The document discusses algorithm analysis and asymptotic notation. It defines algorithm analysis as comparing algorithms based on running time and other factors as problem size increases. Asymptotic notation such as Big-O, Big-Omega, and Big-Theta are introduced to classify algorithms based on how their running times grow relative to input size. Common time complexities like constant, logarithmic, linear, quadratic, and exponential are also covered. The properties and uses of asymptotic notation for equations and inequalities are explained.