A Deep Dive into Query Execution Engine of Spark SQL

A Deep Dive into Query Execution Engine of Spark SQL

Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...

Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...

Google Bigtable Paper Presentation

Google Bigtable Paper Presentation

How Pulsar Stores Your Data - Pulsar Summit NA 2021

How Pulsar Stores Your Data - Pulsar Summit NA 2021

Hive + Tez: A Performance Deep Dive

Hive + Tez: A Performance Deep Dive

Parquet performance tuning: the missing guide

Parquet performance tuning: the missing guide

Linear algebra

Linear algebra

HDFS Analysis for Small Files

HDFS Analysis for Small Files

How to understand and analyze Apache Hive query execution plan for performanc...

How to understand and analyze Apache Hive query execution plan for performanc...

Cardinality Estimation through Histogram in Apache Spark 2.3 with Ron Hu and ...

Cardinality Estimation through Histogram in Apache Spark 2.3 with Ron Hu and ...

Security and Multi-Tenancy with Apache Pulsar in Yahoo! (Verizon Media) - Pul...

Security and Multi-Tenancy with Apache Pulsar in Yahoo! (Verizon Media) - Pul...

[232] TensorRT를 활용한 딥러닝 Inference 최적화

[232] TensorRT를 활용한 딥러닝 Inference 최적화

Understanding Presto - Presto meetup @ Tokyo #1

Understanding Presto - Presto meetup @ Tokyo #1

Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark

Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark

RDD

RDD

Hadoop

Hadoop

The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro

The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro

Enabling Vectorized Engine in Apache Spark

Enabling Vectorized Engine in Apache Spark

Locality sensitive hashing

Locality sensitive hashing

Linear Regression Using SPSS

Linear regression analysis predicts the value of a dependent variable based on the value of an independent variable. It requires continuous variables, a linear relationship between variables, no outliers, independent observations, homoscedasticity, and normally distributed residuals. The analysis identifies whether changes in the independent variable reliably predict changes in the dependent variable.

Logistic regression

This document provides an overview of logistic regression. It begins by defining logistic regression as a specialized form of regression used when the dependent variable is dichotomous while the independent variables can be of any type. It notes logistic regression allows prediction of discrete variables from continuous and discrete predictors without assumptions about variable distributions. The document then discusses why logistic regression is used when assumptions of other regressions like normality and equal variance are violated. It also outlines how to perform and interpret logistic regression including assessing model fit. Finally, it provides an example research question and hypotheses about predicting solar panel adoption using household income and mortgage as predictors.

Binary Logistic Regression

If dependent variable is binary and independent variables are categorical , we use Binary Logistic Regression

Logistic Regression: Predicting The Chances Of Coronary Heart Disease

Logistic regression is used to predict the probability of an event occurring based on multiple predictor variables. This document discusses using logistic regression to predict the risk of coronary heart disease based on factors like smoking, cholesterol levels, body mass index, gender, age, and physical activity. It finds that smoking and high cholesterol levels are the highest risk factors for heart disease. The odds ratio is used to interpret the results, showing smokers have a 2.4 times higher risk than non-smokers. Examples estimate an inactive smoker's risk at 18% over 10 years, versus practically no risk for a healthy older man.

Multinomial logisticregression basicrelationships

This document provides an overview of multinomial logistic regression. It discusses how multinomial logistic regression compares multiple groups through binary logistic regressions. It describes how to interpret the results, including evaluating the overall relationship between predictors and the dependent variable and relationships between individual predictors and the dependent variable. Requirements and assumptions of the analysis are explained, such as the dependent variable being non-metric and cases-to-variable ratios. Methods for evaluating model accuracy and usefulness are also outlined.

Logistic regression with SPSS examples

This document discusses logistic regression, including:
- Logistic regression can be used when the dependent variable is binary and predicts the probability of an event occurring.
- The logistic regression equation calculates the log odds of an event occurring based on independent variables.
- Logistic regression is commonly used in medical research when variables are a mix of categorical and continuous.

Logistic regression

This document provides an overview of logistic regression, including when and why it is used, the theory behind it, and how to assess logistic regression models. Logistic regression predicts the probability of categorical outcomes given categorical or continuous predictor variables. It relaxes the normality and linearity assumptions of linear regression. The relationship between predictors and outcomes is modeled using an S-shaped logistic function. Model fit, predictors, and interpretations of coefficients are discussed.

Logistic Regression Analysis

Logistic regression is a statistical method used to predict a binary or categorical dependent variable from continuous or categorical independent variables. It generates coefficients to predict the log odds of an outcome being present or absent. The method assumes a linear relationship between the log odds and independent variables. Multinomial logistic regression extends this to dependent variables with more than two categories. An example analyzes high school student program choices using writing scores and socioeconomic status as predictors. The model fits significantly better than an intercept-only model. Increases in writing score decrease the log odds of general versus academic programs.

Logistic regression

This document provides an overview of logistic regression analysis. It introduces the need for logistic regression when the dependent variable is binary. Key concepts covered include the logistic regression model, interpreting the beta coefficients, assessing goodness of fit using various tests and metrics, and an example of fitting a logistic regression line to predict burger purchasing based on a customer's age. Students are instructed to use statistical software to estimate a logistic regression model and interpret the results.

Logistics management

The document discusses various aspects of logistics management including definitions, objectives, importance and key concepts. It defines logistics as the process of optimizing the flow of materials and supplies through an organization to deliver products to customers. The objectives of logistics are to make the right products available in the right place at the right time, while achieving customer satisfaction and lowest cost. It also discusses the importance of logistics in physical distribution, reverse logistics, material handling, packaging and the paradigm shift in viewing logistics operations as an integrated system rather than separate functions.

Third party logistics

The document discusses third party logistics (3PL) providers. It begins by defining 1PL, 2PL, 3PL and 4PL providers and their roles in the supply chain. It then covers the evolution of 3PL, services provided, benefits of using 3PL, types of 3PL providers including transportation-based, warehouse/distribution-based and more. New technologies in 3PL and relationship management are also discussed. The document concludes with a case study on selecting a 3PL using multi-criteria decision making.

Logistic regression

Logistic regression allows prediction of discrete outcomes from continuous and discrete variables. It addresses questions like discriminant analysis and multiple regression but without distributional assumptions. There are two main types: binary logistic regression for dichotomous dependent variables, and multinomial logistic regression for variables with more than two categories. Binary logistic regression expresses the log odds of the dependent variable as a function of the independent variables. Logistic regression assesses the effects of multiple explanatory variables on a binary outcome variable. It is useful when the dependent variable is non-parametric, there is no homoscedasticity, or normality and linearity are suspect.

Reverse Logistics

Reverse logistics involves the movement of goods from their point of use back to the manufacturer for reprocessing, repairs, recycling, or disposal. It has become an important competitive tool as organizations use services like replacing defective goods, refurbishing returned products, and product recalls to add value for customers. Effective reverse logistics requires planning systems for product collection, recycling centers, and documentation to support product tracking throughout the reverse supply chain.

Logistic management

Logistic management and supply chain management are critical for businesses. Logistics involves planning, implementing, and controlling the flow of materials and finished goods from suppliers to customers. It has become more important with globalization, a focus on integrated supply chain management, and the outsourcing of non-core functions. Effective logistics can provide both cost leadership and differentiated products and services by optimizing activities across the value chain.

Linear Regression Using SPSS

Linear Regression Using SPSS

Logistic regression

Logistic regression

Binary Logistic Regression

Binary Logistic Regression

Logistic Regression: Predicting The Chances Of Coronary Heart Disease

Logistic Regression: Predicting The Chances Of Coronary Heart Disease

Multinomial logisticregression basicrelationships

Multinomial logisticregression basicrelationships

Logistic regression with SPSS examples

Logistic regression with SPSS examples

Logistic regression

Logistic regression

Logistic Regression Analysis

Logistic Regression Analysis

Logistic regression

Logistic regression

Logistics management

Logistics management

Third party logistics

Third party logistics

Logistic regression

Logistic regression

Reverse Logistics

Reverse Logistics

Logistic management

Logistic management

Introduction to PyTorch

Basic concept of Deep Learning with explaining its structure and backpropagation method and understanding autograd in PyTorch. (+ Data parallism in PyTorch)

CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx

CSCI 2033: Elementary Computational Linear Algebra
(Spring 2020)
Assignment 1 (100 points)
Due date: February 21st, 2019 11:59pm
In this assignment, you will implement Matlab functions to perform row
operations, compute the RREF of a matrix, and use it to solve a real-world
problem that involves linear algebra, namely GPS localization.
For each function that you are asked to implement, you will need to complete
the corresponding .m file with the same name that is already provided to you in
the zip file. In the end, you will zip up all your complete .m files and upload the
zip file to the assignment submission page on Gradescope.
In this and future assignments, you may not use any of Matlab’s built-in
linear algebra functionality like rref, inv, or the linear solve function A\b,
except where explicitly permitted. However, you may use the high-level array
manipulation syntax like A(i,:) and [A,B]. See “Accessing Multiple Elements”
and “Concatenating Matrices” in the Matlab documentation for more informa-
tion. However, you are allowed to call a function you have implemented in this
assignment to use in the implementation of other functions for this assignment.
Note on plagiarism A submission with any indication of plagiarism will be
directly reported to University. Copying others’ solutions or letting another
person copy your solutions will be penalized equally. Protect your code!
1 Submission Guidelines
You will submit a zip file that contains the following .m files to Gradescope.
Your filename must be in this format: Firstname Lastname ID hw1 sol.zip
(please replace the name and ID accordingly). Failing to do so may result in
points lost.
• interchange.m
• scaling.m
• replacement.m
• my_rref.m
• gps2d.m
• gps3d.m
• solve.m
1
Ricardo
Ricardo
Ricardo
Ricardo
�
The code should be stand-alone. No credit will be given if the function does not
comply with the expected input and output.
Late submission policy: 25% o↵ up to 24 hours late; 50% o↵ up to 48 hours late;
No point for more than 48 hours late.
2 Elementary row operations (30 points)
As this may be your first experience with serious programming in Matlab,
we will ease into it by first writing some simple functions that perform the
elementary row operations on a matrix: interchange, scaling, and replacement.
In this exercise, complete the following files:
function B = interchange(A, i, j)
Input: a rectangular matrix A and two integers i and j.
Output: the matrix resulting from swapping rows i and j, i.e. performing the
row operation Ri $ Rj .
function B = scaling(A, i, s)
Input: a rectangular matrix A, an integer i, and a scalar s.
Output: the matrix resulting from multiplying all entries in row i by s, i.e. per-
forming the row operation Ri sRi.
function B = replacement(A, i, j, s)
Input: a rectangular matrix A, two integers i and j, and a scalar s.
Output: the matrix resulting from adding s times row j to row i, i.e. performing
the row operatio.

Functional go

Functional programming avoids mutable state and side effects by treating computation as the evaluation of mathematical functions. In Golang, functional programming principles like immutable data, higher-order functions, and recursion can be applied to write more elegant, concise and testable code, though it lacks features like tail call optimization. Writing functional style enhances code quality by making behavior more predictable and explicit through referential transparency.

Introduction to Artificial Neural Networks

Opening of our Deep Learning Lunch & Learn series. First session: introduction to Neural Networks, Gradient descent and backpropagation, by Pablo J. Villacorta, with a prologue by Fernando Velasco

20181212 - PGconfASIA - LT - English

PL/CUDA allows writing user-defined functions in CUDA C that can run on a GPU. This provides benefits for analytics workloads that can utilize thousands of GPU cores and wide memory bandwidth. A sample logistic regression implementation in PL/CUDA showed a 350x speedup compared to a CPU-based implementation in MADLib. Logistic regression performs binary classification by estimating weights for explanatory variables and intercept through iterative updates. This is well-suited to parallelization on a GPU.

Algorithm analysis basics - Seven Functions/Big-Oh/Omega/Theta

Discuss seven functions, Analysis of algorithms- Experimental Studies/Primitive operations/Asymptotic notation- Big Oh/Big-Omega/Big-Theta
(Download is recommended to make the animations work)

Java 8

This document summarizes key parts of Java 8 including lambda expressions, method references, default methods, streams API improvements, removal of PermGen space, and the new date/time API. It provides code examples and explanations of lambda syntax and functional interfaces. It also discusses advantages of the streams API like lazy evaluation and parallelization. Finally, it briefly outlines the motivation for removing PermGen and standardizing the date/time API in Java 8.

Basic concept of MATLAB.ppt

This document provides an introduction to MATLAB programming. It covers topics such as script files, flow control structures, array operations, the EVAL command, functions, variables and workspaces, subfunctions, private functions, and visual debugging. The document consists of 34 pages outlining these MATLAB programming concepts and providing examples to illustrate them.

SPU Optimizations - Part 2

The document describes optimizing a lighting calculation for the SPU by analyzing memory requirements, partitioning data, and rearranging data for a streaming model. It then provides an example of optimizing a lighting calculation function, including vectorizing the calculation by hand to process 4 vertices simultaneously. The optimizations reduced the calculation time from 231.6 cycles per vertex per light to 208.5 cycles through compiler hints and further to an estimated higher performance by manual vectorization.

parallel

This document presents an implementation and analysis of parallelizing the training of a multilayer perceptron neural network. It describes distributing the calculations across processor nodes by assigning each processor responsibility for a fraction of nodes in each layer. Theoretical speedups of 1-16x are estimated and experimental speedups of 2-10x are observed for networks with over 60,000 nodes trained on up to 16 processors. Node parallelization provides near linear speedup for training multilayer perceptrons.

MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...

MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...The Statistical and Applied Mathematical Sciences Institute

Simulators play a major role in analyzing multi-modal transportation networks. As their complexity increases, optimization becomes an increasingly challenging task. Current calibration procedures often rely on heuristics, rules of thumb and sometimes on brute-force search. Alternatively, we provide a statistical method which combines a distributed, Gaussian Process Bayesian optimization method with dimensionality reduction techniques and structural improvement. We then demonstrate our framework on the problem of calibrating a multi-modal transportation network of city of Bloomington, Illinois. Our framework is sample efficient and supported by theoretical analysis and an empirical study. We demonstrate on the problem of calibrating a multi-modal transportation network of city of Bloomington, Illinois. Finally, we discuss directions for further research.Backpropagation - Elisa Sayrol - UPC Barcelona 2018

https://telecombcn-dl.github.io/2018-dlai/
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of large-scale annotated datasets and affordable GPU hardware has allowed the training of neural networks for data analysis tasks which were previously addressed with hand-crafted features. Architectures such as convolutional neural networks, recurrent neural networks or Q-nets for reinforcement learning have shaped a brand new scenario in signal processing. This course will cover the basic principles of deep learning from both an algorithmic and computational perspectives.

Matlab1

This document provides an introduction to MATLAB. It discusses that MATLAB is a high-performance language for technical computing that integrates computation, visualization, and programming. It can be used for tasks like math and computation, algorithm development, modeling, simulation, prototyping, data analysis, and scientific graphics. MATLAB uses arrays as its basic data type and allows matrix and vector problems to be solved more quickly than with other languages. The document then provides examples of entering matrices, using basic MATLAB commands and functions, plotting graphs, and writing MATLAB code in M-files.

Dafunctor

DAFunctor is a symbolic translator that converts NumPy/PyTorch ND-Array operations to equivalent C code. It works by decomposing generative NumPy functions into common properties like value expressions, index expressions, and scatter expressions. This allows DAFunctor to merge operations and generate loop-based C code without dynamic memory allocation or intermediate buffers.

MapReduce

MapReduce is a programming model for processing large datasets in a distributed environment. It consists of a map function that processes input key-value pairs to generate intermediate key-value pairs, and a reduce function that merges all intermediate values associated with the same key. It allows for parallelization of computations across large clusters. Example applications include word count, sorting, and indexing web links. Hadoop is an open source implementation of MapReduce that runs on commodity hardware.

Pytorch meetup

Title: "Understanding PyTorch: PyTorch in Image Processing". Github: https://github.com/azarnyx/PyData_Meetup. The Dataset: https://goo.gl/CWmLWD.
The talk was given in PyData Meetup which took place in Munich on 06.03.2019 in Data Reply office. The talk was given by Dmitrii Azarnykh, data scientist in Data Reply.

Unit3 MapReduce

MapReduce is a programming model used for processing large datasets in a distributed computing environment. It consists of two main tasks - the Map task which converts input data into intermediate key-value pairs, and the Reduce task which combines these intermediate pairs into a smaller set of output pairs. The MapReduce framework operates on input and output in the form of key-value pairs, with the keys and values implemented as serializable Java objects. It divides jobs into map and reduce tasks executed in parallel on a cluster, with a JobTracker coordinating task assignment and tracking progress.

Dsp manual completed2

This document provides an overview of 14 labs covering topics in digital signal processing using MATLAB. The labs progress from basic introductions to MATLAB and signals and systems concepts to more advanced topics like filters, the z-transform, the discrete Fourier transform, image processing, and signal processing toolboxes. Lab 1 focuses on introducing basic MATLAB operations and functions for defining variables, vectors, matrices, and m-files.

On Implementation of Neuron Network(Back-propagation)

This document outlines Yu Liu's work implementing and comparing different parallel versions of a neural network using backpropagation. It discusses motivations for parallel programming practice and library study. It provides an introduction to neural networks and backpropagation algorithms. Three implementations are compared: sequential C++ STL, Skelton library, and Intel TBB. Benchmark results show improved speedups from parallel versions. Remaining challenges are also noted, like addressing local minima problems and testing on larger data.

Early Results of OpenMP 4.5 Portability on NVIDIA GPUs & CPUs

This talk was presented at the DOE Centers of Excellence Performance Portability Workshop in August 2017. In this talk I explore the current status of 4 OpenMP 4.5 compilers for NVIDIA GPUs and CPUs from the perspective of performance portability between compilers and between the GPU and CPU.

Introduction to PyTorch

Introduction to PyTorch

CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx

CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx

Functional go

Functional go

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks

20181212 - PGconfASIA - LT - English

20181212 - PGconfASIA - LT - English

Algorithm analysis basics - Seven Functions/Big-Oh/Omega/Theta

Algorithm analysis basics - Seven Functions/Big-Oh/Omega/Theta

Java 8

Java 8

Basic concept of MATLAB.ppt

Basic concept of MATLAB.ppt

SPU Optimizations - Part 2

SPU Optimizations - Part 2

parallel

parallel

MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...

MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...

Backpropagation - Elisa Sayrol - UPC Barcelona 2018

Backpropagation - Elisa Sayrol - UPC Barcelona 2018

Matlab1

Matlab1

Dafunctor

Dafunctor

MapReduce

MapReduce

Pytorch meetup

Pytorch meetup

Unit3 MapReduce

Unit3 MapReduce

Dsp manual completed2

Dsp manual completed2

On Implementation of Neuron Network(Back-propagation)

On Implementation of Neuron Network(Back-propagation)

Early Results of OpenMP 4.5 Portability on NVIDIA GPUs & CPUs

Early Results of OpenMP 4.5 Portability on NVIDIA GPUs & CPUs

2017 Netflix's Recommendation ML Pipeline Using Apache Spark: Spark Summit Ea...

1) Netflix uses machine learning algorithms driven by Apache Spark to power over 80% of recommendations to its members.
2) Netflix runs A/B tests on recommendation models by first evaluating them offline on historical data and then deploying the best-performing models in live experiments.
3) Netflix's recommendation pipeline involves feature engineering on a standardized data format, training models both locally and in distributed mode, and scoring and ranking items to produce recommendations.

2015-06-15 Large-Scale Elastic-Net Regularized Generalized Linear Models at S...

Nonlinear methods are widely used to produce higher performance compared with linear methods; however, nonlinear methods are generally more expensive in model size, training time, and scoring phase. With proper feature engineering techniques like polynomial expansion, the linear methods can be as competitive as those nonlinear methods. In the process of mapping the data to higher dimensional space, the linear methods will be subject to overfitting and instability of coefficients which can be addressed by penalization methods including Lasso and Elastic-Net. Finally, we'll show how to train linear models with Elastic-Net regularization using MLlib.
Several learning algorithms such as kernel methods, decision tress, and random forests are nonlinear approaches which are widely used to have better performance compared with linear methods. However, with feature engineering techniques like polynomial expansion by mapping the data into a higher dimensional space, the performance of linear methods can be as competitive as those nonlinear methods. As a result, linear methods remain to be very useful given that the training time of linear methods is significantly faster than the nonlinear ones, and the model is just a simple small vector which makes the prediction step very efficient and easy. However, by mapping the data into higher dimensional space, those linear methods are subject to overfitting and instability of coefficients, and those issues can be successfully addressed by penalization methods including Lasso and Elastic-Net. Lasso method with L1 penalty tends to result in many coefficients shrunk exactly to zero and a few other coefficients with comparatively little shrinkage. L2 penalty trends to result in all small but non-zero coefficients. Combining L1 and L2 penalties are called Elastic-Net method which tends to give a result in between. In the first part of the talk, we'll give an overview of linear methods including commonly used formulations and optimization techniques such as L-BFGS and OWLQN. In the second part of talk, we will talk about how to train linear models with Elastic-Net using our recent contribution to Spark MLlib. We'll also talk about how linear models are practically applied with big dataset, and how polynomial expansion can be used to dramatically increase the performance.
DB Tsai is an Apache Spark committer and a Senior Research Engineer at Netflix. He is recently working with Apache Spark community to add several new algorithms including Linear Regression and Binary Logistic Regression with ElasticNet (L1/L2) regularization, Multinomial Logistic Regression, and LBFGS optimizer. Prior to joining Netflix, DB was a Lead Machine Learning Engineer at Alpine Data Labs, where he developed innovative large-scale distributed linear algorithms, and then contributed back to open source Apache Spark project.

2015 01-17 Lambda Architecture with Apache Spark, NextML Conference

Lambda architecture is a data-processing architecture designed to handle massive quantities of data by taking advantage of both batch- and stream-processing methods. In Lambda architecture, the system involves three layers: batch processing, speed (or real-time) processing, and a serving layer for responding to queries, and each comes with its own set of requirements.
In batch layer, it aims at perfect accuracy by being able to process the all available big dataset which is an immutable, append-only set of raw data using distributed processing system. Output will be typically stored in a read-only database with result completely replacing existing precomputed views. Apache Hadoop, Pig, and HIVE are
the de facto batch-processing system.
In speed layer, the data is processed in streaming fashion, and the real-time views are provided by the most recent data. As a result, the speed layer is responsible for filling the "gap" caused by the batch layer's lag in providing views based on the most recent data. This layer's views may not be as accurate as the views provided by batch layer's views created with full dataset, so they will be eventually replaced by the batch layer's views. Traditionally, Apache Storm is
used in this layer.
In serving layer, the result from batch layer and speed layer will be stored here, and it responds to queries in a low-latency and ad-hoc way.
One of the lambda architecture examples in machine learning context is building the fraud detection system. In speed layer, the incoming streaming data can be used for online learning to update the model learnt in batch layer to incorporate the recent events. After a while, the model can be rebuilt using the full dataset.
Why Spark for lambda architecture? Traditionally, different
technologies are used in batch layer and speed layer. If your batch system is implemented with Apache Pig, and your speed layer is implemented with Apache Storm, you have to write and maintain the same logics in SQL and in Java/Scala. This will very quickly becomes a maintenance nightmare. With Spark, we have an unified development framework for batch and speed layer at scale. In this talk, an end-to-end example implemented in Spark will be shown, and we will
discuss about the development, testing, maintenance, and deployment of lambda architecture system with Apache Spark.

2014-10-20 Large-Scale Machine Learning with Apache Spark at Internet of Thin...

This document discusses machine learning techniques for large-scale datasets using Apache Spark. It provides an overview of Spark's machine learning library (MLlib), describing algorithms like logistic regression, linear regression, collaborative filtering, and clustering. It also compares Spark to traditional Hadoop MapReduce, highlighting how Spark leverages caching and iterative algorithms to enable faster machine learning model training.

2014-08-14 Alpine Innovation to Spark

Spark is rapidly catching fire with the machine learning and data science community for a number of reasons. Predominantly, it is making it possible to extend and enhance machine learning algorithms to a level we’ve never seen before. In this talk, we’ll give examples of two areas Alpine Data Labs has contributed to the Spark project:
Bio:
DB Tsai is a Machine Learning Engineer working at Alpine Data Labs. His current focus is on Big Data, Data Mining, and Machine Learning. He uses Hadoop, Spark, Mahout, and several Machine Learning algorithms to build powerful, scalable, and robust cloud-driven applications. His favorite programming languages are Java, Scala, and Python. DB is a Ph.D. candidate in Applied Physics at Stanford University (currently taking leave of absence). He holds a Master’s degree in Electrical Engineering from Stanford University, as well as a Master's degree in Physics from National Taiwan University.

Large-Scale Machine Learning with Apache Spark

Spark is a new cluster computing engine that is rapidly gaining popularity — with over 150 contributors in the past year, it is one of the most active open source projects in big data, surpassing even Hadoop MapReduce. Spark was designed to both make traditional MapReduce programming easier and to support new types of applications, with one of the earliest focus areas being machine learning. In this talk, we’ll introduce Spark and show how to use it to build fast, end-to-end machine learning workflows. Using Spark’s high-level API, we can process raw data with familiar libraries in Java, Scala or Python (e.g. NumPy) to extract the features for machine learning. Then, using MLlib, its built-in machine learning library, we can run scalable versions of popular algorithms. We’ll also cover upcoming development work including new built-in algorithms and R bindings.
Bio:
Xiangrui Meng is a software engineer at Databricks. He has been actively involved in the development of Spark MLlib since he joined. Before Databricks, he worked as an applied research engineer at LinkedIn, where he was the main developer of an offline machine learning framework in Hadoop MapReduce. His thesis work at Stanford is on randomized algorithms for large-scale linear regression.

Unsupervised Learning with Apache Spark

Unsupervised learning refers to a branch of algorithms that try to find structure in unlabeled data. Clustering algorithms, for example, try to partition elements of a dataset into related groups. Dimensionality reduction algorithms search for a simpler representation of a dataset. Spark's MLLib module contains implementations of several unsupervised learning algorithms that scale to huge datasets. In this talk, we'll dive into uses and implementations of Spark's K-means clustering and Singular Value Decomposition (SVD).
Bio:
Sandy Ryza is an engineer on the data science team at Cloudera. He is a committer on Apache Hadoop and recently led Cloudera's Apache Spark development.

2017 Netflix's Recommendation ML Pipeline Using Apache Spark: Spark Summit Ea...

2017 Netflix's Recommendation ML Pipeline Using Apache Spark: Spark Summit Ea...

2015-06-15 Large-Scale Elastic-Net Regularized Generalized Linear Models at S...

2015-06-15 Large-Scale Elastic-Net Regularized Generalized Linear Models at S...

2015 01-17 Lambda Architecture with Apache Spark, NextML Conference

2015 01-17 Lambda Architecture with Apache Spark, NextML Conference

2014-10-20 Large-Scale Machine Learning with Apache Spark at Internet of Thin...

2014-10-20 Large-Scale Machine Learning with Apache Spark at Internet of Thin...

2014-08-14 Alpine Innovation to Spark

2014-08-14 Alpine Innovation to Spark

Large-Scale Machine Learning with Apache Spark

Large-Scale Machine Learning with Apache Spark

Unsupervised Learning with Apache Spark

Unsupervised Learning with Apache Spark

Digital Twins Computer Networking Paper Presentation.pptx

A Digital Twin in computer networking is a virtual representation of a physical network, used to simulate, analyze, and optimize network performance and reliability. It leverages real-time data to enhance network management, predict issues, and improve decision-making processes.

一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理

原版一模一样【微信：741003700 】【(uofo毕业证书)美国俄勒冈大学毕业证成绩单】【微信：741003700 】学位证，留信认证（真实可查，永久存档）原件一模一样纸张工艺/offer、雅思、外壳等材料/诚信可靠,可直接看成品样本，帮您解决无法毕业带来的各种难题！外壳，原版制作，诚信可靠，可直接看成品样本。行业标杆！精益求精，诚心合作，真诚制作！多年品质 ,按需精细制作，24小时接单,全套进口原装设备。十五年致力于帮助留学生解决难题，包您满意。
本公司拥有海外各大学样板无数，能完美还原。
1:1完美还原海外各大学毕业材料上的工艺：水印，阴影底纹，钢印LOGO烫金烫银，LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。材料咨询办理、认证咨询办理请加学历顾问Q/微741003700
【主营项目】
一.毕业证【q微741003700】成绩单、使馆认证、教育部认证、雅思托福成绩单、学生卡等！
二.真实使馆公证(即留学回国人员证明,不成功不收费)
三.真实教育部学历学位认证（教育部存档！教育部留服网站永久可查）
四.办理各国各大学文凭(一对一专业服务,可全程监控跟踪进度)
如果您处于以下几种情况：
◇在校期间，因各种原因未能顺利毕业……拿不到官方毕业证【q/微741003700】
◇面对父母的压力，希望尽快拿到；
◇不清楚认证流程以及材料该如何准备；
◇回国时间很长，忘记办理；
◇回国马上就要找工作，办给用人单位看；
◇企事业单位必须要求办理的
◇需要报考公务员、购买免税车、落转户口
◇申请留学生创业基金
留信网认证的作用:
1:该专业认证可证明留学生真实身份
2:同时对留学生所学专业登记给予评定
3:国家专业人才认证中心颁发入库证书
4:这个认证书并且可以归档倒地方
5:凡事获得留信网入网的信息将会逐步更新到个人身份内，将在公安局网内查询个人身份证信息后，同步读取人才网入库信息
6:个人职称评审加20分
7:个人信誉贷款加10分
8:在国家人才网主办的国家网络招聘大会中纳入资料，供国家高端企业选择人才
办理(uofo毕业证书)美国俄勒冈大学毕业证【微信：741003700 】外观非常简单，由纸质材料制成，上面印有校徽、校名、毕业生姓名、专业等信息。
办理(uofo毕业证书)美国俄勒冈大学毕业证【微信：741003700 】格式相对统一，各专业都有相应的模板。通常包括以下部分：
校徽：象征着学校的荣誉和传承。
校名:学校英文全称
授予学位：本部分将注明获得的具体学位名称。
毕业生姓名：这是最重要的信息之一，标志着该证书是由特定人员获得的。
颁发日期：这是毕业正式生效的时间，也代表着毕业生学业的结束。
其他信息：根据不同的专业和学位，可能会有一些特定的信息或章节。
办理(uofo毕业证书)美国俄勒冈大学毕业证【微信：741003700 】价值很高，需要妥善保管。一般来说，应放置在安全、干燥、防潮的地方，避免长时间暴露在阳光下。如需使用，最好使用复印件而不是原件，以免丢失。
综上所述，办理(uofo毕业证书)美国俄勒冈大学毕业证【微信：741003700 】是证明身份和学历的高价值文件。外观简单庄重，格式统一，包括重要的个人信息和发布日期。对持有人来说，妥善保管是非常重要的。

一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理

原版一模一样【微信：741003700 】【(osu毕业证书)美国俄勒冈州立大学毕业证成绩单】【微信：741003700 】学位证，留信认证（真实可查，永久存档）原件一模一样纸张工艺/offer、雅思、外壳等材料/诚信可靠,可直接看成品样本，帮您解决无法毕业带来的各种难题！外壳，原版制作，诚信可靠，可直接看成品样本。行业标杆！精益求精，诚心合作，真诚制作！多年品质 ,按需精细制作，24小时接单,全套进口原装设备。十五年致力于帮助留学生解决难题，包您满意。
本公司拥有海外各大学样板无数，能完美还原。
1:1完美还原海外各大学毕业材料上的工艺：水印，阴影底纹，钢印LOGO烫金烫银，LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。材料咨询办理、认证咨询办理请加学历顾问Q/微741003700
【主营项目】
一.毕业证【q微741003700】成绩单、使馆认证、教育部认证、雅思托福成绩单、学生卡等！
二.真实使馆公证(即留学回国人员证明,不成功不收费)
三.真实教育部学历学位认证（教育部存档！教育部留服网站永久可查）
四.办理各国各大学文凭(一对一专业服务,可全程监控跟踪进度)
如果您处于以下几种情况：
◇在校期间，因各种原因未能顺利毕业……拿不到官方毕业证【q/微741003700】
◇面对父母的压力，希望尽快拿到；
◇不清楚认证流程以及材料该如何准备；
◇回国时间很长，忘记办理；
◇回国马上就要找工作，办给用人单位看；
◇企事业单位必须要求办理的
◇需要报考公务员、购买免税车、落转户口
◇申请留学生创业基金
留信网认证的作用:
1:该专业认证可证明留学生真实身份
2:同时对留学生所学专业登记给予评定
3:国家专业人才认证中心颁发入库证书
4:这个认证书并且可以归档倒地方
5:凡事获得留信网入网的信息将会逐步更新到个人身份内，将在公安局网内查询个人身份证信息后，同步读取人才网入库信息
6:个人职称评审加20分
7:个人信誉贷款加10分
8:在国家人才网主办的国家网络招聘大会中纳入资料，供国家高端企业选择人才
办理(osu毕业证书)美国俄勒冈州立大学毕业证【微信：741003700 】外观非常简单，由纸质材料制成，上面印有校徽、校名、毕业生姓名、专业等信息。
办理(osu毕业证书)美国俄勒冈州立大学毕业证【微信：741003700 】格式相对统一，各专业都有相应的模板。通常包括以下部分：
校徽：象征着学校的荣誉和传承。
校名:学校英文全称
授予学位：本部分将注明获得的具体学位名称。
毕业生姓名：这是最重要的信息之一，标志着该证书是由特定人员获得的。
颁发日期：这是毕业正式生效的时间，也代表着毕业生学业的结束。
其他信息：根据不同的专业和学位，可能会有一些特定的信息或章节。
办理(osu毕业证书)美国俄勒冈州立大学毕业证【微信：741003700 】价值很高，需要妥善保管。一般来说，应放置在安全、干燥、防潮的地方，避免长时间暴露在阳光下。如需使用，最好使用复印件而不是原件，以免丢失。
综上所述，办理(osu毕业证书)美国俄勒冈州立大学毕业证【微信：741003700 】是证明身份和学历的高价值文件。外观简单庄重，格式统一，包括重要的个人信息和发布日期。对持有人来说，妥善保管是非常重要的。

SCALING OF MOS CIRCUITS m .pptx

this ppt explains about scaling parameters of the mosfet it is basically vlsi subject

Mechanical Engineering on AAI Summer Training Report-003.pdf

Mechanical Engineering PROJECT REPORT ON SUMMER VOCATIONAL TRAINING
AT MBB AIRPORT

Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...

Join us for this solutions-based webinar on the tools and techniques for commissioning and maintaining PV Systems. In this session, we'll review the process of building and maintaining a solar array, starting with installation and commissioning, then reviewing operations and maintenance of the system. This course will review insulation resistance testing, I-V curve testing, earth-bond continuity, ground resistance testing, performance tests, visual inspections, ground and arc fault testing procedures, and power quality analysis.
Fluke Solar Application Specialist Will White is presenting on this engaging topic:
Will has worked in the renewable energy industry since 2005, first as an installer for a small east coast solar integrator before adding sales, design, and project management to his skillset. In 2022, Will joined Fluke as a solar application specialist, where he supports their renewable energy testing equipment like IV-curve tracers, electrical meters, and thermal imaging cameras. Experienced in wind power, solar thermal, energy storage, and all scales of PV, Will has primarily focused on residential and small commercial systems. He is passionate about implementing high-quality, code-compliant installation techniques.

DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL

As digital technology becomes more deeply embedded in power systems, protecting the communication
networks of Smart Grids (SG) has emerged as a critical concern. Distributed Network Protocol 3 (DNP3)
represents a multi-tiered application layer protocol extensively utilized in Supervisory Control and Data
Acquisition (SCADA)-based smart grids to facilitate real-time data gathering and control functionalities.
Robust Intrusion Detection Systems (IDS) are necessary for early threat detection and mitigation because
of the interconnection of these networks, which makes them vulnerable to a variety of cyberattacks. To
solve this issue, this paper develops a hybrid Deep Learning (DL) model specifically designed for intrusion
detection in smart grids. The proposed approach is a combination of the Convolutional Neural Network
(CNN) and the Long-Short-Term Memory algorithms (LSTM). We employed a recent intrusion detection
dataset (DNP3), which focuses on unauthorized commands and Denial of Service (DoS) cyberattacks, to
train and test our model. The results of our experiments show that our CNN-LSTM method is much better
at finding smart grid intrusions than other deep learning algorithms used for classification. In addition,
our proposed approach improves accuracy, precision, recall, and F1 score, achieving a high detection
accuracy rate of 99.50%.

Assistant Engineer (Chemical) Interview Questions.pdf

These are interview questions for the post of Assistant Engineer (Chemical)

FULL STACK PROGRAMMING - Both Front End and Back End

This ppt gives details about Full Stack Programming and its basics.

AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...

AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...Paris Salesforce Developer Group

Build the Next Generation of Apps with the Einstein 1 Platform.
Rejoignez Philippe Ozil pour une session de workshops qui vous guidera à travers les détails de la plateforme Einstein 1, l'importance des données pour la création d'applications d'intelligence artificielle et les différents outils et technologies que Salesforce propose pour vous apporter tous les bénéfices de l'IA.Supermarket Management System Project Report.pdf

Supermarket management is a stand-alone J2EE using Eclipse Juno program.
This project contains all the necessary required information about maintaining
the supermarket billing system.
The core idea of this project to minimize the paper work and centralize the
data. Here all the communication is taken in secure manner. That is, in this
application the information will be stored in client itself. For further security the
data base is stored in the back-end oracle and so no intruders can access it.

原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样

原件一模一样【微信：bwp0011】《(Humboldt毕业证书)柏林大学毕业证学位证》【微信：bwp0011】学位证，留信认证（真实可查，永久存档）原件一模一样纸张工艺/offer、雅思、外壳等材料/诚信可靠,可直接看成品样本，帮您解决无法毕业带来的各种难题！外壳，原版制作，诚信可靠，可直接看成品样本。行业标杆！精益求精，诚心合作，真诚制作！多年品质 ,按需精细制作，24小时接单,全套进口原装设备。十五年致力于帮助留学生解决难题，包您满意。
本公司拥有海外各大学样板无数，能完美还原。
1:1完美还原海外各大学毕业材料上的工艺：水印，阴影底纹，钢印LOGO烫金烫银，LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。材料咨询办理、认证咨询办理请加学历顾问微bwp0011
【主营项目】
一.毕业证【微bwp0011】成绩单、使馆认证、教育部认证、雅思托福成绩单、学生卡等！
二.真实使馆公证(即留学回国人员证明,不成功不收费)
三.真实教育部学历学位认证（教育部存档！教育部留服网站永久可查）
四.办理各国各大学文凭(一对一专业服务,可全程监控跟踪进度)
如果您处于以下几种情况：
◇在校期间，因各种原因未能顺利毕业……拿不到官方毕业证【微bwp0011】
◇面对父母的压力，希望尽快拿到；
◇不清楚认证流程以及材料该如何准备；
◇回国时间很长，忘记办理；
◇回国马上就要找工作，办给用人单位看；
◇企事业单位必须要求办理的
◇需要报考公务员、购买免税车、落转户口
◇申请留学生创业基金
留信网认证的作用:
1:该专业认证可证明留学生真实身份
2:同时对留学生所学专业登记给予评定
3:国家专业人才认证中心颁发入库证书
4:这个认证书并且可以归档倒地方
5:凡事获得留信网入网的信息将会逐步更新到个人身份内，将在公安局网内查询个人身份证信息后，同步读取人才网入库信息
6:个人职称评审加20分
7:个人信誉贷款加10分
8:在国家人才网主办的国家网络招聘大会中纳入资料，供国家高端企业选择人才

openshift technical overview - Flow of openshift containerisatoin

openshift overview

Accident detection system project report.pdf

The Rapid growth of technology and infrastructure has made our lives easier. The
advent of technology has also increased the traffic hazards and the road accidents take place
frequently which causes huge loss of life and property because of the poor emergency facilities.
Many lives could have been saved if emergency service could get accident information and
reach in time. Our project will provide an optimum solution to this draw back. A piezo electric
sensor can be used as a crash or rollover detector of the vehicle during and after a crash. With
signals from a piezo electric sensor, a severe accident can be recognized. According to this
project when a vehicle meets with an accident immediately piezo electric sensor will detect the
signal or if a car rolls over. Then with the help of GSM module and GPS module, the location
will be sent to the emergency contact. Then after conforming the location necessary action will
be taken. If the person meets with a small accident or if there is no serious threat to anyone’s
life, then the alert message can be terminated by the driver by a switch provided in order to
avoid wasting the valuable time of the medical rescue team.

Generative AI Use cases applications solutions and implementation.pdf

Generative AI solutions encompass a range of capabilities from content creation to complex problem-solving across industries. Implementing generative AI involves identifying specific business needs, developing tailored AI models using techniques like GANs and VAEs, and integrating these models into existing workflows. Data quality and continuous model refinement are crucial for effective implementation. Businesses must also consider ethical implications and ensure transparency in AI decision-making. Generative AI's implementation aims to enhance efficiency, creativity, and innovation by leveraging autonomous generation and sophisticated learning algorithms to meet diverse business challenges.
https://www.leewayhertz.com/generative-ai-use-cases-and-applications/

P5 Working Drawings.pdf floor plan, civil

Various architectural drawings presentation

Null Bangalore | Pentesters Approach to AWS IAM

#Abstract:
- Learn more about the real-world methods for auditing AWS IAM (Identity and Access Management) as a pentester. So let us proceed with a brief discussion of IAM as well as some typical misconfigurations and their potential exploits in order to reinforce the understanding of IAM security best practices.
- Gain actionable insights into AWS IAM policies and roles, using hands on approach.
#Prerequisites:
- Basic understanding of AWS services and architecture
- Familiarity with cloud security concepts
- Experience using the AWS Management Console or AWS CLI.
- For hands on lab create account on [killercoda.com](https://killercoda.com/cloudsecurity-scenario/)
# Scenario Covered:
- Basics of IAM in AWS
- Implementing IAM Policies with Least Privilege to Manage S3 Bucket
- Objective: Create an S3 bucket with least privilege IAM policy and validate access.
- Steps:
- Create S3 bucket.
- Attach least privilege policy to IAM user.
- Validate access.
- Exploiting IAM PassRole Misconfiguration
-Allows a user to pass a specific IAM role to an AWS service (ec2), typically used for service access delegation. Then exploit PassRole Misconfiguration granting unauthorized access to sensitive resources.
- Objective: Demonstrate how a PassRole misconfiguration can grant unauthorized access.
- Steps:
- Allow user to pass IAM role to EC2.
- Exploit misconfiguration for unauthorized access.
- Access sensitive resources.
- Exploiting IAM AssumeRole Misconfiguration with Overly Permissive Role
- An overly permissive IAM role configuration can lead to privilege escalation by creating a role with administrative privileges and allow a user to assume this role.
- Objective: Show how overly permissive IAM roles can lead to privilege escalation.
- Steps:
- Create role with administrative privileges.
- Allow user to assume the role.
- Perform administrative actions.
- Differentiation between PassRole vs AssumeRole
Try at [killercoda.com](https://killercoda.com/cloudsecurity-scenario/)

Object Oriented Analysis and Design - OOAD

This ppt gives detailed description of Object Oriented Analysis and design.

Blood finder application project report (1).pdf

Blood Finder is an emergency time app where a user can search for the blood banks as
well as the registered blood donors around Mumbai. This application also provide an
opportunity for the user of this application to become a registered donor for this user have
to enroll for the donor request from the application itself. If the admin wish to make user
a registered donor, with some of the formalities with the organization it can be done.
Specialization of this application is that the user will not have to register on sign-in for
searching the blood banks and blood donors it can be just done by installing the
application to the mobile.
The purpose of making this application is to save the user’s time for searching blood of
needed blood group during the time of the emergency.
This is an android application developed in Java and XML with the connectivity of
SQLite database. This application will provide most of basic functionality required for an
emergency time application. All the details of Blood banks and Blood donors are stored
in the database i.e. SQLite.
This application allowed the user to get all the information regarding blood banks and
blood donors such as Name, Number, Address, Blood Group, rather than searching it on
the different websites and wasting the precious time. This application is effective and
user friendly.

Digital Twins Computer Networking Paper Presentation.pptx

Digital Twins Computer Networking Paper Presentation.pptx

一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理

一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理

一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理

一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理

SCALING OF MOS CIRCUITS m .pptx

SCALING OF MOS CIRCUITS m .pptx

Mechanical Engineering on AAI Summer Training Report-003.pdf

Mechanical Engineering on AAI Summer Training Report-003.pdf

Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...

Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...

DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL

DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL

Assistant Engineer (Chemical) Interview Questions.pdf

Assistant Engineer (Chemical) Interview Questions.pdf

FULL STACK PROGRAMMING - Both Front End and Back End

FULL STACK PROGRAMMING - Both Front End and Back End

AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...

AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...

UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS

UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS

Supermarket Management System Project Report.pdf

Supermarket Management System Project Report.pdf

原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样

原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样

openshift technical overview - Flow of openshift containerisatoin

openshift technical overview - Flow of openshift containerisatoin

Accident detection system project report.pdf

Accident detection system project report.pdf

Generative AI Use cases applications solutions and implementation.pdf

Generative AI Use cases applications solutions and implementation.pdf

P5 Working Drawings.pdf floor plan, civil

P5 Working Drawings.pdf floor plan, civil

Null Bangalore | Pentesters Approach to AWS IAM

Null Bangalore | Pentesters Approach to AWS IAM

Object Oriented Analysis and Design - OOAD

Object Oriented Analysis and Design - OOAD

Blood finder application project report (1).pdf

Blood finder application project report (1).pdf

- 1. Multinomial Logistic Regression with Apache Spark DB Tsai Machine Learning Engineer May 1st , 2014
- 2. Machine Learning with Big Data ● Hadoop MapReduce solutions ● MapReduce is scaling well for batch processing ● However, lots of machine learning algorithms are iterative by nature. ● There are lots of tricks people do, like training with subsamples of data, and then average the models. Why big data with approximation? + =
- 3. Lightning-fast cluster computing ● Empower users to iterate through the data by utilizing the in-memory cache. ● Logistic regression runs up to 100x faster than Hadoop M/R in memory. ● We're able to train exact model without doing any approximation.
- 4. Binary Logistic Regression d = ax1+bx2+cx0 √a2 +b2 where x0=1 P( y=1∣⃗x , ⃗w)= exp(d ) 1+exp(d ) = exp(⃗x ⃗w) 1+exp(⃗x ⃗w) P ( y=0∣⃗x , ⃗w)= 1 1+exp(⃗x ⃗w) log P ( y=1∣⃗x , ⃗w) P( y=0∣⃗x , ⃗w) =⃗x ⃗w w0= c √a2 +b2 w1= a √a2 +b2 w2= b √a2 +b2 wherew0 iscalled as intercept
- 5. Training Binary Logistic Regression ● Maximum Likelihood estimation From a training data and labels ● We want to find that maximizes the likelihood of data defined by ● We can take log of the equation, and minimize it instead. The Log-Likelihood becomes the loss function. X =( ⃗x1 , ⃗x2 , ⃗x3 ,...) Y =( y1, y2, y3, ...) ⃗w L( ⃗w , ⃗x1, ... , ⃗xN )=P ( y1∣⃗x1 , ⃗w)P ( y2∣⃗x2 , ⃗w)... P( yN∣ ⃗xN , ⃗w) l( ⃗w ,⃗x)=log P(y1∣⃗x1 , ⃗w)+log P( y2∣⃗x2 , ⃗w)...+log P( yN∣ ⃗xN , ⃗w)
- 6. Optimization ● First Order Minimizer Require loss, gradient of loss function – Gradient Decent is step size – Limited-memory BFGS (L-BFGS) – Orthant-Wise Limited-memory Quasi-Newton (OWLQN) – Coordinate Descent (CD) – Trust Region Newton Method (TRON) ● Second Order Minimizer Require loss, gradient and hessian of loss function – Newton-Raphson, quadratic convergence. Fast! ● Ref: Journal of Machine Learning Research 11 (2010) 3183- 3234, Chih-Jen Lin et al. ⃗wn+1=⃗wn−γ ⃗G , γ ⃗wn+1=⃗wn−H−1 ⃗G
- 7. Problem of Second Order Minimizer ● Scale horizontally (the numbers of training data) by leveraging Spark to parallelize this iterative optimization process. ● Don't scale vertically (the numbers of training features). Dimension of Hessian is ● Recent applications from document classification and computational linguistics are of this type. dim(H )=[(k−1)(n+1)] 2 where k is numof class ,nis num of features
- 8. L-BFGS ● It's a quasi-Newton method. ● Hessian matrix of second derivatives doesn't need to be evaluated directly. ● Hessian matrix is approximated using gradient evaluations. ● It converges a way faster than the default optimizer in Spark, Gradient Decent. ● We love open source! Alpine Data Labs contributed our L-BFGS to Spark, and it's already merged in Spark-1157.
- 9. Training Binary Logistic Regression l( ⃗w ,⃗x) = ∑ k=1 N log P( yk∣⃗xk , ⃗w) = ∑k=1 N yk log P ( yk=1∣⃗xk , ⃗w)+(1−yk )log P ( yk =0∣⃗xk , ⃗w) = ∑k=1 N yk log exp( ⃗xk ⃗w) 1+exp( ⃗xk ⃗w) +(1−yk )log 1 1+exp( ⃗xk ⃗w) = ∑k=1 N yk ⃗xk ⃗w−log(1+exp( ⃗xk ⃗w)) Gradient : Gi (⃗w ,⃗x)= ∂l( ⃗w ,⃗x) ∂ wi =∑k=1 N yk xki− exp( ⃗xk ⃗w) 1+exp( ⃗xk ⃗w) xki Hessian: H ij (⃗w ,⃗x)= ∂∂l( ⃗w ,⃗x) ∂wi ∂w j =−∑k=1 N exp( ⃗xk ⃗w) (1+exp( ⃗xk ⃗w))2 xki xkj
- 10. Overfitting P ( y=1∣⃗x , ⃗w)= exp(zd ) 1+exp(zd ) = exp(⃗x ⃗w) 1+exp(⃗x ⃗w)
- 11. Regularization ● The loss function becomes ● The loss function of regularizer doesn't depend on data. Common regularizers are – L2 Regularization: – L1 Regularization: ● L1 norm is not differentiable at zero! ltotal (⃗w ,⃗x)=lmodel (⃗w ,⃗x)+lreg( ⃗w) lreg (⃗w)=λ∑i=1 N wi 2 lreg (⃗w)=λ∑i=1 N ∣wi∣ ⃗G (⃗w ,⃗x)total=⃗G(⃗w ,⃗x)model+⃗G( ⃗w)reg ̄H ( ⃗w ,⃗x)total= ̄H (⃗w ,⃗x)model+ ̄H (⃗w)reg
- 12. Mini School of Spark APIs ● map(func) : Return a new distributed dataset formed by passing each element of the source through a function func. ● reduce(func) : Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel. No “key” thing here compared with Hadoop M/R.
- 13. Example – No More “Word Count”! Let's compute the mean of numbers. 3.0 2.0 1.0 5.0 Executor 1 Executor 2 map map (1.0, 1) (5.0, 1) (3.0, 1) (2.0, 1) reduce (5.0, 2) reduce (11.0, 4) Shuffle
- 14. ● The previous example using map(func) will create new tuple object, which may cause Garbage Collection issue. ● Like the combiner in Hadoop Map Reduce, for each tuple emitted from map(func), there is no guarantee that they will be combined locally in the same executor by reduce(func). It may increase the traffic in shuffle phase. ● In Hadoop, we address this by in-mapper combiner or aggregating the result in global variables which have scope to entire partition. The same approach can be used in Spark.
- 15. Mini School of Spark APIs ● mapPartitions(func) : Similar to map, but runs separately on each partition (block) of the RDD, so func must be of type Iterator[T] => Iterator[U] when running on an RDD of type T. ● This API allows us to have global variables on entire partition to aggregate the result locally and efficiently.
- 16. Better Mean of Numbers Implementation 3.0 2.0 Executor 1 reduce (11.0, 4) Shuffle var counts = 0 var sum = 0.0 loop var counts = 2 var sum = 5.0 3.0 2.0 (5.0, 2) 1.0 5.0 Executor 2 var counts = 0 var sum = 0.0 loop var counts = 2 var sum = 6.0 1.0 5.0 (6.0, 2) mapPartitions
- 17. More Idiomatic Scala Implementation ● aggregate(zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U zeroValue is a neutral "zero value" with type U for initialization. This is analogous to in previous example. var counts = 0 var sum = 0.0 seqOp is function taking (U, T) => U, where U is aggregator initialized as zeroValue. T is each line of values in RDD. This is analogous to mapPartition in previous example. combOp is function taking (U, U) => U. This is essentially combing the results between different executors. The functionality is the same as reduce(func) in previous example.
- 18. Approach of Parallelization in Spark Spark Driver JVM Time Spark Executor 1 JVM Spark Executor 2 JVM 1) Find available resources in cluster, and launch executor JVMs. Also initialize the weights. 2) Ask executors to load the data into executors' JVMs 2) Trying to load the data into memory. If the data is bigger than memory, it will be partial cached. (The data locality from source will be taken care by Spark) 3) Ask executors to compute loss, and gradient of each training sample (each row) given the current weights. Get the aggregated results after the Reduce Phase in executors. 5) If the regularization is enabled, compute the loss and gradient of regularizer in driver since it doesn't depend on training data but only depends on weights. Add them into the results from executors. 3) Map Phase: Compute the loss and gradient of each row of training data locally given the weights obtained from the driver. Can either emit each result or sum them up in local aggregators. 4) Reduce Phase: Sum up the losses and gradients emitted from the Map Phase Taking a rest! 6) Plug the loss and gradient from model and regularizer into optimizer to get the new weights. If the differences of weights and losses are larger than criteria, GO BACK TO 3) Taking a rest! 7) Finish the model training! Taking a rest!
- 19. Step 3) and 4) ● This is the implementation of step 3) and 4) in MLlib before Spark 1.0 ● gradient can have implementations of Logistic Regression, Linear Regression, SVM, or any customized cost function. ● Each training data will create new “grad” object after gradient.compute.
- 20. Step 3) and 4) with mapPartitions
- 21. Step 3) and 4) with aggregate ● This is the implementation of step 3) and 4) in MLlib in coming Spark 1.0 ● No unnecessary object creation! It's helpful when we're dealing with large features training data. GC will not kick in the executor JVMs.
- 22. Extension to Multinomial Logistic Regression ● In Binary Logistic Regression ● For K classes multinomial problem where labels ranged from [0, K-1], we can generalize it via ● The model, weights becomes (K-1)(N+1) matrix, where N is number of features. log P( y=1∣⃗x , ̄w) P ( y=0∣⃗x , ̄w) =⃗x ⃗w1 log P ( y=2∣⃗x , ̄w) P ( y=0∣⃗x , ̄w) =⃗x ⃗w2 ... log P ( y=K −1∣⃗x , ̄w) P ( y=0∣⃗x , ̄w) =⃗x ⃗wK −1 log P( y=1∣⃗x , ⃗w) P ( y=0∣⃗x , ⃗w) =⃗x ⃗w ̄w=(⃗w1, ⃗w2, ... , ⃗wK −1)T P( y=0∣⃗x , ̄w)= 1 1+∑ i=1 K −1 exp(⃗x ⃗wi ) P( y=1∣⃗x , ̄w)= exp(⃗x ⃗w2) 1+∑ i=1 K −1 exp(⃗x ⃗wi) ... P( y=K −1∣⃗x , ̄w)= exp(⃗x ⃗wK −1) 1+∑i=1 K −1 exp(⃗x ⃗wi )
- 23. Training Multinomial Logistic Regression l( ̄w ,⃗x) = ∑ k=1 N log P( yk∣⃗xk , ̄w) = ∑k=1 N α( yk)log P( y=0∣⃗xk , ̄w)+(1−α( yk ))log P ( yk∣⃗xk , ̄w) = ∑k=1 N α( yk)log 1 1+∑ i=1 K −1 exp(⃗x ⃗wi) +(1−α( yk ))log exp(⃗x ⃗w yk ) 1+∑ i=1 K−1 exp(⃗x ⃗wi) = ∑ k=1 N (1−α( yk ))⃗x ⃗wyk −log(1+∑ i=1 K−1 exp(⃗x ⃗wi)) Gradient : Gij ( ̄w ,⃗x)= ∂l( ̄w ,⃗x) ∂wij =∑k=1 N (1−α( yk )) xkj δi , yk − exp( ⃗xk ⃗w) 1+exp( ⃗xk ⃗w) xkj α( yk )=1 if yk=0 α( yk )=0 if yk≠0 Define: Note that the first index “i” is for classes, and the second index “j” is for features. Hessian: H ij ,lm( ̄w ,⃗x)= ∂∂l ( ̄w ,⃗x) ∂wij ∂wlm
- 24. 0 5 10 15 20 25 30 35 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 Logistic Regression with a9a Dataset (11M rows, 123 features, 11% non-zero elements) 16 executors in INTEL Xeon E3-1230v3 32GB Memory * 5 nodes Hadoop 2.0.5 alpha cluster L-BFGS Dense Features L-BFGS Sparse Features GD Sparse Features GD Dense Features Seconds Log-Likelihood/NumberofSamples a9a Dataset Benchmark
- 25. a9a Dataset Benchmark -1 1 3 5 7 9 11 13 15 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 Logistic Regression with a9a Dataset (11M rows, 123 features, 11% non-zero elements) 16 executors in INTEL Xeon E3-1230v3 32GB Memory * 5 nodes Hadoop 2.0.5 alpha cluster L-BFGS GD Iterations Log-Likelihood/NumberofSamples
- 26. 0 5 10 15 20 25 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Logistic Regression with rcv1 Dataset (6.8M rows, 677,399 features, 0.15% non-zero elements) 16 executors in INTEL Xeon E3-1230v3 32GB Memory * 5 nodes Hadoop 2.0.5 alpha cluster LBFGS Sparse Vector GD Sparse Vector Second Log-Likelihood/NumberofSamples rcv1 Dataset Benchmark
- 27. news20 Dataset Benchmark 0 10 20 30 40 50 60 70 80 0 0.2 0.4 0.6 0.8 1 1.2 Logistic Regression with news20 Dataset (0.14M rows, 1,355,191 features, 0.034% non-zero elements) 16 executors in INTEL Xeon E3-1230v3 32GB Memory * 5 nodes Hadoop 2.0.5 alpha cluster LBFGS Sparse Vector GD Sparse Vector Second Log-Likelihood/NumberofSamples
- 28. Alpine Demo
- 29. Alpine Demo
- 30. Alpine Demo
- 31. Conclusion ● Alpine supports state of the art Cloudera CDH5 ● Spark runs programs 100x faster than Hadoop ● Spark turns iterative big data machine learning problems into single machine problems ● MLlib provides lots of state of art machine learning implementations, e.g. K-means, linear regression, logistic regression, ALS, collaborative filtering, and Naive Bayes, etc. ● Spark provides ease of use APIs in Java, Scala, or Python, and interactive Scala and Python shell ● Spark is Apache project, and it's the most active big data open source project nowadays.