SlideShare a Scribd company logo
1 of 104
Compiled by Rozie @ SMAN 3 Semarang
GERAK MELINGKAR (circular
motion)
1Compiled by Rozie SMAN 3 Semarang
Gerak Melingkar (Rotasi) merupakan gerak benda yang berputar
terhadap sumbu putar atau sumbu rotasi
2Compiled by Rozie SMAN 3 Semarang
3Compiled by Rozie SMAN 3 Semarang
BESARAN – BESARAN FISIKA PADA
GERAK MELINGKAR
Compiled by Rozie SMAN 3 Semarang 4
x
y
θ
r
v
1. Sudut tempuh(θ)
Posisi partikel yang bergerak melingkar dapat dinyatakan dalam :
1. Koordinat kartesius: (x,y) atau (x,z) atau (y,z)
2. Koordinat polar: (r, θ) dengan r= jari-jari (m) dan θ= sudut tempuh(o
)
θcosrx =
θsinry =
22
yxr +=
Berdasarkan gambar didapatkan:
5Compiled by Rozie SMAN 3 Semarang
Bandul bergerak dari
titik A ke B
A
B
●
Contoh:
Partikel bergerak melingkar dengan jari-jari, r = 0,5 m. Saat posisi
sudutnya 30o
tentukan posisi partikel dengan koordinat kartesian
mapun polar!
m325030cos50cosrx o
,, === θ
m25030ins50cosry o
,, === θ
Posisi partikel dalam koordinat kartisius: ( 0,25√3 m , 0,23 m)
Posisi partikel dalam koordinat polar: ( 2 m, 30o
)
Jawab:
r
s
)rad( =θ
Hubungan Sudut tempuh (θ) dg Panjang lintasan (s)
1 putaran = 360o
= 2π rad
1 π rad = 180o
1 rad = 180o
/π = 180o
/3,14 = 57,3o
1o
= 1/57,3= 0,01745 rad
θ = posisi sudut (rad)
r = jari-jari lintasan
s = panjang lintasan/ jarak
tempuh (m)
rs rad .)(θ=
 Utk 1 putaran:S = 2πr
Compiled by Rozie SMAN 3 Semarang
Ingat: Hubungan rumus diatas berlaku
jika θ bersatuan radian (rad)
r
θ
S
2. Kecepatan Sudut /angular (ω)
“sudut tempuh dibagi waktu yang dibutuhkan”
tt
θθ
ω =
∆
∆
=
8Compiled by Rozie SMAN 3 Semarang
Untuk satu kali putaran, θ=360o
= 2π rad
dan waktu yang dibutuhkan disebut periode (T), sehingga:
T
π
ω
2
=
ω=kelajuan sudut (angular) /frekuensi sudut (rad/s)
T= periode (s)
f = frekuensi (Hz)
fπω 2=
arah ω
arah gerak
arah gerak
arah ω
Hubungan kelajuan Sudut (ω) dg kelajuan
linier/tangensial/translasi (v)
rv
t
rs
t
.
.
=
=
=
ω
ω
θ
ω
rv .ω=
9Compiled by Rozie SMAN 3 Semarang
v = kelajuan linier/tangensial (m/s)
ω = kelajuan sudut (rad.s-1
)
r = jari-jari lintasan(m)
Satuan ω selain rad/s juga sering dinyatakan dengan:
rpm (rotasi per menit)
rps (rotasi per sekon)
1 rpm = 1 putaran/menit = 2π rad/ 60 s = π/30 rad/s
1 rps = 1 rotasi/sekon = 2π rad/s
Contoh:
Sebuah bola kecil diikat tali sepanjang 50 cm kemudian diputar
horisontal. Jika dalam 8 s bola dapat berputar 40 kali. Tentukan:
a. frekuensi gerak bola!
b. periode gerak bola !
c. banyaknya putaran gerak bola selama 20 s !
d. Kecepatan sudut bola!
e. Kecepatan linier bola!
Compiled by Rozie SMAN 3 Semarang 10,
s0,2T
5
1
T
f
1
T.
=
=
=b
5Hzf
8
40
f
t
N
f.
=
=
=a
putaran2,5N
8
20
N
T
t
N.
=
=
=c
rad/s31,4rad/s01
52
2.
==
=
=
πω
πω
πω fd
m/s15,7m/s5
5,0.10
.
==
=
=
π
π
ω
v
v
rve
4. Percepatan Sudut
t
ω
α
∆
=
“Perubahan kecepatan sudut dibagi interval waktu yang dibutuhkan”
α = percepatan sudut (rad.s-2
)
11Compiled by Rozie SMAN 3 Semarang
ω∆ = perubahan kecepatan sudut (rad.s-1
)
t
ot ωω
α
−
=
t = waktu yang dibutuhkan (s)
Contoh:
Partikel yang berputar pada lintasan melingkar berubah kecepatan sudutnya dari 120
rpm menjadi 180 rpm dalam 40 sekon. Berapakah percepatan sudut gerak partikel itu?
Penyelesaian:
ωo = 120 rpm = 120 . π/30 rad/s = 4 π rad/s
ωt = 180 rpm = 180 . π/30 rad/s = 6 π rad/s
t = 40 s
Compiled by Rozie SMAN 3 Semarang 12
Penyelesaian:
ωo = 120 rpm = 120 . π/30 rad/s = 4 π rad/s
ωt = 180 rpm = 180 . π/30 rad/s = 6 π rad/s
t = 40 s
Percepatan sudutnya:
2-
rad.s,05π0
40
46
=
−
=
−
=
α
ππ
α
ωω
α
t
ot
Compiled by Rozie SMAN 3 Semarang 13
Hubungan Percepatan tangensial (a) dg Percepatan
sudut (a)
α
ω
ω
.
).(
ra
t
ra
t
r
a
t
v
a
=
∆
=
∆
=
∆
=
r.a α=
a = percepatan tangensial (m.s-2
)
α = percepatan sudur (rad.s-2
)
r = jari-jari lintasan (m)
• Sebuah benda yang bergerak melingkar, meskipun
bergerak dengan laju (besar v)konstan, akan memiliki
percepatan karena arah kecepatannya (arah v) selalu
berubah
• Percepatan yang disebabkan karena perubahan arah
kecepatan linier v ini disebut percepatan sentripetal,
yang arahnya ke pusat lingkaran
5. Percepatan sentripetal (as )
14Compiled by Rozie SMAN 3 Semarang
Compiled by Rozie SMAN 3 Semarang 15
Jadi benda yang bergerak melingkar memungkinkan
memiliki tiga percepatan berikut:
Percepatan sudut (α) : perubahan kecepatan sudut
dalam waktu tertentu
Percepatan sentripetal (as ) : perubahan arah kecepatan linier
dalam waktu tertentu
Percepatan tangensial (at) : perubahan besarnya kecepatan
linier dalam waktu tertentu
Menentukan persamaan percepatan sentripetal
• Berdasarkan gambar di samping:
s
r
θ
v
v
v
-v
Δv θ
o
16Compiled by Rozie SMAN 3 Semarang
v
t.r
s
a
t
v
r
s
t
v
v
r
s
v
r
s
v
v
s
∆
∆∆
∆
∆
∆
=⇒
=⇒
=
=
v
-v
Δvθ
o
ra 2
s ω=
r
v
a
2
s = krn v = ω.r
as = percepatan sentripetal (m.s-2
)
17Compiled by Rozie SMAN 3 Semarang
r
v
a
v.v
r
1
a
v
t
s
r
1
a
r
s
s
s
=⇒
=⇒
=⇒
∆
5. Percepatan total (atotal )
Benda yang bergerak melingkar dengan kecepatan
sudut berubah akan memiliki 3 percepatan:
1.Percepatan sudut
2.Percepatan sentripetal
3.Percepatan tangemsial
 Resultan dari percepatan sentripetal dengan percepatan
tangensial disebut percepatan total (atot)
at
atot
as
2
s
2
ttot aaa +=
r.at α=
r
r
v
a 2
2
s ω==
Dengan:
atot = percepatan total (m s-
2
)
18
Compiled by Rozie SMAN 3 Semarang
Compiled by Rozie SMAN 3 Semarang 19
5. Gaya Sentripetal (Fs)
r..mF
r
v
.mF
a.mF
2
s
2
s
ss
ω=
=
=
v
v
v
v
a
as
atot
Fs
Sebuah benda massanya 0,25 kg,
diikat pada ujung tali yang
panjangnya 0,5 m dan diputar
mendatar dengan 2 putaran tiap
sekon. Hitunglah :
a. Laju linier benda
b. Percepatan sentripetal benda
c. Gaya sentripetal pada benda
Penyelesaian :
Diketahui :
m = 0,25 kg ; R = 0,5 m ; f = 2 Hz
Ditanyakan :
a. v = ?
b. aS = ?
c. FS = ?
Jawab :
a. v = 2πf .R = 2π x 2 x 0,5 = 2π m/s
b. aS = = = 8 π2
m/s2
c. FS = m . aS = 0,25 x 8π2
= 2 π2
N
v2
R
(2π)2
0,5
as
Fs
v
20Compiled by Rozie SMAN 3 Semarang
JENIS GERAK MELINGKAR
kecepatan)arahmengubahyangn(percepata
0)(alsentripetapercepatanmemilikiHanya
0)(altangensiaPercepatan
0)(sudutPercepatan
konstan)(suduttanecepak
s
t
≠⊕
=⊕
=⊕
=⊕
α
ω
sialdan tangenlsentripetapercepatanmemiliki
0dankonstan)(sudutpercepatan
konstantidak)(suduttanecepak
⊗
≠=⊗
=⊗
α
ω
t.
2
αtωω
tetapα
t0
0t
ωω
θ
+
=
+=
=
 Gerak Melingkar Beraturan (GMB):
 Gerak Melingkar Berubah Beraturan (GMBB):
θ2αωω
αt
2
1
tωθ
2
0
2
t
2
0
+=
+=
tωθ =
t
θ
ω=
atau
21
Compiled by Rozie SMAN 3 Semarang
Contoh Soal
1. Sebuah benda bergerak rotasi dengan percepatan sudut tetap
- 2 rad/s2
. Jika mula-mula benda memiliki kecepatan 10 rad/s
dan posisi sudut awalnya sama dengan nol. Tentukan:
a. Sudut yang ditempuh selama 2 detik pertama
b. Kapan benda akan berhenti berputar
c. Jumlah putaran benda dari awal hingga berhenti
22Compiled by Rozie SMAN 3 Semarang
2. Dari keadaan diam sebuah benda berotasi sehingga dalam
waktu 2 s kecepatannya menjadi 4 rad/s. Tentukan
percepatan total titik pada benda tersebut yang terletak 50
cm dari sumbu rotasi benda setelah benda berotasi selama
5 s.
Compiled by Rozie SMAN 3 Semarang 23
Titik A berada di pinggir sebuah roda. Jika roda ditarik dengan tali yang
berkecepatan 2 m/s seperti gambar di samping maka berapakah kecepatan sudut
roda tersebut? Berapa pula kecepatan titik A?
Sebuah benda melakukan gerak melingkar beraturan sebanyak 300 rpm. Jika
diameter lingkaran 80 cm, Tentukan percepatan sentripetal benda tersebut!
Sebuah satelit komunikasi mengorbit di atas permukaan bumi pada ketingian 600
km. Jika waktu yang diperlukan satelit tersebut untuk menempuh satu kali putaran
adalah 1,5 jam, Tentukan kecepatan satelit tersebut!
Terdapat tiga buah roda A, B, dan C yang memiliki jari-jari berturut-turut 25 cm, 15
cm, dan 40 cm. Roda A dab B dihubungkan oleh rantai, sedangkan roda B dan C
seporos. Jika roda C memerlukan waktu 2 menit untuk menempuh 120 putaran,
maka kecepatan sudut roda A dan B adalah
Compiled by Rozie SMAN 3 Semarang 24
Seseorang bersepeda dengan kecepatan 18 km/jam. Saat melewati sebuah
tikungan yang berjari-jari 100 cm, ia mengerem dan mengurangi kecepatannya 2
m/s tiap detiknya. Tentukan percepatan total pada detik ke-2 setelah
pengereman.
Sebuah roda berputar dengan kecepatan sudut tetap 120 rpm. Jari-jari roda 50 cm.
Tentukan:
a.sudut yang ditempuh roda dalam waktu 5 sekon,
b.panjang lintasan yang ditempuh titik di tepi roda dalam waktu 5 detik,
c.kecepatan linier titik yang berada di tepi roda!
d.percepatan sentripetal titik di tepi roda!
Sebuah benda mula-mula diam kemudian bergerak melingkar hingga kecepatan
angulernya 60 rad/s dalam waktu 2,5 s. Tentukan:
a.Percepatan anguler yang dialami benda
b.Kecepatan benda pada t= 2 s
c.Jumlah putaran benda pada t= 5 s
Compiled by Rozie SMAN 3 Semarang 25
HUBUNGAN RODA-RODA
ωB = ωC vA >vB
A
B
B
A
ωB > ωC vA =vB
ωB > ωC vA= vB
1. Sepusat
2. Dihubungkan tali
3. Bersinggungan
A
B
Tiga roda A, B, dan C dirangkai seperti pada gambar. Masing-masing
berjari-jari 6 cm, 4 cm dan 8 cm. Roda A dan B dihubungkan dengan
rantai dan roda C seporos dengan roda B. Jika roda A berputar 2
putaran tiap detik, tentukan kecepatan linier roda C.
Penyelesaian :
Diketahui :
RA = 6 cm
RB = 4 cm
RC = 8 cm
fA = 2 Hz
Ditanyakan : vC = ?
Jawab :
Roda A: vA = 2π . RA. fA
= 2π x 6 x 2 = 24 π cm/s
Roda B : vB = vA
ωΒ . RB = vA
ωΒ = vA/ RB = 24 π / 4 = 6 π rad/s
Roda C : ωC= ωB = 6 π rad/s
vC = ωC x RC = 6 π x 8 = 48 π cm/s
C
B
A
ωB = ωC
vA = vB
26Compiled by Rozie SMAN 3 Semarang
Compiled by Rozie SMAN 3 Semarang 27
Dua buah roda dihubungkan dengan rantai. Roda yang lebih kecil dengan jari-jari
8 cm diputar pada 100 rad/s. Berapakah kelajuan linier kedua roda tersebut? Jika
jari-jari roda yang lebih besar 15 cm, berapa rpm roda tersebut akan berputar?
Sebuah roda berdiameter 1 m melakukan 120 putaran per menit. Tentukan
Kecepatan linier titik pada tepi roda!
Empat buah roda A, B, C, dan D masing-masing berjari-jari RB = 3 cm, RC = 50 cm,
dan R= 5 cm dihubungkan satu sama lain seperti pada gambar. Jika periode A
sama dengan 2 sekon, tentukan:a. kecepatan sudut roda C, b. kecepatan linier
roda D!
28
Direction of Centripetal Force,
Acceleration and Velocity
Without a centripetal
force, an object in
motion continues along
a straight-line path.
Without a centripetal
force, an object in
motion continues along
a straight-line path.Compiled by Rozie SMAN 3 Semarang
29
Direction of Centripetal Force,
Acceleration and Velocity
Compiled by Rozie SMAN 3 Semarang
30
What if velocity decreases?
Compiled by Rozie SMAN 3 Semarang
31
What if mass decreases?
Compiled by Rozie SMAN 3 Semarang
32
What if radius decreases?
Compiled by Rozie SMAN 3 Semarang
Hubungan matematik dalam kedua kelompok besaran tersebut juga memiliki
persamaan, yang dapat dilihat dalam hubungan berikut:
d
dt
=
S
v
d
dt
=
θ
ω
2
2
d d
dt dt
= =
v S
a
2
2
d d
dt dt
= =
ω θ
α
Hubungan antara lintasan, kecepatan dan percepatan linier (tangensial)
dengan lintasan, kecepatan dan percepatan sudut diberikan oleh:
rθ=S rω=v rα=a
;
Untuk percepatan sudut konstan berlaku:
t2
tt)t(
t)t(
2
0
2
2
2
1
0
0
αωω
αωθθ
αωω
+=
++=
+=
33Compiled by Rozie SMAN 3 Semarang
Dinamika Gerak Melingkar
Menurut Hukum Newton kedua (ΣF = ma), benda yang
mengalami percepatan pasti resultan gaya yang bekerja
pada benda tidak sama dengan nol.
Benda yang bergerak melingkar pasti memiliki percepatan
sentripetal yang disebabkan adanya resultan gaya yang
radial
r
v
aF
2
mm sR ==Σ
ΣFR merupakan gaya total dalam arah radial (gaya yang menuju pusat
lingkaran:+ dan dan yamh menjauhi (-)
34Compiled by Rozie SMAN 3 Semarang
APLIKASI GERAK MELINGKAR
BERATURAN
35Compiled by Rozie SMAN 3 Semarang
lanjutan
36Compiled by Rozie SMAN 3 Semarang
DINAMIKA GERAK MELINGKAR
Berlaku:
1. Menentukan gaya tegangan tali pada bandul yang diputar melingkar
A. Dengan bidang putar horisontal
W
T
∑ = sradial FF
sFT = R
v
mT
2
= RmT 2
ω=
B. Dengan bidang putar Vertikal
W
T
∑ = sradial FF
sFwT =− mg
R
v
mT
2
+=
T
T
T
W
T
W W
W
W cos θ
W
sin
θ
α
θ
W cos α
W sin α
B
A
C
D
E
 Ketika bandul ditik A
∑ = sradial FF
sFcoswT =− θ )cosg
R
v
(mT
2
θ+=
 Ketika bandul ditik B
)cosgR(mT 2
θ+ω=
∑ = sradial FF
sFT = R
v
mT
2
=
 Ketika bandul ditik C
RmT 2
ω=
∑ = sradial FF
sFwT =+ )g
R
v
(mT
2
−=
 Ketika bandul ditik D
)gR(mT 2
−ω=
41
What provides the centripetal force?
• Tension
• Gravity
• Friction
• Normal Force
Centripetal force is NOT a new “force”. It is simply a way of quantifying the
magnitude of the force required to maintain a certain speed around a circular path
of a certain radius.
Compiled by Rozie SMAN 3 Semarang
42
Relationship Between Variables of Uniform
Circular Motion
Suppose two identical objects go around in
horizontal circles of identical diameter but one
object goes around the circle twice as fast as the
other. The force required to keep the faster object
on the circular path is
A. the same as
B. one fourth of
C. half of
D. twice
E. four times
the force required to keep the slower object on
the path.
The answer is E. As the
velocity increases the
centripetal force required to
maintain the circle increases
as the square of the speed.
Compiled by Rozie SMAN 3 Semarang
43
Relationship Between Variables of Uniform
Circular Motion
Suppose two identical objects go around in
horizontal circles with the same speed. The
diameter of one circle is half of the diameter of
the other. The force required to keep the object
on the smaller circular path is
A. the same as
B. one fourth of
C. half of
D. twice
E. four times
the force required to keep the object on the larger
path.
The answer is D. The centripetal force needed
to maintain the circular motion of an object is
inversely proportional to the radius of the circle.
Everybody knows that it is harder to navigate a
sharp turn than a wide turn.
Compiled by Rozie SMAN 3 Semarang
44
Relationship Between Variables of Uniform
Circular Motion
Suppose two identical objects go around in horizontal circles of
identical diameter and speed but one object has twice the
mass of the other. The force required to keep the more
massive object on the circular path is
A. the same as
B. one fourth of
C. half of
D. twice
E. four times
Answer: D.The mass is directly
proportional to centripetal force.
Compiled by Rozie SMAN 3 Semarang
45
Tension Can Yield a Centripetal Acceleration:
If the person doubles the speed of the
airplane, what happens to the tension in
the cable?
F = ma
mv
r
=
2
Doubling the speed, quadruples the force (i.e. tension) required to keep the plane in
uniform circular motion.
Compiled by Rozie SMAN 3 Semarang
46
Friction Can Yield a Centripetal Acceleration:
Compiled by Rozie SMAN 3 Semarang
47
Friction provides the centripetal acceleration
Car Traveling Around a Circular Track
Compiled by Rozie SMAN 3 Semarang
48
Friction Can Yield a Centripetal Acceleration
W
FN
fs
Force X Y
W 0 -mg
FN 0 FN
fs -µsFN
0
Sum ma 0
What is the maximum speed that a car
can use around a curve of radius “r”?
Compiled by Rozie SMAN 3 Semarang
49
Force X Y
W 0 -mg
FN 0 FN
FC -µsFN
0
Sum ma 0
F mg F
F mg
F ma mg
mv
r
mg
v g r
v g r
y N
N
x s
s
s
s
= = − +
=
= = −
− = −
= × ×
= × ×
∑
∑
0
2
2
µ
µ
µ
µ
max
max
max
max
Maximum Velocity
Compiled by Rozie SMAN 3 Semarang
50
F = ma
mv
r
=
2
Centripetal Force: Question
Smaller radius: larger force required to keep it in
uniform circular motion.
A car travels at a constant speed around two
curves. Where is the car most likely to skid?
Why?
Compiled by Rozie SMAN 3 Semarang
51
Gravity Can Yield a Centripetal Acceleration:
Hubble Space Telescope
orbits at an altitude of 598 km
(height above Earth’s surface).
What is its orbital speed?
Compiled by Rozie SMAN 3 Semarang
52
Gravity and Centripetal Acceleration:
Centripetal acceleration provided by gravitational force
G m M
R
m v
R
E× ×
=
×
2
2
Compiled by Rozie SMAN 3 Semarang
53
Gravity and Centripetal Acceleration:
G m M
R
m v
R
E× ×
=
×
2
2
Solve for the velocity….
v
G m M R
m R
v
G M
R
v
G M
R
E
E
E
2
2
2
=
× × ×
×
=
×
=
×
Compiled by Rozie SMAN 3 Semarang
54
Hubble Space Telescope:
v
GM
R km
v
v
E
E
=
+
=
× × ×
=
−
598
6 67 10 974 10
7 600
11 24
( . ) (5.
,
m kg s kg)
6,976,000 m
m / s
3 -1 -2
Compiled by Rozie SMAN 3 Semarang
55
Banked Curves
Why exit ramps in highways are banked?
Compiled by Rozie SMAN 3 Semarang
56
Banked Curves
Q: Why exit ramps in highways are banked?
Compiled by Rozie SMAN 3 Semarang
57
Banked Curves
Q: Why exit ramps in highways are banked?
A: To increase the centripetal force for the higher exit speed.
Compiled by Rozie SMAN 3 Semarang
58
The Normal Force Can Yield a Centripetal Acceleration:
How many forces are
acting on the car (assuming
no friction)?
Engineers have learned to “bank” curves so that cars can safely travel around
the curve without relying on friction at all to supply the centripetal acceleration.
Compiled by Rozie SMAN 3 Semarang
59
Banked Curves
Why exit ramps in highways are banked?
FN
cosθ = mg
Compiled by Rozie SMAN 3 Semarang
60
Banked Curves
Why exit ramps in highways are banked?
FN
cosθ = mg
Compiled by Rozie SMAN 3 Semarang
61
The Normal Force as a Centripetal Force:
Two: Gravity and Normal
Force X Y
W 0 -mg
FN FNsinθ FNcosθ
Sum ma 0
Compiled by Rozie SMAN 3 Semarang
62
The Normal Force as a Centripetal Force:
F mg F
mg
F F ma
mv
r
mg mv
r
v
gr
y N
x N
= − + =
=
= = =
× =
=
∑
∑
cos
cos
sin
cos
sin
tan
θ
θ
θ
θ
θ
θ
0
2
2
2
FN
Compiled by Rozie SMAN 3 Semarang
63
The Normal Force and Centripetal Acceleration:
tanθ =
v
gr
2
How to bank a curve…
…so that you don’t rely on friction at all!!
Compiled by Rozie SMAN 3 Semarang
64
Artifical Gravity
Compiled by Rozie SMAN 3 Semarang
65
Vertical Circular Motion
Compiled by Rozie SMAN 3 Semarang
66
Vertical Circular Motion
Compiled by Rozie SMAN 3 Semarang
Speed/Velocity in a Circle
Consider an object moving in a circle
around a specific origin. The DISTANCE the
object covers in ONE REVOLUTION is
called the CIRCUMFERENCE. The TIME
that it takes to cover this distance is called
the PERIOD.
T
r
T
d
scircle
π2
==
Speed is the MAGNITUDE of the
velocity. And while the speed may be
constant, the VELOCITY is NOT. Since
velocity is a vector with BOTH
magnitude AND direction, we see that
the direction o the velocity is ALWAYS
changing.
We call this velocity, TANGENTIAL velocity as its
direction is draw TANGENT to the circle.
67Compiled by Rozie SMAN 3 Semarang
Centripetal Acceleration
metersinlengtharc=
=
s
r
s
θ
v
v
r
vt
vts
v
v
r
s
∆
=
∆
∆=
∆
==θ
Suppose we had a circle with angle, θ, between 2
radaii. You may recall:
vo
v
θ
∆v
vov
onacceleratilcentripetaa
a
t
v
r
v
c
c
=
=
∆
=
2
Centripetal means “center seeking” so that means that the
acceleration points towards the CENTER of the circle
68Compiled by Rozie SMAN 3 Semarang
Drawing the Directions correctly
So for an object traveling in a
counter-clockwise path. The
velocity would be drawn
TANGENT to the circle and the
acceleration would be drawn
TOWARDS the CENTER.
To find the MAGNITUDES of
each we have:
r
v
a
T
r
v cc
2
2
==
π
69Compiled by Rozie SMAN 3 Semarang
Circular Motion and N.S.L
Recall that according to
Newton’s Second Law,
the acceleration is
directly proportional to
the Force. If this is true:
ForcelCentripetaF
r
mv
FF
r
v
amaF
c
cNET
cNET
=
==
==
2
2
Since the acceleration and the force are directly
related, the force must ALSO point towards the
center. This is called CENTRIPETAL FORCE.
NOTE: The centripetal force is a NET FORCE. It
could be represented by one or more forces. So
NEVER draw it in an F.B.D.
70Compiled by Rozie SMAN 3 Semarang
Examples
T
r
vc
π2
= smvc /26.4
)4*28(.
)76(.2
==
π
The blade of a windshield wiper moves
through an angle of 90 degrees in 0.28
seconds. The tip of the blade moves on
the arc of a circle that has a radius of
0.76m. What is the magnitude of the
centripetal acceleration of the tip of the
blade?
2
22
/92.23
76.0
)26.4(
sm
r
v
ac ===
71Compiled by Rozie SMAN 3 Semarang
Examples
rg
v
r
mv
mg
r
mv
F
FF
N
cf
2
2
2
=
=
=
=
µ
µ
µ
What is the minimum coefficient of static friction
necessary to allow a penny to rotate along a 33
1/3 rpm record (diameter= 0.300 m), when
the penny is placed at the outer edge of the
record?
mg
FN
Ff
Top view
Side view 187.0
)8.9)(15.0(
)524.0(
/524.0
80.1
)15.0(22
sec80.1
555.0
sec1
sec
555.0
sec60
min1
*
min
3.33
22
===
===
==
=
rg
v
sm
T
r
v
T
revrev
revrev
c
µ
ππ
72Compiled by Rozie SMAN 3 Semarang
Examples
The maximum tension that a 0.50 m
string can tolerate is 14 N. A 0.25-kg
ball attached to this string is being
whirled in a vertical circle. What is
the maximum speed the ball can
have (a) the top of the circle, (b)at
the bottom of the circle?
mgT
smv
m
mgTr
v
mvmgTr
r
mv
mgT
r
mv
maFF ccNET
/74.5
25.0
))8.9)(25.0(14(5.0)(
)( 2
2
2
=
+
=
+
=
=+→=+
===
73Compiled by Rozie SMAN 3 Semarang
Examples
At the bottom?
smv
m
mgTr
v
mvmgTr
r
mv
mgT
r
mv
maFF ccNET
/81.4
25.0
))8.9)(25.0(14(5.0)(
)( 2
2
2
=
−
=
−
=
=−→=−
===
mg
T
74Compiled by Rozie SMAN 3 Semarang
An object moving in a circle with constant speed, v,
experiences a centripetal acceleration with:
*a magnitude that is constant in time and
is equal to
*a direction that changes
continuously in time and
always points toward the
center of the circular path
Uniform Circular Motion
r
v
a
2
=
For uniform circular motion, the velocity is tangential
to the circle and perpendicular to the acceleration 75Compiled by Rozie SMAN 3 Semarang
A circular motion is described in terms of the
period T, which is the time for an object to
complete one revolution.
Period and Frequency
2πr
f =
1
T
T =
2πr
v
The distance traveled in one revolution is
The frequency, f, counts the number of revolutions
per unit time.
r
76Compiled by Rozie SMAN 3 Semarang
The moon’s nearly circular orbit about the earth has
a radius of about 384,000 km and a period T of
27.3 days. Determine the acceleration of the
Moon towards the Earth.
Example of Uniform Circular Motion
T =
2πr
v
⇒ v =
2πr
T
a =
v2
r
=
4π2
r2
T2
r
=
4π2
r
T2
a = 2.72 ×10−3
m/ s2 g
9.8m/ s2





 = 2.78×10−4
g
77Compiled by Rozie SMAN 3 Semarang
Moon…...
*So we find that amoon / g = 0.000278
*Newton noticed that RE
2
/ R2
= 0.000273
*This inspired him to propose that Fgravity ∝ 1 / R2
(more on gravity in future lectures)
amoon
R RE
g
78Compiled by Rozie SMAN 3 Semarang
Uniform Circular Motion
**motion in a circle or circular arc at constant
speed
**the acceleration changes the direction of the
velocity, not the magnitude
**the “center-seeking” or centripetal acceleration
is always orthogonal to the velocity and has
magnitude:
r
v
a
2
=The period ofThe period of
the motion:the motion:
v
r
T
π2
=
79Compiled by Rozie SMAN 3 Semarang
Uniform Circular Motion
Newton’s 2nd Law:: The net force on a body is equal to the product of the mass of the
body and the acceleration of the body.
*The centripetal acceleration is caused by a
centripetal force that is directed towards the
center of the circle.
F=ma=m
v2
r
80Compiled by Rozie SMAN 3 Semarang
Demo 1D-5
Does the contact force between the wine
glass and red-water remain constant in
uniform circular motion?
81Compiled by Rozie SMAN 3 Semarang
Consider the glass directly overhead. Choose the correct statement:
a. The water doesn’t fall because the centripetal force on the water cancels
the force of gravity.
b. The water doesn’t fall because there isn’t enough time for it to fall.
c. The water doesn’t fall because of the horizontal force applied to it by the
glass, plus friction with the glass.
d. The water is falling, but the glass is falling faster than it would under free
fall.
82Compiled by Rozie SMAN 3 Semarang
v
mg
N
Fy∑ =−N−mg=−ma
N=m(a−g)
N=m(
v2
r
−g)
Top
y
x
mac = mv2
/r = mg + Ny
or
ac = g ± N/m
When N=0, the centripetal
acceleration is just g.
83Compiled by Rozie SMAN 3 Semarang
v
v
mg
N
Fy∑ =−N−mg=−ma
N=m(a−g)
N=m(
v2
r
−g)
Top
mg N
Bottom
Fy∑ =N−mg=ma
N=m(a+g)
N=m(
v2
r
+g)
y
x
84Compiled by Rozie SMAN 3 Semarang
mg
N
v
Fy∑ =−N−mg=−ma
N=m(a−g)
N=m(
v2
r
−g)
Top
What speed is needed to lose contact between
wine glass and red-water?
v=rg
85Compiled by Rozie SMAN 3 Semarang
2) A person riding a Ferris Wheel moves through positions at (1) the top, (2) the
bottom and (3) midheight. If the wheel rotates at a constant rate, rank
(greatest first) these three positions according to...
(a) the magnitude of persons centripetal acceleration
(a) 2,1,3
(b) 1,2,3
(c) 3,2,1
(d) all tie
(b) The magnitude of the Normal force?
(1) Top
(2) Bottom
(3) Middle
86Compiled by Rozie SMAN 3 Semarang
(b) the magnitude of the net centripetal force on the person
1. 1,2,3
2. 3,1,2
3. 3,2,1
4. all tie
(c) the magnitude of the normal force on the person
1. all tie
2. 2,3,1
3. 3,2,1
4. 1,2,3
87Compiled by Rozie SMAN 3 Semarang
Demo 1D-2 Conical Pendulum
T
mg
θ
Fy=0⇒∑ Tcosθ=mg
Fr=ma⇒∑ Tsinθ=mv2
/R
tanθ=v2
gR
v= Rgtanθ=Rg/H
Period=T=2πR/v=2πH/g
H
R
The period, T, is independent of mass and
depends only on H.
*as θ 90, v increases.
*v is independent of mass.
88Compiled by Rozie SMAN 3 Semarang
Fr∑ =ma⇒fs=mv2
/R
Fy∑ =N=mg
fs=µsN
A car of mass, m, is traveling at a constant speed, v, along a
flat, circular road of radius, R. Find the minimum µs required
that will prevent the car from slipping
µs=v2
gR
89Compiled by Rozie SMAN 3 Semarang
T−Mg=0⇒T=Mg
T=m
v2
r
Mg = m
v2
r
v =
M
m
gr
A mass, m, on a frictionless table is attached to a hanging
mass, M, by a cord through a hole in the table. Find the
speed with which m must move in order for M to stay at
rest.
90Compiled by Rozie SMAN 3 Semarang
frictionless
mg
N
Fy=0⇒∑ Ncosθ=mg
Fr=ma⇒∑ Nsinθ=mv2
/R
tanθ = v2
gR
R = v2
gtanθ
θ
A car of mass, m, is traveling at a constant speed, v, along a
curve that is now banked and has a radius, R. What bank
angle, θ, makes reliance on friction unnecessary?
91Compiled by Rozie SMAN 3 Semarang
v=480 km/hr
L
L
W
Fr=0⇒∑ 2Lsin40=M
v2
r
Fy=0⇒∑ 2Lcos40=Mg
2
Mg
2cos40
sin40 =M
v2
r
r=
v2
gtan40
L=
Mg
2cos40
An airplane is flying in a horizontal circle with a speed of 480 km/hr. If the
wings of the plane are tilted 40o
to the horizontal, what is the radius of the
circle in which the plane is flying? (Assume that the required force is
provided entirely by an “aerodynamic lift” that is perpendicular to the wing
surface.)
92Compiled by Rozie SMAN 3 Semarang
12
x1x2
x
tt
vv
a
−
−
=
12
y1y2
y
tt
vv
a
−
−
=
v
s
tt 12 =−
v
v cos α
v sin α
v
v cos α
v sin α
αα
R
1
2
s
 GERAK MELINGKAR
93Compiled by Rozie SMAN 3 Semarang
0
tt
cosvcosv
a
12
x =
−
−
=
αα
12
y
tt
sinvsinv
a
−
−−
=
αα
α
α
α
α
α
sin
R
v
R2
sinv2
a
v
R2
v
s
tt
2
2
y
12
−
=
−
=
==−
V
V cos α
V sin α
V
V cos α
V sin α
αα
R
1
2
s
94Compiled by Rozie SMAN 3 Semarang
R
vsin
R
v
limalima
22
00
y −=
−
==
→→ α
α
αα
V
ay
R
V
ax
Percepatan centripetal (menuju
pusat)
R
v
a
2
=
95Compiled by Rozie SMAN 3 Semarang
V
a
R
V
a
R
v
a
2
=
f60rpm
T
1
f
V
R2
T
=
=
π
=
T = Perioda [s]
f = Frekuensi [c/s, Hz]
rpm = Siklus per menit
96Compiled by Rozie SMAN 3 Semarang
Contoh Soal 1.10
Sebuah satelit direncanakan akan ditempatkan di ruang angkasa
sedemikan rupa sehingga ia melintasi (berada di atas) sebuah kota A di
bumi 2 kali sehari. Bila percepatan sentripetal yang dialami olehnya
adalah 0,25 m/s2
dan jari-jari bumi rata-rata adalah 6378 km, pada
ketinggian berapa ia harus ditempatkan ?
Jawab :
v
a
RB
h
km5440637811818RRh
km18181
4
)3600x12)(25,0(
4
aT
R
T
R4
R
T
R2
R
V
a
s/m25,0ahRRjam12T
B
2
2
2
2
2
2
2
2
2
B
=−=−=
=
π
=
π
=
π
=





 π
==
=+==
97Compiled by Rozie SMAN 3 Semarang
Circular Motion
Angular velocity
The angular displacement is
if θθθ∆ −≡
if
if
ttt −
−
=≡≡
θθ
∆
θ∆
ωω
Average angular velocity
dt
d
tt
θθ
ω ≡
∆
∆
→∆
≡
0
limit
Instantaneous angular velocity We will worry about the direction
later.
Like one dimensional motion +-
will do. Positive angular velocity
is counter-clock=wise.
98Compiled by Rozie SMAN 3 Semarang
Circular Motion
Coordinate System
99Compiled by Rozie SMAN 3 Semarang
Circular Motion
So, is there an acceleration?
100Compiled by Rozie SMAN 3 Semarang
Circular Motion
So, is there an acceleration?
101Compiled by Rozie SMAN 3 Semarang
Student Workbook
102Compiled by Rozie SMAN 3 Semarang
Student Workbook
103Compiled by Rozie SMAN 3 Semarang
Student Workbook
bank
F

w

T
 a

104Compiled by Rozie SMAN 3 Semarang

More Related Content

What's hot

Fisika Materi usaha, daya dan energi
Fisika Materi usaha, daya dan energiFisika Materi usaha, daya dan energi
Fisika Materi usaha, daya dan energisuep_x
 
1 b 59_utut muhammad_laporan akhir mi (momen inersia)
1 b 59_utut muhammad_laporan akhir mi (momen inersia)1 b 59_utut muhammad_laporan akhir mi (momen inersia)
1 b 59_utut muhammad_laporan akhir mi (momen inersia)umammuhammad27
 
BAHAN AJAR GERAK MELINGKAR.PPT
BAHAN AJAR GERAK MELINGKAR.PPTBAHAN AJAR GERAK MELINGKAR.PPT
BAHAN AJAR GERAK MELINGKAR.PPTMAFIA '11
 
2 b 59_utut muhammad_laporan_hukum hooke
2 b 59_utut muhammad_laporan_hukum hooke2 b 59_utut muhammad_laporan_hukum hooke
2 b 59_utut muhammad_laporan_hukum hookeumammuhammad27
 
Laporan Praktikum Fisika Hukum Hooke
Laporan Praktikum Fisika Hukum HookeLaporan Praktikum Fisika Hukum Hooke
Laporan Praktikum Fisika Hukum Hookerendrafauzi
 
2 b 59_utut muhammad_laporan_hukum kirchoff
2 b 59_utut muhammad_laporan_hukum kirchoff2 b 59_utut muhammad_laporan_hukum kirchoff
2 b 59_utut muhammad_laporan_hukum kirchoffumammuhammad27
 
Laporan praktikum ghs bandul sederhana
Laporan praktikum ghs bandul sederhanaLaporan praktikum ghs bandul sederhana
Laporan praktikum ghs bandul sederhanaAnnisa Icha
 
2 b 59_utut muhammad_laporan_jembatan wheatstone
2 b 59_utut muhammad_laporan_jembatan wheatstone2 b 59_utut muhammad_laporan_jembatan wheatstone
2 b 59_utut muhammad_laporan_jembatan wheatstoneumammuhammad27
 
Kunci dan soal fisika 10 2
Kunci dan soal fisika 10   2Kunci dan soal fisika 10   2
Kunci dan soal fisika 10 2Dedi Wahyudin
 
Kesetimbangan Benda Tegar dan Titik Berat
Kesetimbangan Benda Tegar dan Titik BeratKesetimbangan Benda Tegar dan Titik Berat
Kesetimbangan Benda Tegar dan Titik BeratGressi Dwiretno
 
Ppt instrumen bab 7
Ppt instrumen bab 7Ppt instrumen bab 7
Ppt instrumen bab 7Asep Subagja
 
Laporan 1 fisdas teori ketidakpastian
Laporan 1 fisdas teori ketidakpastianLaporan 1 fisdas teori ketidakpastian
Laporan 1 fisdas teori ketidakpastianWidya arsy
 
koefisien pergeseran zat cair
koefisien pergeseran zat cairkoefisien pergeseran zat cair
koefisien pergeseran zat cairZara Neur
 
Getaran teredam
Getaran teredamGetaran teredam
Getaran teredamSHITAIDRUS
 
Ralat fisika dasar 1 word
Ralat fisika dasar  1 wordRalat fisika dasar  1 word
Ralat fisika dasar 1 wordreind fendii
 

What's hot (20)

Hukum Hooke dan Ayunan Sederhana
Hukum Hooke dan Ayunan SederhanaHukum Hooke dan Ayunan Sederhana
Hukum Hooke dan Ayunan Sederhana
 
Fisika Materi usaha, daya dan energi
Fisika Materi usaha, daya dan energiFisika Materi usaha, daya dan energi
Fisika Materi usaha, daya dan energi
 
1 b 59_utut muhammad_laporan akhir mi (momen inersia)
1 b 59_utut muhammad_laporan akhir mi (momen inersia)1 b 59_utut muhammad_laporan akhir mi (momen inersia)
1 b 59_utut muhammad_laporan akhir mi (momen inersia)
 
BAHAN AJAR GERAK MELINGKAR.PPT
BAHAN AJAR GERAK MELINGKAR.PPTBAHAN AJAR GERAK MELINGKAR.PPT
BAHAN AJAR GERAK MELINGKAR.PPT
 
2 b 59_utut muhammad_laporan_hukum hooke
2 b 59_utut muhammad_laporan_hukum hooke2 b 59_utut muhammad_laporan_hukum hooke
2 b 59_utut muhammad_laporan_hukum hooke
 
Laporan Praktikum Fisika Hukum Hooke
Laporan Praktikum Fisika Hukum HookeLaporan Praktikum Fisika Hukum Hooke
Laporan Praktikum Fisika Hukum Hooke
 
2 b 59_utut muhammad_laporan_hukum kirchoff
2 b 59_utut muhammad_laporan_hukum kirchoff2 b 59_utut muhammad_laporan_hukum kirchoff
2 b 59_utut muhammad_laporan_hukum kirchoff
 
Laporan praktikum ghs bandul sederhana
Laporan praktikum ghs bandul sederhanaLaporan praktikum ghs bandul sederhana
Laporan praktikum ghs bandul sederhana
 
2 b 59_utut muhammad_laporan_jembatan wheatstone
2 b 59_utut muhammad_laporan_jembatan wheatstone2 b 59_utut muhammad_laporan_jembatan wheatstone
2 b 59_utut muhammad_laporan_jembatan wheatstone
 
fluida dinamis kelas XI SMA
fluida dinamis kelas XI SMAfluida dinamis kelas XI SMA
fluida dinamis kelas XI SMA
 
Modul 2 fix
Modul 2 fixModul 2 fix
Modul 2 fix
 
Kunci dan soal fisika 10 2
Kunci dan soal fisika 10   2Kunci dan soal fisika 10   2
Kunci dan soal fisika 10 2
 
Kesetimbangan Benda Tegar dan Titik Berat
Kesetimbangan Benda Tegar dan Titik BeratKesetimbangan Benda Tegar dan Titik Berat
Kesetimbangan Benda Tegar dan Titik Berat
 
Ppt instrumen bab 7
Ppt instrumen bab 7Ppt instrumen bab 7
Ppt instrumen bab 7
 
Laporan 1 fisdas teori ketidakpastian
Laporan 1 fisdas teori ketidakpastianLaporan 1 fisdas teori ketidakpastian
Laporan 1 fisdas teori ketidakpastian
 
Laporan praktikum 5 tetapan pegas
Laporan praktikum 5 tetapan pegasLaporan praktikum 5 tetapan pegas
Laporan praktikum 5 tetapan pegas
 
Gerak parabola 1
Gerak parabola 1Gerak parabola 1
Gerak parabola 1
 
koefisien pergeseran zat cair
koefisien pergeseran zat cairkoefisien pergeseran zat cair
koefisien pergeseran zat cair
 
Getaran teredam
Getaran teredamGetaran teredam
Getaran teredam
 
Ralat fisika dasar 1 word
Ralat fisika dasar  1 wordRalat fisika dasar  1 word
Ralat fisika dasar 1 word
 

Viewers also liked

Gerak melingkar2
Gerak melingkar2Gerak melingkar2
Gerak melingkar2Siti Rani
 
Tugas Fisika - Gerak Melingkar
Tugas Fisika - Gerak MelingkarTugas Fisika - Gerak Melingkar
Tugas Fisika - Gerak Melingkarvivianthoe
 
Fisika - Gerak Melingkar
Fisika - Gerak MelingkarFisika - Gerak Melingkar
Fisika - Gerak Melingkarsarahmaida12
 
Gerak peluru 2016
Gerak peluru 2016Gerak peluru 2016
Gerak peluru 2016rozi arrozi
 
Rumus gerak parabola
Rumus gerak parabolaRumus gerak parabola
Rumus gerak parabolaAde Hidayat
 
Ppt gerak parabola dan gerak melingkar
Ppt gerak parabola dan gerak melingkarPpt gerak parabola dan gerak melingkar
Ppt gerak parabola dan gerak melingkarAjeng Rizki Rahmawati
 
Kinematika gerak melingkar 2016ok
Kinematika gerak melingkar 2016okKinematika gerak melingkar 2016ok
Kinematika gerak melingkar 2016okrozi arrozi
 
PPT Pemerintahan pusat dan daerah ( Pendidikan Kewarganegaraan / PKN Kelas 10 )
PPT Pemerintahan pusat dan daerah ( Pendidikan Kewarganegaraan / PKN Kelas 10 )PPT Pemerintahan pusat dan daerah ( Pendidikan Kewarganegaraan / PKN Kelas 10 )
PPT Pemerintahan pusat dan daerah ( Pendidikan Kewarganegaraan / PKN Kelas 10 )Dheea Resta
 

Viewers also liked (16)

Gerak melingkar2
Gerak melingkar2Gerak melingkar2
Gerak melingkar2
 
Tugas Fisika - Gerak Melingkar
Tugas Fisika - Gerak MelingkarTugas Fisika - Gerak Melingkar
Tugas Fisika - Gerak Melingkar
 
Css
Css Css
Css
 
GERAK PARABOLA
GERAK PARABOLAGERAK PARABOLA
GERAK PARABOLA
 
Gerak parabola fisika sma
Gerak parabola fisika smaGerak parabola fisika sma
Gerak parabola fisika sma
 
Fisika - Gerak Melingkar
Fisika - Gerak MelingkarFisika - Gerak Melingkar
Fisika - Gerak Melingkar
 
Gerak peluru 2016
Gerak peluru 2016Gerak peluru 2016
Gerak peluru 2016
 
Rumus gerak parabola
Rumus gerak parabolaRumus gerak parabola
Rumus gerak parabola
 
Ppt gerak parabola dan gerak melingkar
Ppt gerak parabola dan gerak melingkarPpt gerak parabola dan gerak melingkar
Ppt gerak parabola dan gerak melingkar
 
GERAK LURUS
GERAK LURUSGERAK LURUS
GERAK LURUS
 
PTT Gerak lurus
PTT Gerak lurusPTT Gerak lurus
PTT Gerak lurus
 
Kinematika gerak melingkar 2016ok
Kinematika gerak melingkar 2016okKinematika gerak melingkar 2016ok
Kinematika gerak melingkar 2016ok
 
GERAK MELINGKAR BERATURAN SMA
GERAK MELINGKAR BERATURAN SMAGERAK MELINGKAR BERATURAN SMA
GERAK MELINGKAR BERATURAN SMA
 
PPT Pemerintahan pusat dan daerah ( Pendidikan Kewarganegaraan / PKN Kelas 10 )
PPT Pemerintahan pusat dan daerah ( Pendidikan Kewarganegaraan / PKN Kelas 10 )PPT Pemerintahan pusat dan daerah ( Pendidikan Kewarganegaraan / PKN Kelas 10 )
PPT Pemerintahan pusat dan daerah ( Pendidikan Kewarganegaraan / PKN Kelas 10 )
 
PPT Materi gerak lurus kelas X
PPT Materi gerak lurus kelas X PPT Materi gerak lurus kelas X
PPT Materi gerak lurus kelas X
 
Ppt animasi gerak lurus
Ppt animasi gerak lurusPpt animasi gerak lurus
Ppt animasi gerak lurus
 

Similar to Gerak melingkar 2016ok

BAHAN AJAR GERAK MELINGKAR
BAHAN AJAR GERAK MELINGKARBAHAN AJAR GERAK MELINGKAR
BAHAN AJAR GERAK MELINGKARMAFIA '11
 
13.1.1 Shm Part 1 Introducing Circular Motion
13.1.1 Shm Part 1 Introducing Circular Motion13.1.1 Shm Part 1 Introducing Circular Motion
13.1.1 Shm Part 1 Introducing Circular MotionChris Staines
 
Conservación del momento angular
Conservación del momento angularConservación del momento angular
Conservación del momento angularjolopezpla
 
"How to Study Circular Motion (Physics) for JEE Main?"
"How to Study Circular Motion (Physics) for JEE Main?""How to Study Circular Motion (Physics) for JEE Main?"
"How to Study Circular Motion (Physics) for JEE Main?"Ednexa
 
capitulo 16 de dinamica
capitulo 16 de dinamicacapitulo 16 de dinamica
capitulo 16 de dinamicajasson silva
 
Physics a2 unit4_05_circular_motion_01 phyiscs circular motion
Physics a2 unit4_05_circular_motion_01 phyiscs circular motionPhysics a2 unit4_05_circular_motion_01 phyiscs circular motion
Physics a2 unit4_05_circular_motion_01 phyiscs circular motionsashrilisdi
 
Velocidad angular, lineal
Velocidad angular, linealVelocidad angular, lineal
Velocidad angular, linealYadi Campos
 
DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR
DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGARDINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR
DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGARmateripptgc
 
Physics a2 unit4_05_circular_motion_01- circular motion
Physics a2 unit4_05_circular_motion_01- circular motionPhysics a2 unit4_05_circular_motion_01- circular motion
Physics a2 unit4_05_circular_motion_01- circular motionsashrilisdi
 
Centripetal acceleration problems and solutions
Centripetal acceleration problems and solutionsCentripetal acceleration problems and solutions
Centripetal acceleration problems and solutionsBasic Physics
 
5. radial and transverse compo. 2 by-ghumare s m
5. radial and transverse compo.  2 by-ghumare s m5. radial and transverse compo.  2 by-ghumare s m
5. radial and transverse compo. 2 by-ghumare s msmghumare
 
6.2 Unit Circle and Circular Functions
6.2 Unit Circle and Circular Functions6.2 Unit Circle and Circular Functions
6.2 Unit Circle and Circular Functionssmiller5
 
Tema 1 cinemática de un cuerpo rígido
Tema 1  cinemática de un cuerpo rígidoTema 1  cinemática de un cuerpo rígido
Tema 1 cinemática de un cuerpo rígidoDARIOPANTIRAMOS
 

Similar to Gerak melingkar 2016ok (20)

Ppt circular motion
Ppt circular motionPpt circular motion
Ppt circular motion
 
BAHAN AJAR GERAK MELINGKAR
BAHAN AJAR GERAK MELINGKARBAHAN AJAR GERAK MELINGKAR
BAHAN AJAR GERAK MELINGKAR
 
13.1.1 Shm Part 1 Introducing Circular Motion
13.1.1 Shm Part 1 Introducing Circular Motion13.1.1 Shm Part 1 Introducing Circular Motion
13.1.1 Shm Part 1 Introducing Circular Motion
 
Conservación del momento angular
Conservación del momento angularConservación del momento angular
Conservación del momento angular
 
"How to Study Circular Motion (Physics) for JEE Main?"
"How to Study Circular Motion (Physics) for JEE Main?""How to Study Circular Motion (Physics) for JEE Main?"
"How to Study Circular Motion (Physics) for JEE Main?"
 
Rotacion
RotacionRotacion
Rotacion
 
Chapter16 140816162809-phpapp01
Chapter16 140816162809-phpapp01Chapter16 140816162809-phpapp01
Chapter16 140816162809-phpapp01
 
capitulo 16 de dinamica
capitulo 16 de dinamicacapitulo 16 de dinamica
capitulo 16 de dinamica
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Physics a2 unit4_05_circular_motion_01 phyiscs circular motion
Physics a2 unit4_05_circular_motion_01 phyiscs circular motionPhysics a2 unit4_05_circular_motion_01 phyiscs circular motion
Physics a2 unit4_05_circular_motion_01 phyiscs circular motion
 
R 2
R 2R 2
R 2
 
Velocidad angular, lineal
Velocidad angular, linealVelocidad angular, lineal
Velocidad angular, lineal
 
DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR
DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGARDINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR
DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR
 
ROTATIONAL KINEMATICS
ROTATIONAL KINEMATICSROTATIONAL KINEMATICS
ROTATIONAL KINEMATICS
 
Physics a2 unit4_05_circular_motion_01- circular motion
Physics a2 unit4_05_circular_motion_01- circular motionPhysics a2 unit4_05_circular_motion_01- circular motion
Physics a2 unit4_05_circular_motion_01- circular motion
 
Centripetal acceleration problems and solutions
Centripetal acceleration problems and solutionsCentripetal acceleration problems and solutions
Centripetal acceleration problems and solutions
 
5. radial and transverse compo. 2 by-ghumare s m
5. radial and transverse compo.  2 by-ghumare s m5. radial and transverse compo.  2 by-ghumare s m
5. radial and transverse compo. 2 by-ghumare s m
 
Rotational motion
Rotational motionRotational motion
Rotational motion
 
6.2 Unit Circle and Circular Functions
6.2 Unit Circle and Circular Functions6.2 Unit Circle and Circular Functions
6.2 Unit Circle and Circular Functions
 
Tema 1 cinemática de un cuerpo rígido
Tema 1  cinemática de un cuerpo rígidoTema 1  cinemática de un cuerpo rígido
Tema 1 cinemática de un cuerpo rígido
 

More from rozi arrozi

Chapter v temperature and heat. htm nputi hppt
Chapter v temperature and heat. htm nputi hpptChapter v temperature and heat. htm nputi hppt
Chapter v temperature and heat. htm nputi hpptrozi arrozi
 
Cahaya dan optik
Cahaya dan optikCahaya dan optik
Cahaya dan optikrozi arrozi
 
Pengantarvektor 111205224542-phpapp02
Pengantarvektor 111205224542-phpapp02Pengantarvektor 111205224542-phpapp02
Pengantarvektor 111205224542-phpapp02rozi arrozi
 
Chapter i quantities
Chapter i quantitiesChapter i quantities
Chapter i quantitiesrozi arrozi
 
Dinamika gerak melingkar
Dinamika gerak melingkarDinamika gerak melingkar
Dinamika gerak melingkarrozi arrozi
 
Besarandanvektorfix 160203085235
Besarandanvektorfix 160203085235Besarandanvektorfix 160203085235
Besarandanvektorfix 160203085235rozi arrozi
 
Chapter i quantities editing
Chapter i quantities editingChapter i quantities editing
Chapter i quantities editingrozi arrozi
 
Pertemuan1 teoriketidakpastian-110920154744-phpapp01
Pertemuan1 teoriketidakpastian-110920154744-phpapp01Pertemuan1 teoriketidakpastian-110920154744-phpapp01
Pertemuan1 teoriketidakpastian-110920154744-phpapp01rozi arrozi
 
Chapter i quantities 2016
Chapter i quantities 2016Chapter i quantities 2016
Chapter i quantities 2016rozi arrozi
 
Kinematika gerak melingkar 2016ok
Kinematika gerak melingkar 2016okKinematika gerak melingkar 2016ok
Kinematika gerak melingkar 2016okrozi arrozi
 
Chapter vii direct current circuits new
Chapter vii direct current circuits newChapter vii direct current circuits new
Chapter vii direct current circuits newrozi arrozi
 

More from rozi arrozi (16)

Alat optik
Alat optikAlat optik
Alat optik
 
Chapter v temperature and heat. htm nputi hppt
Chapter v temperature and heat. htm nputi hpptChapter v temperature and heat. htm nputi hppt
Chapter v temperature and heat. htm nputi hppt
 
Cahaya dan optik
Cahaya dan optikCahaya dan optik
Cahaya dan optik
 
Pengantarvektor 111205224542-phpapp02
Pengantarvektor 111205224542-phpapp02Pengantarvektor 111205224542-phpapp02
Pengantarvektor 111205224542-phpapp02
 
Chapter i quantities
Chapter i quantitiesChapter i quantities
Chapter i quantities
 
Dinamika gerak melingkar
Dinamika gerak melingkarDinamika gerak melingkar
Dinamika gerak melingkar
 
Besarandanvektorfix 160203085235
Besarandanvektorfix 160203085235Besarandanvektorfix 160203085235
Besarandanvektorfix 160203085235
 
Chapter i quantities editing
Chapter i quantities editingChapter i quantities editing
Chapter i quantities editing
 
Pertemuan1 teoriketidakpastian-110920154744-phpapp01
Pertemuan1 teoriketidakpastian-110920154744-phpapp01Pertemuan1 teoriketidakpastian-110920154744-phpapp01
Pertemuan1 teoriketidakpastian-110920154744-phpapp01
 
Chapter i quantities 2016
Chapter i quantities 2016Chapter i quantities 2016
Chapter i quantities 2016
 
Kinematika gerak melingkar 2016ok
Kinematika gerak melingkar 2016okKinematika gerak melingkar 2016ok
Kinematika gerak melingkar 2016ok
 
Chapter vii direct current circuits new
Chapter vii direct current circuits newChapter vii direct current circuits new
Chapter vii direct current circuits new
 
Kinematics 2012
Kinematics 2012Kinematics 2012
Kinematics 2012
 
Optic
OpticOptic
Optic
 
Optic
OpticOptic
Optic
 
optic
 optic optic
optic
 

Recently uploaded

REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 

Gerak melingkar 2016ok

  • 1. Compiled by Rozie @ SMAN 3 Semarang GERAK MELINGKAR (circular motion) 1Compiled by Rozie SMAN 3 Semarang
  • 2. Gerak Melingkar (Rotasi) merupakan gerak benda yang berputar terhadap sumbu putar atau sumbu rotasi 2Compiled by Rozie SMAN 3 Semarang
  • 3. 3Compiled by Rozie SMAN 3 Semarang
  • 4. BESARAN – BESARAN FISIKA PADA GERAK MELINGKAR Compiled by Rozie SMAN 3 Semarang 4
  • 5. x y θ r v 1. Sudut tempuh(θ) Posisi partikel yang bergerak melingkar dapat dinyatakan dalam : 1. Koordinat kartesius: (x,y) atau (x,z) atau (y,z) 2. Koordinat polar: (r, θ) dengan r= jari-jari (m) dan θ= sudut tempuh(o ) θcosrx = θsinry = 22 yxr += Berdasarkan gambar didapatkan: 5Compiled by Rozie SMAN 3 Semarang Bandul bergerak dari titik A ke B A B ●
  • 6. Contoh: Partikel bergerak melingkar dengan jari-jari, r = 0,5 m. Saat posisi sudutnya 30o tentukan posisi partikel dengan koordinat kartesian mapun polar! m325030cos50cosrx o ,, === θ m25030ins50cosry o ,, === θ Posisi partikel dalam koordinat kartisius: ( 0,25√3 m , 0,23 m) Posisi partikel dalam koordinat polar: ( 2 m, 30o ) Jawab:
  • 7. r s )rad( =θ Hubungan Sudut tempuh (θ) dg Panjang lintasan (s) 1 putaran = 360o = 2π rad 1 π rad = 180o 1 rad = 180o /π = 180o /3,14 = 57,3o 1o = 1/57,3= 0,01745 rad θ = posisi sudut (rad) r = jari-jari lintasan s = panjang lintasan/ jarak tempuh (m) rs rad .)(θ=  Utk 1 putaran:S = 2πr Compiled by Rozie SMAN 3 Semarang Ingat: Hubungan rumus diatas berlaku jika θ bersatuan radian (rad) r θ S
  • 8. 2. Kecepatan Sudut /angular (ω) “sudut tempuh dibagi waktu yang dibutuhkan” tt θθ ω = ∆ ∆ = 8Compiled by Rozie SMAN 3 Semarang Untuk satu kali putaran, θ=360o = 2π rad dan waktu yang dibutuhkan disebut periode (T), sehingga: T π ω 2 = ω=kelajuan sudut (angular) /frekuensi sudut (rad/s) T= periode (s) f = frekuensi (Hz) fπω 2= arah ω arah gerak arah gerak arah ω
  • 9. Hubungan kelajuan Sudut (ω) dg kelajuan linier/tangensial/translasi (v) rv t rs t . . = = = ω ω θ ω rv .ω= 9Compiled by Rozie SMAN 3 Semarang v = kelajuan linier/tangensial (m/s) ω = kelajuan sudut (rad.s-1 ) r = jari-jari lintasan(m) Satuan ω selain rad/s juga sering dinyatakan dengan: rpm (rotasi per menit) rps (rotasi per sekon) 1 rpm = 1 putaran/menit = 2π rad/ 60 s = π/30 rad/s 1 rps = 1 rotasi/sekon = 2π rad/s
  • 10. Contoh: Sebuah bola kecil diikat tali sepanjang 50 cm kemudian diputar horisontal. Jika dalam 8 s bola dapat berputar 40 kali. Tentukan: a. frekuensi gerak bola! b. periode gerak bola ! c. banyaknya putaran gerak bola selama 20 s ! d. Kecepatan sudut bola! e. Kecepatan linier bola! Compiled by Rozie SMAN 3 Semarang 10, s0,2T 5 1 T f 1 T. = = =b 5Hzf 8 40 f t N f. = = =a putaran2,5N 8 20 N T t N. = = =c rad/s31,4rad/s01 52 2. == = = πω πω πω fd m/s15,7m/s5 5,0.10 . == = = π π ω v v rve
  • 11. 4. Percepatan Sudut t ω α ∆ = “Perubahan kecepatan sudut dibagi interval waktu yang dibutuhkan” α = percepatan sudut (rad.s-2 ) 11Compiled by Rozie SMAN 3 Semarang ω∆ = perubahan kecepatan sudut (rad.s-1 ) t ot ωω α − = t = waktu yang dibutuhkan (s) Contoh: Partikel yang berputar pada lintasan melingkar berubah kecepatan sudutnya dari 120 rpm menjadi 180 rpm dalam 40 sekon. Berapakah percepatan sudut gerak partikel itu? Penyelesaian: ωo = 120 rpm = 120 . π/30 rad/s = 4 π rad/s ωt = 180 rpm = 180 . π/30 rad/s = 6 π rad/s t = 40 s
  • 12. Compiled by Rozie SMAN 3 Semarang 12 Penyelesaian: ωo = 120 rpm = 120 . π/30 rad/s = 4 π rad/s ωt = 180 rpm = 180 . π/30 rad/s = 6 π rad/s t = 40 s Percepatan sudutnya: 2- rad.s,05π0 40 46 = − = − = α ππ α ωω α t ot
  • 13. Compiled by Rozie SMAN 3 Semarang 13 Hubungan Percepatan tangensial (a) dg Percepatan sudut (a) α ω ω . ).( ra t ra t r a t v a = ∆ = ∆ = ∆ = r.a α= a = percepatan tangensial (m.s-2 ) α = percepatan sudur (rad.s-2 ) r = jari-jari lintasan (m)
  • 14. • Sebuah benda yang bergerak melingkar, meskipun bergerak dengan laju (besar v)konstan, akan memiliki percepatan karena arah kecepatannya (arah v) selalu berubah • Percepatan yang disebabkan karena perubahan arah kecepatan linier v ini disebut percepatan sentripetal, yang arahnya ke pusat lingkaran 5. Percepatan sentripetal (as ) 14Compiled by Rozie SMAN 3 Semarang
  • 15. Compiled by Rozie SMAN 3 Semarang 15 Jadi benda yang bergerak melingkar memungkinkan memiliki tiga percepatan berikut: Percepatan sudut (α) : perubahan kecepatan sudut dalam waktu tertentu Percepatan sentripetal (as ) : perubahan arah kecepatan linier dalam waktu tertentu Percepatan tangensial (at) : perubahan besarnya kecepatan linier dalam waktu tertentu
  • 16. Menentukan persamaan percepatan sentripetal • Berdasarkan gambar di samping: s r θ v v v -v Δv θ o 16Compiled by Rozie SMAN 3 Semarang v t.r s a t v r s t v v r s v r s v v s ∆ ∆∆ ∆ ∆ ∆ =⇒ =⇒ = = v -v Δvθ o
  • 17. ra 2 s ω= r v a 2 s = krn v = ω.r as = percepatan sentripetal (m.s-2 ) 17Compiled by Rozie SMAN 3 Semarang r v a v.v r 1 a v t s r 1 a r s s s =⇒ =⇒ =⇒ ∆
  • 18. 5. Percepatan total (atotal ) Benda yang bergerak melingkar dengan kecepatan sudut berubah akan memiliki 3 percepatan: 1.Percepatan sudut 2.Percepatan sentripetal 3.Percepatan tangemsial  Resultan dari percepatan sentripetal dengan percepatan tangensial disebut percepatan total (atot) at atot as 2 s 2 ttot aaa += r.at α= r r v a 2 2 s ω== Dengan: atot = percepatan total (m s- 2 ) 18 Compiled by Rozie SMAN 3 Semarang
  • 19. Compiled by Rozie SMAN 3 Semarang 19 5. Gaya Sentripetal (Fs) r..mF r v .mF a.mF 2 s 2 s ss ω= = = v v v v a as atot Fs
  • 20. Sebuah benda massanya 0,25 kg, diikat pada ujung tali yang panjangnya 0,5 m dan diputar mendatar dengan 2 putaran tiap sekon. Hitunglah : a. Laju linier benda b. Percepatan sentripetal benda c. Gaya sentripetal pada benda Penyelesaian : Diketahui : m = 0,25 kg ; R = 0,5 m ; f = 2 Hz Ditanyakan : a. v = ? b. aS = ? c. FS = ? Jawab : a. v = 2πf .R = 2π x 2 x 0,5 = 2π m/s b. aS = = = 8 π2 m/s2 c. FS = m . aS = 0,25 x 8π2 = 2 π2 N v2 R (2π)2 0,5 as Fs v 20Compiled by Rozie SMAN 3 Semarang
  • 21. JENIS GERAK MELINGKAR kecepatan)arahmengubahyangn(percepata 0)(alsentripetapercepatanmemilikiHanya 0)(altangensiaPercepatan 0)(sudutPercepatan konstan)(suduttanecepak s t ≠⊕ =⊕ =⊕ =⊕ α ω sialdan tangenlsentripetapercepatanmemiliki 0dankonstan)(sudutpercepatan konstantidak)(suduttanecepak ⊗ ≠=⊗ =⊗ α ω t. 2 αtωω tetapα t0 0t ωω θ + = += =  Gerak Melingkar Beraturan (GMB):  Gerak Melingkar Berubah Beraturan (GMBB): θ2αωω αt 2 1 tωθ 2 0 2 t 2 0 += += tωθ = t θ ω= atau 21 Compiled by Rozie SMAN 3 Semarang
  • 22. Contoh Soal 1. Sebuah benda bergerak rotasi dengan percepatan sudut tetap - 2 rad/s2 . Jika mula-mula benda memiliki kecepatan 10 rad/s dan posisi sudut awalnya sama dengan nol. Tentukan: a. Sudut yang ditempuh selama 2 detik pertama b. Kapan benda akan berhenti berputar c. Jumlah putaran benda dari awal hingga berhenti 22Compiled by Rozie SMAN 3 Semarang 2. Dari keadaan diam sebuah benda berotasi sehingga dalam waktu 2 s kecepatannya menjadi 4 rad/s. Tentukan percepatan total titik pada benda tersebut yang terletak 50 cm dari sumbu rotasi benda setelah benda berotasi selama 5 s.
  • 23. Compiled by Rozie SMAN 3 Semarang 23 Titik A berada di pinggir sebuah roda. Jika roda ditarik dengan tali yang berkecepatan 2 m/s seperti gambar di samping maka berapakah kecepatan sudut roda tersebut? Berapa pula kecepatan titik A? Sebuah benda melakukan gerak melingkar beraturan sebanyak 300 rpm. Jika diameter lingkaran 80 cm, Tentukan percepatan sentripetal benda tersebut! Sebuah satelit komunikasi mengorbit di atas permukaan bumi pada ketingian 600 km. Jika waktu yang diperlukan satelit tersebut untuk menempuh satu kali putaran adalah 1,5 jam, Tentukan kecepatan satelit tersebut! Terdapat tiga buah roda A, B, dan C yang memiliki jari-jari berturut-turut 25 cm, 15 cm, dan 40 cm. Roda A dab B dihubungkan oleh rantai, sedangkan roda B dan C seporos. Jika roda C memerlukan waktu 2 menit untuk menempuh 120 putaran, maka kecepatan sudut roda A dan B adalah
  • 24. Compiled by Rozie SMAN 3 Semarang 24 Seseorang bersepeda dengan kecepatan 18 km/jam. Saat melewati sebuah tikungan yang berjari-jari 100 cm, ia mengerem dan mengurangi kecepatannya 2 m/s tiap detiknya. Tentukan percepatan total pada detik ke-2 setelah pengereman. Sebuah roda berputar dengan kecepatan sudut tetap 120 rpm. Jari-jari roda 50 cm. Tentukan: a.sudut yang ditempuh roda dalam waktu 5 sekon, b.panjang lintasan yang ditempuh titik di tepi roda dalam waktu 5 detik, c.kecepatan linier titik yang berada di tepi roda! d.percepatan sentripetal titik di tepi roda! Sebuah benda mula-mula diam kemudian bergerak melingkar hingga kecepatan angulernya 60 rad/s dalam waktu 2,5 s. Tentukan: a.Percepatan anguler yang dialami benda b.Kecepatan benda pada t= 2 s c.Jumlah putaran benda pada t= 5 s
  • 25. Compiled by Rozie SMAN 3 Semarang 25 HUBUNGAN RODA-RODA ωB = ωC vA >vB A B B A ωB > ωC vA =vB ωB > ωC vA= vB 1. Sepusat 2. Dihubungkan tali 3. Bersinggungan A B
  • 26. Tiga roda A, B, dan C dirangkai seperti pada gambar. Masing-masing berjari-jari 6 cm, 4 cm dan 8 cm. Roda A dan B dihubungkan dengan rantai dan roda C seporos dengan roda B. Jika roda A berputar 2 putaran tiap detik, tentukan kecepatan linier roda C. Penyelesaian : Diketahui : RA = 6 cm RB = 4 cm RC = 8 cm fA = 2 Hz Ditanyakan : vC = ? Jawab : Roda A: vA = 2π . RA. fA = 2π x 6 x 2 = 24 π cm/s Roda B : vB = vA ωΒ . RB = vA ωΒ = vA/ RB = 24 π / 4 = 6 π rad/s Roda C : ωC= ωB = 6 π rad/s vC = ωC x RC = 6 π x 8 = 48 π cm/s C B A ωB = ωC vA = vB 26Compiled by Rozie SMAN 3 Semarang
  • 27. Compiled by Rozie SMAN 3 Semarang 27 Dua buah roda dihubungkan dengan rantai. Roda yang lebih kecil dengan jari-jari 8 cm diputar pada 100 rad/s. Berapakah kelajuan linier kedua roda tersebut? Jika jari-jari roda yang lebih besar 15 cm, berapa rpm roda tersebut akan berputar? Sebuah roda berdiameter 1 m melakukan 120 putaran per menit. Tentukan Kecepatan linier titik pada tepi roda! Empat buah roda A, B, C, dan D masing-masing berjari-jari RB = 3 cm, RC = 50 cm, dan R= 5 cm dihubungkan satu sama lain seperti pada gambar. Jika periode A sama dengan 2 sekon, tentukan:a. kecepatan sudut roda C, b. kecepatan linier roda D!
  • 28. 28 Direction of Centripetal Force, Acceleration and Velocity Without a centripetal force, an object in motion continues along a straight-line path. Without a centripetal force, an object in motion continues along a straight-line path.Compiled by Rozie SMAN 3 Semarang
  • 29. 29 Direction of Centripetal Force, Acceleration and Velocity Compiled by Rozie SMAN 3 Semarang
  • 30. 30 What if velocity decreases? Compiled by Rozie SMAN 3 Semarang
  • 31. 31 What if mass decreases? Compiled by Rozie SMAN 3 Semarang
  • 32. 32 What if radius decreases? Compiled by Rozie SMAN 3 Semarang
  • 33. Hubungan matematik dalam kedua kelompok besaran tersebut juga memiliki persamaan, yang dapat dilihat dalam hubungan berikut: d dt = S v d dt = θ ω 2 2 d d dt dt = = v S a 2 2 d d dt dt = = ω θ α Hubungan antara lintasan, kecepatan dan percepatan linier (tangensial) dengan lintasan, kecepatan dan percepatan sudut diberikan oleh: rθ=S rω=v rα=a ; Untuk percepatan sudut konstan berlaku: t2 tt)t( t)t( 2 0 2 2 2 1 0 0 αωω αωθθ αωω += ++= += 33Compiled by Rozie SMAN 3 Semarang
  • 34. Dinamika Gerak Melingkar Menurut Hukum Newton kedua (ΣF = ma), benda yang mengalami percepatan pasti resultan gaya yang bekerja pada benda tidak sama dengan nol. Benda yang bergerak melingkar pasti memiliki percepatan sentripetal yang disebabkan adanya resultan gaya yang radial r v aF 2 mm sR ==Σ ΣFR merupakan gaya total dalam arah radial (gaya yang menuju pusat lingkaran:+ dan dan yamh menjauhi (-) 34Compiled by Rozie SMAN 3 Semarang
  • 36. lanjutan 36Compiled by Rozie SMAN 3 Semarang
  • 37. DINAMIKA GERAK MELINGKAR Berlaku: 1. Menentukan gaya tegangan tali pada bandul yang diputar melingkar A. Dengan bidang putar horisontal W T ∑ = sradial FF sFT = R v mT 2 = RmT 2 ω=
  • 38. B. Dengan bidang putar Vertikal W T ∑ = sradial FF sFwT =− mg R v mT 2 += T T T W T W W W W cos θ W sin θ α θ W cos α W sin α B A C D E  Ketika bandul ditik A
  • 39. ∑ = sradial FF sFcoswT =− θ )cosg R v (mT 2 θ+=  Ketika bandul ditik B )cosgR(mT 2 θ+ω= ∑ = sradial FF sFT = R v mT 2 =  Ketika bandul ditik C RmT 2 ω=
  • 40. ∑ = sradial FF sFwT =+ )g R v (mT 2 −=  Ketika bandul ditik D )gR(mT 2 −ω=
  • 41. 41 What provides the centripetal force? • Tension • Gravity • Friction • Normal Force Centripetal force is NOT a new “force”. It is simply a way of quantifying the magnitude of the force required to maintain a certain speed around a circular path of a certain radius. Compiled by Rozie SMAN 3 Semarang
  • 42. 42 Relationship Between Variables of Uniform Circular Motion Suppose two identical objects go around in horizontal circles of identical diameter but one object goes around the circle twice as fast as the other. The force required to keep the faster object on the circular path is A. the same as B. one fourth of C. half of D. twice E. four times the force required to keep the slower object on the path. The answer is E. As the velocity increases the centripetal force required to maintain the circle increases as the square of the speed. Compiled by Rozie SMAN 3 Semarang
  • 43. 43 Relationship Between Variables of Uniform Circular Motion Suppose two identical objects go around in horizontal circles with the same speed. The diameter of one circle is half of the diameter of the other. The force required to keep the object on the smaller circular path is A. the same as B. one fourth of C. half of D. twice E. four times the force required to keep the object on the larger path. The answer is D. The centripetal force needed to maintain the circular motion of an object is inversely proportional to the radius of the circle. Everybody knows that it is harder to navigate a sharp turn than a wide turn. Compiled by Rozie SMAN 3 Semarang
  • 44. 44 Relationship Between Variables of Uniform Circular Motion Suppose two identical objects go around in horizontal circles of identical diameter and speed but one object has twice the mass of the other. The force required to keep the more massive object on the circular path is A. the same as B. one fourth of C. half of D. twice E. four times Answer: D.The mass is directly proportional to centripetal force. Compiled by Rozie SMAN 3 Semarang
  • 45. 45 Tension Can Yield a Centripetal Acceleration: If the person doubles the speed of the airplane, what happens to the tension in the cable? F = ma mv r = 2 Doubling the speed, quadruples the force (i.e. tension) required to keep the plane in uniform circular motion. Compiled by Rozie SMAN 3 Semarang
  • 46. 46 Friction Can Yield a Centripetal Acceleration: Compiled by Rozie SMAN 3 Semarang
  • 47. 47 Friction provides the centripetal acceleration Car Traveling Around a Circular Track Compiled by Rozie SMAN 3 Semarang
  • 48. 48 Friction Can Yield a Centripetal Acceleration W FN fs Force X Y W 0 -mg FN 0 FN fs -µsFN 0 Sum ma 0 What is the maximum speed that a car can use around a curve of radius “r”? Compiled by Rozie SMAN 3 Semarang
  • 49. 49 Force X Y W 0 -mg FN 0 FN FC -µsFN 0 Sum ma 0 F mg F F mg F ma mg mv r mg v g r v g r y N N x s s s s = = − + = = = − − = − = × × = × × ∑ ∑ 0 2 2 µ µ µ µ max max max max Maximum Velocity Compiled by Rozie SMAN 3 Semarang
  • 50. 50 F = ma mv r = 2 Centripetal Force: Question Smaller radius: larger force required to keep it in uniform circular motion. A car travels at a constant speed around two curves. Where is the car most likely to skid? Why? Compiled by Rozie SMAN 3 Semarang
  • 51. 51 Gravity Can Yield a Centripetal Acceleration: Hubble Space Telescope orbits at an altitude of 598 km (height above Earth’s surface). What is its orbital speed? Compiled by Rozie SMAN 3 Semarang
  • 52. 52 Gravity and Centripetal Acceleration: Centripetal acceleration provided by gravitational force G m M R m v R E× × = × 2 2 Compiled by Rozie SMAN 3 Semarang
  • 53. 53 Gravity and Centripetal Acceleration: G m M R m v R E× × = × 2 2 Solve for the velocity…. v G m M R m R v G M R v G M R E E E 2 2 2 = × × × × = × = × Compiled by Rozie SMAN 3 Semarang
  • 54. 54 Hubble Space Telescope: v GM R km v v E E = + = × × × = − 598 6 67 10 974 10 7 600 11 24 ( . ) (5. , m kg s kg) 6,976,000 m m / s 3 -1 -2 Compiled by Rozie SMAN 3 Semarang
  • 55. 55 Banked Curves Why exit ramps in highways are banked? Compiled by Rozie SMAN 3 Semarang
  • 56. 56 Banked Curves Q: Why exit ramps in highways are banked? Compiled by Rozie SMAN 3 Semarang
  • 57. 57 Banked Curves Q: Why exit ramps in highways are banked? A: To increase the centripetal force for the higher exit speed. Compiled by Rozie SMAN 3 Semarang
  • 58. 58 The Normal Force Can Yield a Centripetal Acceleration: How many forces are acting on the car (assuming no friction)? Engineers have learned to “bank” curves so that cars can safely travel around the curve without relying on friction at all to supply the centripetal acceleration. Compiled by Rozie SMAN 3 Semarang
  • 59. 59 Banked Curves Why exit ramps in highways are banked? FN cosθ = mg Compiled by Rozie SMAN 3 Semarang
  • 60. 60 Banked Curves Why exit ramps in highways are banked? FN cosθ = mg Compiled by Rozie SMAN 3 Semarang
  • 61. 61 The Normal Force as a Centripetal Force: Two: Gravity and Normal Force X Y W 0 -mg FN FNsinθ FNcosθ Sum ma 0 Compiled by Rozie SMAN 3 Semarang
  • 62. 62 The Normal Force as a Centripetal Force: F mg F mg F F ma mv r mg mv r v gr y N x N = − + = = = = = × = = ∑ ∑ cos cos sin cos sin tan θ θ θ θ θ θ 0 2 2 2 FN Compiled by Rozie SMAN 3 Semarang
  • 63. 63 The Normal Force and Centripetal Acceleration: tanθ = v gr 2 How to bank a curve… …so that you don’t rely on friction at all!! Compiled by Rozie SMAN 3 Semarang
  • 64. 64 Artifical Gravity Compiled by Rozie SMAN 3 Semarang
  • 65. 65 Vertical Circular Motion Compiled by Rozie SMAN 3 Semarang
  • 66. 66 Vertical Circular Motion Compiled by Rozie SMAN 3 Semarang
  • 67. Speed/Velocity in a Circle Consider an object moving in a circle around a specific origin. The DISTANCE the object covers in ONE REVOLUTION is called the CIRCUMFERENCE. The TIME that it takes to cover this distance is called the PERIOD. T r T d scircle π2 == Speed is the MAGNITUDE of the velocity. And while the speed may be constant, the VELOCITY is NOT. Since velocity is a vector with BOTH magnitude AND direction, we see that the direction o the velocity is ALWAYS changing. We call this velocity, TANGENTIAL velocity as its direction is draw TANGENT to the circle. 67Compiled by Rozie SMAN 3 Semarang
  • 68. Centripetal Acceleration metersinlengtharc= = s r s θ v v r vt vts v v r s ∆ = ∆ ∆= ∆ ==θ Suppose we had a circle with angle, θ, between 2 radaii. You may recall: vo v θ ∆v vov onacceleratilcentripetaa a t v r v c c = = ∆ = 2 Centripetal means “center seeking” so that means that the acceleration points towards the CENTER of the circle 68Compiled by Rozie SMAN 3 Semarang
  • 69. Drawing the Directions correctly So for an object traveling in a counter-clockwise path. The velocity would be drawn TANGENT to the circle and the acceleration would be drawn TOWARDS the CENTER. To find the MAGNITUDES of each we have: r v a T r v cc 2 2 == π 69Compiled by Rozie SMAN 3 Semarang
  • 70. Circular Motion and N.S.L Recall that according to Newton’s Second Law, the acceleration is directly proportional to the Force. If this is true: ForcelCentripetaF r mv FF r v amaF c cNET cNET = == == 2 2 Since the acceleration and the force are directly related, the force must ALSO point towards the center. This is called CENTRIPETAL FORCE. NOTE: The centripetal force is a NET FORCE. It could be represented by one or more forces. So NEVER draw it in an F.B.D. 70Compiled by Rozie SMAN 3 Semarang
  • 71. Examples T r vc π2 = smvc /26.4 )4*28(. )76(.2 == π The blade of a windshield wiper moves through an angle of 90 degrees in 0.28 seconds. The tip of the blade moves on the arc of a circle that has a radius of 0.76m. What is the magnitude of the centripetal acceleration of the tip of the blade? 2 22 /92.23 76.0 )26.4( sm r v ac === 71Compiled by Rozie SMAN 3 Semarang
  • 72. Examples rg v r mv mg r mv F FF N cf 2 2 2 = = = = µ µ µ What is the minimum coefficient of static friction necessary to allow a penny to rotate along a 33 1/3 rpm record (diameter= 0.300 m), when the penny is placed at the outer edge of the record? mg FN Ff Top view Side view 187.0 )8.9)(15.0( )524.0( /524.0 80.1 )15.0(22 sec80.1 555.0 sec1 sec 555.0 sec60 min1 * min 3.33 22 === === == = rg v sm T r v T revrev revrev c µ ππ 72Compiled by Rozie SMAN 3 Semarang
  • 73. Examples The maximum tension that a 0.50 m string can tolerate is 14 N. A 0.25-kg ball attached to this string is being whirled in a vertical circle. What is the maximum speed the ball can have (a) the top of the circle, (b)at the bottom of the circle? mgT smv m mgTr v mvmgTr r mv mgT r mv maFF ccNET /74.5 25.0 ))8.9)(25.0(14(5.0)( )( 2 2 2 = + = + = =+→=+ === 73Compiled by Rozie SMAN 3 Semarang
  • 74. Examples At the bottom? smv m mgTr v mvmgTr r mv mgT r mv maFF ccNET /81.4 25.0 ))8.9)(25.0(14(5.0)( )( 2 2 2 = − = − = =−→=− === mg T 74Compiled by Rozie SMAN 3 Semarang
  • 75. An object moving in a circle with constant speed, v, experiences a centripetal acceleration with: *a magnitude that is constant in time and is equal to *a direction that changes continuously in time and always points toward the center of the circular path Uniform Circular Motion r v a 2 = For uniform circular motion, the velocity is tangential to the circle and perpendicular to the acceleration 75Compiled by Rozie SMAN 3 Semarang
  • 76. A circular motion is described in terms of the period T, which is the time for an object to complete one revolution. Period and Frequency 2πr f = 1 T T = 2πr v The distance traveled in one revolution is The frequency, f, counts the number of revolutions per unit time. r 76Compiled by Rozie SMAN 3 Semarang
  • 77. The moon’s nearly circular orbit about the earth has a radius of about 384,000 km and a period T of 27.3 days. Determine the acceleration of the Moon towards the Earth. Example of Uniform Circular Motion T = 2πr v ⇒ v = 2πr T a = v2 r = 4π2 r2 T2 r = 4π2 r T2 a = 2.72 ×10−3 m/ s2 g 9.8m/ s2       = 2.78×10−4 g 77Compiled by Rozie SMAN 3 Semarang
  • 78. Moon…... *So we find that amoon / g = 0.000278 *Newton noticed that RE 2 / R2 = 0.000273 *This inspired him to propose that Fgravity ∝ 1 / R2 (more on gravity in future lectures) amoon R RE g 78Compiled by Rozie SMAN 3 Semarang
  • 79. Uniform Circular Motion **motion in a circle or circular arc at constant speed **the acceleration changes the direction of the velocity, not the magnitude **the “center-seeking” or centripetal acceleration is always orthogonal to the velocity and has magnitude: r v a 2 =The period ofThe period of the motion:the motion: v r T π2 = 79Compiled by Rozie SMAN 3 Semarang
  • 80. Uniform Circular Motion Newton’s 2nd Law:: The net force on a body is equal to the product of the mass of the body and the acceleration of the body. *The centripetal acceleration is caused by a centripetal force that is directed towards the center of the circle. F=ma=m v2 r 80Compiled by Rozie SMAN 3 Semarang
  • 81. Demo 1D-5 Does the contact force between the wine glass and red-water remain constant in uniform circular motion? 81Compiled by Rozie SMAN 3 Semarang
  • 82. Consider the glass directly overhead. Choose the correct statement: a. The water doesn’t fall because the centripetal force on the water cancels the force of gravity. b. The water doesn’t fall because there isn’t enough time for it to fall. c. The water doesn’t fall because of the horizontal force applied to it by the glass, plus friction with the glass. d. The water is falling, but the glass is falling faster than it would under free fall. 82Compiled by Rozie SMAN 3 Semarang
  • 83. v mg N Fy∑ =−N−mg=−ma N=m(a−g) N=m( v2 r −g) Top y x mac = mv2 /r = mg + Ny or ac = g ± N/m When N=0, the centripetal acceleration is just g. 83Compiled by Rozie SMAN 3 Semarang
  • 84. v v mg N Fy∑ =−N−mg=−ma N=m(a−g) N=m( v2 r −g) Top mg N Bottom Fy∑ =N−mg=ma N=m(a+g) N=m( v2 r +g) y x 84Compiled by Rozie SMAN 3 Semarang
  • 85. mg N v Fy∑ =−N−mg=−ma N=m(a−g) N=m( v2 r −g) Top What speed is needed to lose contact between wine glass and red-water? v=rg 85Compiled by Rozie SMAN 3 Semarang
  • 86. 2) A person riding a Ferris Wheel moves through positions at (1) the top, (2) the bottom and (3) midheight. If the wheel rotates at a constant rate, rank (greatest first) these three positions according to... (a) the magnitude of persons centripetal acceleration (a) 2,1,3 (b) 1,2,3 (c) 3,2,1 (d) all tie (b) The magnitude of the Normal force? (1) Top (2) Bottom (3) Middle 86Compiled by Rozie SMAN 3 Semarang
  • 87. (b) the magnitude of the net centripetal force on the person 1. 1,2,3 2. 3,1,2 3. 3,2,1 4. all tie (c) the magnitude of the normal force on the person 1. all tie 2. 2,3,1 3. 3,2,1 4. 1,2,3 87Compiled by Rozie SMAN 3 Semarang
  • 88. Demo 1D-2 Conical Pendulum T mg θ Fy=0⇒∑ Tcosθ=mg Fr=ma⇒∑ Tsinθ=mv2 /R tanθ=v2 gR v= Rgtanθ=Rg/H Period=T=2πR/v=2πH/g H R The period, T, is independent of mass and depends only on H. *as θ 90, v increases. *v is independent of mass. 88Compiled by Rozie SMAN 3 Semarang
  • 89. Fr∑ =ma⇒fs=mv2 /R Fy∑ =N=mg fs=µsN A car of mass, m, is traveling at a constant speed, v, along a flat, circular road of radius, R. Find the minimum µs required that will prevent the car from slipping µs=v2 gR 89Compiled by Rozie SMAN 3 Semarang
  • 90. T−Mg=0⇒T=Mg T=m v2 r Mg = m v2 r v = M m gr A mass, m, on a frictionless table is attached to a hanging mass, M, by a cord through a hole in the table. Find the speed with which m must move in order for M to stay at rest. 90Compiled by Rozie SMAN 3 Semarang
  • 91. frictionless mg N Fy=0⇒∑ Ncosθ=mg Fr=ma⇒∑ Nsinθ=mv2 /R tanθ = v2 gR R = v2 gtanθ θ A car of mass, m, is traveling at a constant speed, v, along a curve that is now banked and has a radius, R. What bank angle, θ, makes reliance on friction unnecessary? 91Compiled by Rozie SMAN 3 Semarang
  • 92. v=480 km/hr L L W Fr=0⇒∑ 2Lsin40=M v2 r Fy=0⇒∑ 2Lcos40=Mg 2 Mg 2cos40 sin40 =M v2 r r= v2 gtan40 L= Mg 2cos40 An airplane is flying in a horizontal circle with a speed of 480 km/hr. If the wings of the plane are tilted 40o to the horizontal, what is the radius of the circle in which the plane is flying? (Assume that the required force is provided entirely by an “aerodynamic lift” that is perpendicular to the wing surface.) 92Compiled by Rozie SMAN 3 Semarang
  • 93. 12 x1x2 x tt vv a − − = 12 y1y2 y tt vv a − − = v s tt 12 =− v v cos α v sin α v v cos α v sin α αα R 1 2 s  GERAK MELINGKAR 93Compiled by Rozie SMAN 3 Semarang
  • 95. R vsin R v limalima 22 00 y −= − == →→ α α αα V ay R V ax Percepatan centripetal (menuju pusat) R v a 2 = 95Compiled by Rozie SMAN 3 Semarang
  • 96. V a R V a R v a 2 = f60rpm T 1 f V R2 T = = π = T = Perioda [s] f = Frekuensi [c/s, Hz] rpm = Siklus per menit 96Compiled by Rozie SMAN 3 Semarang
  • 97. Contoh Soal 1.10 Sebuah satelit direncanakan akan ditempatkan di ruang angkasa sedemikan rupa sehingga ia melintasi (berada di atas) sebuah kota A di bumi 2 kali sehari. Bila percepatan sentripetal yang dialami olehnya adalah 0,25 m/s2 dan jari-jari bumi rata-rata adalah 6378 km, pada ketinggian berapa ia harus ditempatkan ? Jawab : v a RB h km5440637811818RRh km18181 4 )3600x12)(25,0( 4 aT R T R4 R T R2 R V a s/m25,0ahRRjam12T B 2 2 2 2 2 2 2 2 2 B =−=−= = π = π = π =       π == =+== 97Compiled by Rozie SMAN 3 Semarang
  • 98. Circular Motion Angular velocity The angular displacement is if θθθ∆ −≡ if if ttt − − =≡≡ θθ ∆ θ∆ ωω Average angular velocity dt d tt θθ ω ≡ ∆ ∆ →∆ ≡ 0 limit Instantaneous angular velocity We will worry about the direction later. Like one dimensional motion +- will do. Positive angular velocity is counter-clock=wise. 98Compiled by Rozie SMAN 3 Semarang
  • 100. Circular Motion So, is there an acceleration? 100Compiled by Rozie SMAN 3 Semarang
  • 101. Circular Motion So, is there an acceleration? 101Compiled by Rozie SMAN 3 Semarang
  • 102. Student Workbook 102Compiled by Rozie SMAN 3 Semarang
  • 103. Student Workbook 103Compiled by Rozie SMAN 3 Semarang